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Atomic staircases in noble metal surfaces are model one-dimensional superlattices, where free-electron-like

surface states transform into superlattice bands with sizeable quantum size shifts and gaps. At critical step

spacings d = n × (λF /2), such superlattice gaps lie at the Fermi energy, affecting the electronic energy, and

hence the structural stability of the step lattice, which is held by weak elastic interactions. We use Cu, Ag, and

Au curved crystals to smoothly tune the superlattice constant d in Angle Resolved Photoemission (ARPES) and

Scanning Tunneling Microscopy (STM) experiments. With ARPES we accurately quantify terrace size effects

and determine the superlattice potential, which increases from Ag to Cu and to Au. With STM we analyze the

d-dependent terrace width distribution for Cu and Ag, and observe non-linear variations in Cu. On the grounds

of simple electronic and elastic models, we conclude that terrace width distribution instabilities and electronic

energy variations at d = n×(λF /2) have the same order of magnitude for Cu. In contrast, the weak superlattice

potential in Ag, i.e., its smoother band structure modulation is not sufficient to alter the step lattice.

I. INTRODUCTION

Metallic superlattices, such as atomic step arrays, are ac-
tively investigated in the context of nanostructure growth, as
suitable templates to achieve self-organized, dense nanopar-
ticle arrays with 1-10 nm periodicities1. At this length
scale long range interactions, namely elastic, dipole and
substrate-electron-mediated, compete to determine the equi-
librium structure in templates and arrays. Understanding
the hierarchy of such interactions is thus of obvious impor-
tance. To this aim, step lattices are particularly attractive since
they are the simplest one-dimensional (1D) systems. The
nanoscale order in a step lattice is driven by long-range, elas-
tic repulsion between steps1,2. Compared to atomic bonds,
such elastic interactions are weak, and hence the 1D super-
lattice is likely to be influenced by surface electronic states.
In particular in noble metals, where surface electrons scat-
ter strongly at crystal defects, such as steps, giving rise to a
significant 2kF (λF /2) response at the Fermi energy3–6. The
question that arises is whether surface electron scattering in
step arrays is enough to trigger 1D charge-density-wave-like
phenