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We study the effect of a dot-lead interaction on transport through a quantum dot hybridized to
two semi-infinite Luttinger-liquid leads. A bosonization approach is applied to treat the interaction
between charge fluctuations on the dot and the dynamically generated image charge in the leads.
The nonequilibrium distribution function of the dot and the tunneling current are computed within
a master-equation approach. The presence of the excitonic dot-lead coupling is found to enhance
transport in the vicinity of the Coulomb-blockade threshold. This behavior is in contrast to the
usual power-law suppression of electronic tunneling which is found if this interaction is ignored.
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I. INTRODUCTION

Understanding nonequilibrium phenomena in trans-
port through quantum dots and single-molecule devices
is of fundamental interest and is a major challenge in the
field of nanoscience. Much attention has been paid to the
interplay of the dot-lead hybridization and on-dot inter-
actions involving vibrational degrees of freedom or the
local repulsions which lead to magnetic moments and to
Kondo physics. However, the effect of a Coulombic inter-
action between the charge on the dot and the charge on
the leads has been studied little, even though it clearly
should be present on physical grounds. In this paper we
address this physics in the context of a quantum dot con-
nected to two one-dimensional leads. The model we con-
sider is inspired by recent experimental investigations of
the conductance of a molecule placed in the gap created
by breaking a carbon nanotube,1,2 although theory and
experiment are not yet at the point where a quantitative
comparison can be made.

One may view a quantum dot with one-dimensional
leads as an impurity embedded in a Luttinger liquid.
Fabrizio et al.

3 and Maurey and Giamarchi4 have studied
the case of an impurity described as a short-ranged po-
tential scatterer without dynamical charge fluctuations.
Lerner et al.

5 have taken into account finite dot-lead hy-
bridization but have not considered a Coulombic dot-lead
coupling. Goldstein et al.

6 have investigated the effect of
a Coulombic dot-lead interaction on the dynamics of the
population of a quantum dot using density matrix renor-
malization group and classical Monte Carlo simulations.
Boulat and Saleur7 have studied an impurity coupled to
one-dimensional leads in terms of an anisotropic interact-
ing resonant-level model and have found that a strong
impurity-wire interaction can enhance transport in the
low-temperature regime.

In a previous paper we studied the effect of a cou-
pling between dot and lead charge densities on the re-
laxational dynamics of a quantum dot side-hybridized to
a Luttinger-liquid lead.8 We found that this ‘excitonic’
coupling has important consequences for electronic cor-

relations and may enhance the tunneling of electrons in
the regime of weak hybridization. The present paper ex-
tends our analysis to the case of a quantum dot placed
between two leads such that it cuts the Luttinger liquid
into two semi-infinite quantum wires. This situation dif-
fers in several respects from that considered in our pre-
vious work. Most fundamentally, intrinsically nonequi-
librium behavior driven by a current flow across the dot
is possible. Further, because we deal with semi-infinite
systems, boundary exponents appear instead of bulk ex-
ponents. Finally, the presence of two leads means that
tunneling into one lead is modified by orthogonality ef-
fects arising from the excitonic coupling to the other lead.
These differences turn out to produce significant changes
in the results.

The rest of the paper has the following structure. In
Sec. II we introduce the model. In Sec. III we explain
the bosonization scheme which we use. In essence the
idea is to write the model in a basis corresponding to a
translation-invariant system and to note that the break-
ing of translational invariance corresponds to imposing
boundary conditions on the lead wavefunction which may
be satisfied by choosing particular linear combinations of
wavefunctions in a way inspired by the ”method of im-
ages” in electrostatics.9–12 Section IV solves the resulting
the model by canonical transformations à la Schotte and
Schotte.13 Results for the tunneling rates and current-
voltage characteristics, calculated to leading nontrivial
order in the dot-lead hybridization, are presented in
Sec. V and Sec. VI. Section VII presents a summary and
conclusions, and indicates possible directions for future
research.

II. MODEL

Our system consists of leads, a quantum dot, and hy-
bridization and excitonic coupling terms. It is described
by a Hamiltonian of the form

H = Hlead +Hdot +Hexc +Hhyb. (1)
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FIG. 1: Schematic of a one-dimensional lead-dot-lead sys-
tem showing two leads, possibly maintained at a nonvanishing
voltage difference, the quantum dot (filled circle, blue online)
and a gate which screens the long-ranged part of the Coulomb
interaction.

For simplicity, we take the quantum dot to have one
(spin-degenerate) level and a repulsive interaction. How-
ever, we emphasize that the method is general and would
work in more complicated situations. The quantum-dot
Hamiltonian Hdot is thus

Hdot = εd nd +
U

2
nd(nd − 1). (2)

Here U is the local Coulomb repulsion, nd =
∑

σ d
†
σdσ is

the operator giving the total number of electrons on the
dot and d†σ creates an electron with energy εd and spin
σ on the dot.

We model the lead part of the Hamiltonian as two
disconnected half-chains. Motivated by the possibility
of nanotube leads we allow the two leads denoted by
α = L,R to have an orbital (channel) degeneracy la-
beled by 1 ≤ a ≤ N as well as a spin degeneracy. The
lead Hamiltonian is then

Hlead =
∑

αakσ

ǫαkc
†
αakσcαakσ +Hint. (3)

Here c†αakσ creates an electron in a state of energy ǫαk

in orbital a of lead α, and Hint labels the interactions
among lead electrons, which will be discussed in more
detail below.

The situation we consider is sketched in Fig. 1. The
coordinate system is defined such that the quantum dot
is at x = 0 and lead α terminates at x = xα with xL < 0
and xR > 0. We assume that in the absence of the dot
the leads are decoupled so that the electronic boundary
condition is

ψαaσ(xα) = 0, (4)

where ψαaσ(x) creates a lead electron at position x.
We restrict ourselves to the case of short-ranged in-

teractions between the conduction electrons, assuming
in particular that the interaction between electrons in
different leads is negligible. The effect of interactions be-
tween leads is an important open question. Interactions
become short-ranged in the presence of a metallic gate,

which screens the long-ranged part of the Coulomb force.
We shall need an explicit form for the charge-channel in-
teraction in the leads, which we take to be

Hint =
1

2

∑

α=L,R

V c
α

∫ α

dx
[

ρtot
α (x)

]2
+ . . . , (5)

where
∫ α

indicates an integral over the region of lead α
and

ρtot
α (x) =

∑

aσ

ραaσ(x) (6)

with

ραaσ(x) =
∑

qk

eiqxc†
αa(k+q)σcαakσ (7)

denotes the total charge density (summed over all chan-
nels and spins). We shall not need to specify other po-
tential contributions to Hint.

We include two forms of dot-lead couplings. The first
is the standard hybridization

Hhyb =
∑

α

∫ α

dx
∑

aσ

[

Tα(x) d†σψαaσ(x) + h.c.
]

, (8)

with the tunneling amplitudes Tα(x) strongly peaked at
x in the vicinity of the lead edges. The second term is a
(screened) Coulombic dot-lead coupling,

Hexc = nd

∑

α

∫ α

dxWα(x)ρtot
α (x), (9)

where the dot-lead interaction Wα(x) is also peaked for
x near the lead edge.

III. BOSONIZATION SCHEME

A. General formalism

Because the leads are one-dimensional and the disper-
sion may be linearized near the Fermi level, we expect
to be able to represent the low-energy degrees of free-
dom in terms of bosons representing propagating charge
and spin fluctuations.14,15 The semi-infinite nature of
the leads presents a technical difficulty in that the stan-
dard bosonization formulas are derived for translation-
invariant systems, whereas in the model of interest trans-
lation invariance is strongly broken. To deal with this sit-
uation we use ideas introduced by Kane and Fisher,16 Eg-
gert and Affleck11 and Fabrizio and Gogolin.10 For each
lead we introduce a translation-invariant reference sys-
tem [Eq. (3) with the range of x extended from −∞
to +∞], which we bosonize as usual. We then im-
pose a boundary condition which selects from the refer-
ence problem only those states which fulfill the physical
boundary condition.
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B. Bosonization of reference problem

We now recall the bosonization of the translation-
invariant reference problem, in order to define notation.
We combine spin and orbital quantum numbers into a
superindex β = 1, . . . ,M and introduce the operators
ρλ

αβ(x) describing right (λ = +) and left (λ = −) moving
particle-hole pairs in orbital β of the reference system
corresponding to lead α. From these we define boson
operators φ0

α,β , θ0α,β via

∇φ0
αβ(x) =

[

ρ+
αβ(x) + ρ−αβ(x)

]

, (10)

∇θ0αβ(x) = −
[

ρ+
αβ(x) − ρ−αβ(x)

]

(11)

that obey the volume commutation relation

[

φ0
αβ(x),∇θ0α′β′(x′)

]

=
i

π
δαα′δββ′δ(x− x′) (12)

and are related to the total particle density in state β by

ραβ(x) = ∇φ0
αβ(x). (13)

Expressing the lead electron creation operator

ψαβ(x) =
∑

λ=±

ψλαβ(x) (14)

in terms of these bosons fields gives

ψλαβ(x) =
Uλα√
2πη

eiλkF xeiπ[λφ0
αβ(x)−θ0

αβ(x)]. (15)

Here the small positive infinitesimal factor η arises from
the correct normal ordering of the operators14. The Klein
factor Uα carries the Fermi statistics and a time depen-
dence related to the lead chemical potential µα,

Uλα(t) = eiµαtUλα(0). (16)

Under reasonable conditions (no Umklapp scattering,
standard interactions) the low-energy part of the Hamil-
tonian for the reference translation-invariant problem
may be diagonalized in terms of boson fields φ̃αb, θ̃αb

which are linearly related to the original operators
φ0

αβ , θ
0
αβ and obey the same commutation relations,

Eq. (12).14,15 It is convenient to rearrange the θ̃αb, φ̃αb

into chiral fields φ̃±αb conventionally defined by

φ̃±αb(x) ≡ θ̃αb(x) ± φ̃αb(x), (17)

in terms of which the reference Hamiltonian becomes

Href =
∑

αb

πvαb

4

∫

dx
(

[∇φ̃+
αb(x)]

2 + [∇φ̃−αb(x)]
2
)

(18)

with the velocity parameters vαb and coefficients of the
linear transformation relating the φ̃±αb to the φ0

αβ , θ0αβ

determined by the bare velocities and interactions of the
lead eigenstates. Note that [φ̃+

αb, φ̃
−
α′b′ ] = 0 while

[

φ̃±αb(x),∇φ̃±α′b′(y)
]

= ±2i

π
δαα′δbb′δ(x − y), (19)

which among other things implies that φ̃±αb(x, t) are re-
spectively functions of x± vF t only.9

In the general case the transformations are compli-
cated, but in the physically most relevant case where all
channels in a given lead have the same bare velocity and
the interactions conserve the total lead density, two sim-
plifications occur. First, the transformation does not mix
the θ and φ variables so that

φ0
αβ =

1

2

∑

b

Cα
βb

(

φ̃+
αb − φ̃−αb

)

, (20)

θ0αβ =
1

2

∑

b

(Cα)
−1
bβ

(

φ̃+
αb + φ̃−αb

)

. (21)

Second, one channel (which we take to be b = 1) describes
the total charge density in lead α so that ∇φα,b=1 is
linearly proportional to ρtot

α [Eq. (6)]. Specifically,

1

2

(

φ̃+
α,b=1 − φ̃−α,b=1

)

=

√

1

KcM

∑

β

φ0
αβ (22)

1

2

(

φ̃+
α,b=1 + φ̃−α,b=1

)

=

√

Kc

M

∑

β

θ0αβ (23)

and, conversely,

φ0
αβ =

1

2

√

Kc

M

(

φ̃+
α,b=1 − φ̃−α,b=1

)

+ . . . , (24)

θ0αβ =
1

2

√

1

KcM

(

φ̃+
α,b=1 + φ̃−α,b=1

)

+ . . . , (25)

with the ellipses representing the other terms φ̃+
α,b≥2 ±

φ̃−α,b≥2 needed to make up the full operator.
The ‘Luttinger parameter’ Kc and charge-channel ve-

locity vα,b=1 ≡ vc are related to the bare charge-channel
interaction V c

α , Eq. (5), and the bare Fermi velocity vF

by

Kc =
1

√

1 +
MV c

α

πvF

, vc = vF

√

1 +
MV c

α

πvF

. (26)

Transcribing Eq. (15) into the new basis yields

ψλαβ(x) = Uλα e
iλkF x ψrest

λαβ(x)

× e
i π√

M

h“

λ
√

Kc
2

− 1

2
√

Kc

”

φ̃
+

α,b=1
(x)−

“

λ
√

Kc
2

+ 1

2
√

Kc

”

φ̃
−
α,b=1

(x)
i

(27)

with ψrest
λαβ(x) an exponential of a combination of the φ̃±αb

with b = 2, . . . ,M .
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C. Implementation of boundary conditions

Equation (14), in combination with the constraint,
Eq. (4), on the lead wave function implies

U+,αe
ikF xα eiπφ0

αβ(xα,t) + U−,αe
−ikF xα e−iπφ0

αβ(xα,t) = 0.
(28)

for all β and α. Equation (28) is seen to be satisfied if
we impose the two conditions

(i) cos
[

πφ0
αβ(xα, t) + kFxα

]

= 0, (ii) U+,α = U−,α.
(29)

Condition (ii) is the statement that perfect reflection
at the channel edge means that the Klein factor, which
carries the position dependence only via the chemical po-
tential, is the same for left and right movers in each lead
α so that henceforth we drop the subscript λ in Uλα.

Condition (i), in combination with Eqs. (24)—(25)
says that at the lead boundaries x = xα the difference
between the + and − chiral fields must be time indepen-
dent. Shifting the origin of the coordinates for lead α to
xα we find

φ̃+
αb(0, t) − φ̃−αb(0, t) = Dαb (30)

with the constants Dαb such that [using Eq. (20)]

(

1 − 2kFxα

π

)

=
∑

b

Cα
βbDαb. (31)

Because the chiral fields φ̃±αb(x, t) are respectively func-
tions of x± vF t only we can extend Eq. (30) to all space
and time as

φ̃+
αb(x, t) − φ̃−αb(−x, t) = Dαb. (32)

Inverting Eq. (31), noting that the left-hand side is inde-
pendent of β and using the fact that the charge channel
is the same in original and eigenstate variables we find

Dα,1 =

√

M

Kc

(

1 − 2kFxα

π

)

, Dα,b6=1 = 0. (33)

To compute correlation functions for operators cor-
responding to the semi-infinite Luttinger liquid one
rewrites a general expression in terms of the chiral oper-
ators φ̃±αb, uses the boundary condition Eq. (30) to elim-

inate, say, φ̃−αb(x, t) in terms of φ̃+
αb(−x, t) and Dαb, and

then computes the φ̃+
αb correlation functions in the usual

way from the φ̃+
αb part of Eq. (18). For example, the

fermion operator becomes

ψλαβ(x) = Uλα e
iλkF x e

i π√
M

“

λ
√

Kc
2

+ 1

2
√

Kc

”

Dα,1ψrest
λαβ(x) e

i π√
M

“

λ
√

Kc
2 [φ̃+

α,b=1
(x)−φ̃

+

α,b=1
(−x)]− 1

2
√

Kc
[φ̃+

α,b=1
(x)+φ̃

+

α,b=1
(−x)]

”

.
(34)

IV. ELIMINATION OF DOT-LEAD COUPLING

The dot-lead interaction Hexc in Eq. (9) can be elim-
inated by a canonical transformation as first noted by
Schotte and Schotte.13 Using Eqs. (9), (13) and (32) gives

Hexc =

√
KcM

2

∑

α

∫ α

dxWα(x)

×
[

∇φ̃+
α,b=1(x) −∇φ̃+

α,b=1(−x)
]

nd. (35)

We now formally extend the integral over the full
translational-invariant reference system by defining
Wα(−x) = Wα(x) (recall we have shifted the origin of
coordinates in lead α to xα) obtaining

Hexc =

√
KcM

2

∑

α

∫

dxWα(x)∇φ̃+
α,1(x)nd. (36)

Examination of Eqs. (18) and (35) then shows that the

dot-lead coupling may be removed by a shift ∇φ̃+
α,1(x) →

∇φ̃+
α,1(x) − ndZα(x) with

Zα(x) =

√
KcMWα(x)

πvc

. (37)

After this shift the Hamiltonian retains its original
form, except that Hexc has been eliminated and the dot
parameters εd and U are shifted to εd → ε̃d = εd − ∆
and U → Ũ = U − 2∆ with the polaron shift ∆ defined
by

∆ =
∑

α

KcM

4vcπ

∫

dx [Wα(x)]
2
. (38)

Observe that the magnitude of the renormalizations de-
pends on the magnitude of Wα, which in turn may rea-
sonably be expected to vary with the distance between
the dot and lead α.

The commutation relation Eq. (19) shows that the mo-

mentum conjugate to ∇φ̃±α,b=1 is −πφ̃±α,b=1/2 so that the
shift is effected by the canonical transformation O →
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eiSOe−iS with

S = nd

∑

α

π

2

∫

dxZα(x)φ̃+
α,b=1(x). (39)

Under this transformation the hybridization term Eq. (8)
becomes

eiSHhybe
−iS =

∑

α

∫

dxTα(x) d†σ e
i

πnd
4

Bα(x)

× e
i π
2

P

α′
R

dx′Zα′ (x′)φ̃+

α′,b=1
(x′)

ψλαβ(x). (40)

Here the first factor in the second line comes from trans-
forming the operator d†σ and the second from transform-
ing the lead operator. The constant Bα(x) is given by

Bα(x) = λ

√

Kc

M

∫

dx′ sgn(x′) [Zα(x′ + x) − Zα(x′ − x)]

− 1√
KcM

∫

dx′ sgn(x′) [Zα(x′ + x) + Zα(x′ − x)] .

(41)

We shall be interested in |x| small compared to the range
over which Zα is nonvanishing, in which case because Wα

is defined as an even function Bα will be negligible.

V. EXCITONIC INTERACTION AND
DOT-LEAD HYBRIDIZATION

The transformations introduced in Sec. IV remove the
explicit excitonic dot-lead coupling from the Hamilto-
nian, at the expense of adding operator content to the
hybridization. The resulting model can (to our knowl-
edge) not be exactly solved, but it can be studied by
perturbation theory in the dot-lead hybridization. We
present here an investigation of the lowest nontrivial or-
der in perturbation theory, which reveals the essential
physics introduced by the excitonic dot-lead interaction.
The methods introduced in Refs. [17,18] can be used to
extend the calculation numerically to all orders.

In a perturbative analysis of Eq. (40) the crucial quan-
tities are expectation values of the form

Fα(t) =
∑

λ,λ′=±

〈

ξ†λαβ(t)ξλ′αβ(0)
〉

(42)

with

ξλαβ = Uα

∫

dxTα(x) ei
πnd
4

Bα(x)

× e
i π
2

P

α′
R

dx′Zα′ (x′)φ̃+

α′,b=1
(x′)

ψλαβ(x). (43)

The correlation function Fα(t) is related to the lead
Green function that gives the local density of states, but
differs from it because of the renormalization of the dot
operator dσ by the dot-lead Coulomb interaction.

Equation (42) is evaluated by using Eq. (27) to express
the fermion operator in terms of chiral boson fields and

then using standard results of bosonization. To avoid
inessential complications we specialize to the physically
most relevant case of short-ranged dot-lead interactions.
In this case we may neglect the Bα(x) term in Eq. (43).
We will also assume that (as in the nanotube case) all of
the non-charge channels are characterized by very weak
interactions, so that we may assume that in all channels
except the charge channel we have free-fermion correla-
tions. In the long-time limit we then obtain (including
for later convenience a nonvanishing temperature T )

Fα(t) ≃ 1

τα

(

vF

vc

)
1

M

F0(t) e
Φα(t) e−iµαt (44)

with F0(t) = πηT/[vF sinh(πT t)] the free-fermion corre-
lator,

1

τα
∝ 2π

∫

dx dx′ T ∗
α (x) Tα(x′)

× 4 sin(kF (x− xα)) sin(kF (x′ − xα)) (45)

proportional to the bare tunneling rate, and

Φα(t) =
1

M

(

1 −
[

(1 − Zα)2

Kc

+
Z2

ᾱ

Kc

])

× log

(

ivcΛ

πT
sinh(πT t)

)

, (46)

where we have defined ᾱ = L if α = R (ᾱ = R if α = L)
and Zα ≡

∫

dxZα(x). Here Λ is the momentum cutoff
of the Luttinger-liquid behavior; in the nanotube case it
is in essence the tube diameter, which is the length scale
on which the Coulomb interaction is cut off.

The integral in Eq. (45) reflects the vanishing of the
lead fermion operator precisely at the edge of the lead,
xα, and may give rise to a strong dependence of electronic
correlations on the position of the quantum dot (relative
to the leads) but need not be evaluated precisely for our
subsequent considerations.

The main physical content of Eq. (46) is that the func-
tion Fα(t) is renormalized from the free-fermion behavior
∝ [sinh(πT t)]−1 to [sinh(πT t)]−Yα with

Yα = 1 − 1

M

[

1 − (1 − Zα)2

Kc

− Z2
ᾱ

Kc

]

. (47)

The exponent Yα is related to the standard Luttinger-
liquid edge exponent, but includes also the effects of
the dot-lead interaction. Differences from Yα = 1 corre-
sponds to changes from the free-fermion situation. Yα >
1 corresponds to a suppression of tunneling and Yα < 1
to an enhancement.

In the absence of the excitonic coupling (Zα = Zᾱ = 0)
we obtain Yα = 1 + (1 −Kc)/KcM , the standard result
for tunneling into the boundary of a Luttinger liquid with
only density correlations.16,19,20 The excitonic coupling
has two effects. The (1−Zα)2/Kc term leads to a weak-
ening of the charge-channel renormalization and thus to
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an enhancement of tunneling, similar to that found in
our previous work.8 However, the term Z2

ᾱ/Kc, which
did not occur in our previous work, leads to a strength-
ening of the charge-channel renormalization and hence to
a suppression of tunneling. This term arises because tun-
neling into one lead changes the dot charge density. The
excitonic interaction means that this change in the dot
density causes an orthogonality catastrophe in the other
lead, suppressing electronic tunneling. The total renor-
malization is governed by a competition between the two
effects, and is thus controlled by the relative sizes of Zα

in the two leads as well as by Kc.
If the situation is symmetric and the interactions are

of Coulombic origin with a reasonably large screening
length, then as shown in Ref. 8 one has Zα = 1 − K2

c

with Kc < 1. In this case one obtains

YL = YR = 1 +
1

KcM

[

1 −Kc − 2K2
c (1 −K2

c )
]

. (48)

Especially in the strong-interaction case (Kc ≪ 1), the
value of Yα is changed relatively little from the Zα = 0
value. For a nanotube with a screening length some-
what larger than the tube diameter, the considerations of
Ref. 8 imply Kc on the order of 0.5–0.7. In this circum-
stance, Yα is 1.1–1.3 in the absence of excitonic effects
while in its presence Yα is 0.9–1.1.

On the other hand, a very asymmetric situation (ZL ≃
1, ZR ≃ 0) would lead to YL ≃ 1 − 1/M < 1 and YR ≃
1 + (2/Kc − 1)/M > 1, so that tunneling into one of the
leads is suppressed and the other is enhanced; however, it
is difficult to realize a small Yα even in the case of M = 1
channel.

VI. CURRENT-VOLTAGE CHARACTERISTICS

The assumption of weak coupling between the quan-
tum dot and the leads suggests a master-equation ap-
proach to study the nonequilibrium dynamics of the sys-
tem. The quantum dot with a spin-degenerate level is
described by the diagonal density matrix

ρd = P0|0〉〈0| + P1|1〉〈1| + P2|2〉〈2|, (49)

where P0, P1, and P2 denote the occupation probabilities
of the empty state |0〉, the singly-charged state |1〉, and
the doubly-charged state |2〉.

In the Markovian limit of sufficiently slow dot dynam-
ics, inserting Eq. (49) into the von Neumann equation
and expanding to lowest order in the hybridization yields
the following set of master equations

Ṗ0 =
∑

α

[P1Rα
1→0 − 2P0Rα

0→1] , (50)

Ṗ1 =
∑

α

[2P0Rα
0→1 + 2P2Rα

2→1 − P1 (Rα
1→0 + Rα

1→2)] ,

(51)

Ṗ2 =
∑

α

[P1Rα
1→2 − 2P2Rα

2→1] , (52)

with the tunneling rates

Rα
0→1 = 2 Re

∫ ∞

0

dτFα(τ) e−iε̃dτ , (53)

Rα
1→2 = 2 Re

∫ ∞

0

dτFα(τ) e−i(ε̃d+Ũ)τ . (54)

These equations apply in a high-temperature limit; in
particular if (T0/T )1−Yα is sufficiently small, with T0

an energy scale of the order of the upper cutoff of the
Luttinger-liquid theory. They do not capture the physics
of cotunneling (which is formally of fourth order in the
dot-lead hybridization). In the weak-coupling limit co-
tunneling processes will just give a background contri-
bution to the conductance with finite renormalization
by the dot-lead interaction. The physics in the strong-
coupling limit is an interesting open topic for investiga-
tion.

The transition probabilities for the emission and ab-
sorption of an electron are related by Rα

0→1(ε̃d − µα) =

Rα
1→0(−ε̃d +µα) and Rα

1→2(ε̃d + Ũ −µα) = Rα
2→1(−ε̃d −

Ũ + µα), respectively. Using Eq. (44) we find

Rα
0→1 ∝ e−

ε̃d−µα
2T

2πτα

(

2πT

vcΛ

)Yα−1

∣

∣

∣
Γ

(

Yα

2 + i ε̃d−µα

2πT

)∣

∣

∣

2

Γ(Yα)
,

(55)

Rα
1→2 ∝ e−

ε̃d+Ũ−µα
2T

2πτα

(

2πT

vcΛ

)Yα−1

∣

∣

∣
Γ

(

Yα

2 + i ε̃d+Ũ−µα

2πT

)∣

∣

∣

2

Γ(Yα)
.

(56)

The rates in Eqs. (55)—(56) obey the detailed-balance
condition, because each lead is individually in equilib-
rium.

The operator for the tunneling current through lead α
is

Iα = −ie
∑

aσ

∫ α

dx
[

Tα(x)d†σψαaσ(x) − T ∗
α (x)ψ†

αaσ(x)dσ

]

.

(57)

Solving Eqs. (50)—(52) in steady state (Ṗi = 0) then
gives the steady-state current

〈Iα〉 = e
R2→1

R

(

Rα
0→1Rᾱ

1→0 −Rα
1→0Rᾱ

0→1

)

+ e
R0→1

R

(

Rα
1→2Rᾱ

2→1 −Rα
2→1Rᾱ

1→2

)

(58)

with Rn→m ≡
∑

α Rα
n→m and

R = R1→0R2→1 + 2R0→1R2→1 + R0→1R1→2. (59)

Thus we see explicitly that the steady-state current is
proportional to the product of the hybridization to the
left and right lead and changes when the chemical poten-
tial in either lead lines up with one of the dot levels. In
the asymmetric situation different terms come in to reso-
nance at different bias voltages, leading to a diversity of
resonance behaviors.
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FIG. 2: Current-voltage characteristics of a broken Luttinger
liquid (a) for Y = 0.9 (representative of the presence of the
excitonic interaction in a symmetric junction with nanotube
leads) and (b) for Y = 1.1 (representative of a dot with nan-
otube leads in the absence of the excitonic interaction), and
different temperatures. We show results for a symmetrically
applied bias voltage eV = µL − µR with the gate voltage set
to zero. We assume that the renormalized and bare dot en-
ergies ε̃d and εd are positive. Because our interest here is in
the form of the threshold behavior we choose units such that
in each panel the bias voltages V and thermal energies T are
given in units of the corresponding onsite energy appropriate
to that panel. The local Coulomb interaction is assumed to
be twice as large as the onsite energy in both panels.

In the low-temperature limit, the current-voltage char-
acteristics obey a power law close to the Coulomb-
blockade thresholds, eV = ±2ε̃d. Here the electronic
correlation function is Fα ∝ 1/tYα , which gives rise to
tunneling rates of the form

Rα
0→1 ∝ 1

τα

( |ε̃d − µα|
vcΛ

)Yα−1

θ (µα − ε̃d) . (60)

Numerical results for the current-voltage characteris-
tics for a symmetric junction (equal hybridization and
excitonic couplings to left and right lead) are presented

Y=0.9
Y=1.0
Y=1.1

dI/dV

0.2

0.4

0.6

0.8

1.0

0
5.6 6.0 6.4

V

FIG. 3: Differential conductance dI/dV (in units of its maxi-
mum value) as a function of bias voltage V for different values
of Y calculated for voltages in the neighborhood of the higher
bias step shown in Fig. 2 at temperature T = ε̃d/30 and other
parameters identical to those used in Fig. 2.

(a) (b)

-4

0

4

V

max

min

-2 0 2 4
Vg

-2 0 2 4
Vg

FIG. 4: Color-scale plots of the current as a function of bias
voltage V and gate voltage Vg (a) for Y = 0.9 (representing
the presence of the excitonic interaction) and (b) for Y =
1.1 (representing the absence of the excitonic interaction).
Voltages are given in units of the onsite energy. We assume
T = εd/100, U = 3εd, and ∆ = εd/2 so that Ũ = 2εd.

in Fig. 2, for exponent values representative of a dot cou-
pled to carbon nanotube leads with (upper panel) and
without (lower panel) excitonic couplings. The steps in
the current are associated with the lead Fermi level com-
ing to resonance with the nd = 0 to nd = 1 energy dif-
ference (lower bias feature) and the nd = 1 to nd = 2
energy difference (higher bias feature). The symmetry
of the situation implies that the steps are the same for
positive and negative bias. We see that in the excitonic
case (upper panel) the conductance is enhanced at the
threshold, while in the absence of excitonic coupling the
conductance is suppressed at the threshold. As is seen
more clearly in Fig. 3 the excitonic enhancement is ac-
companied by a region of negative differential conduc-
tance.

Color-scale plots of the current as a function of bias
voltage V = (µL − µR)/e and gate voltage Vg = −εd/e
are shown in Fig. 4. The excitonic interaction leads to
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a polaron shift, ∆, which renormalizes the dot charing
energy, U → Ũ = U − 2∆, and thus reduces the size of
the Coulomb diamonds.

As discussed in Sec. V, asymmetric excitonic dot-lead
couplings change the behavior. In Fig. 5 we demon-
strate this behavior, presenting results calculated for pa-
rameters appropriate to a nanotube (M = 4 channels
and Kc ≃ 0.7) but with an excitonic interaction only
to the left lead, so that ZL ≃ 1 and ZR ≃ 0, imply-
ing YL ≃ 0.75 and YR ≃ 1.5. In this case tunneling to
the left lead is enhanced and tunneling to the right lead
is suppressed. To understand the consequences for the
I–V characteristics we refer to Eq. (58) for the steady-
state current. Near the lowest threshold we may ne-
glect the 1→2 transitions and simplify the expression to
〈IL〉 = 2e(RL

0→1RR
1→0 − RL

1→0RR
0→1)/(2R0→1 + R1→0).

We see that when the bias voltage reaches the positive
threshold eV = +2ε̃d, only the first term contributes be-
cause RR

0→1 ≃ 0 in this case. Since the rate RR
1→0 is a

smooth function at eV = +2ε̃d and the denominator has
no singularities, the current is essentially proportional to
eRL

0→1. However, when the bias voltage reaches the neg-
ative threshold eV = −2ε̃d, only the second term con-
tributes because RL

0→1 ≃ 0 in that case. Accordingly
the current is asymmetric and shows step-like features at
positive bias voltages but a suppressed onset at negative
bias voltages. In the asymmetric case the “Luttinger”
renormalization of the tunneling amplitude is different
for tunneling into the two leads [cf. Eq. (60)], also con-
tributing to the asymmetry.

VII. CONCLUSIONS

In summary, we have investigated the effect of a
Coulombic dot-lead coupling on transport through a
quantum dot coupled to two semi-infinite Luttinger-
liquid leads. The electronic tunneling has been described
within a master-equation approach that treats the dot-
lead hybridization to lowest nonvanishing order. We have
found that the excitonic dot-lead interaction may en-
hance transport in the vicinity of the Coulomb-blockade
threshold, which is in contrast to the power-law suppres-
sion of the electronic tunneling if this interaction is not
included. However, the effects are in general less pro-
nounced than for the side-coupled situation considered
in our previous work,8 because in the present two-lead
situation both the excitonic and orthogonality effects are
present.

The paper raises several questions for future research.
A treatment of the electronic tunneling to all orders in
the hybridization would be desirable. Moreover, it would
be interesting to study the effect of the Coulombic dot-
lead coupling on transport in the Kondo regime, where
electronic tunneling is dominated by dot-lead exchange
scattering processes. Finally, the consequences of an in-
teraction between the two leads should be explored.

(a)

I L L

V5 10

T=0.01
T=0.1
T=0.3

1.0

0.5

-0.5

-1.0

-10 -5

(b)

1

2

3

4

5 10 V

RL
0-1

R     R
0-1

RL
1-2

R     R
1-2

Rn-m

-10 -5

FIG. 5: (a) Current-voltage characteristics and (b) transition
rates for asymmetric excitonic dot-lead couplings, YL = 0.75
and YR = 1.5. We assume T = ε̃d/100, vcΛ = 15ε̃d and as

in Fig. 2 choose Ũ = 2ε̃d. Voltages are given in units of the
onsite energy.
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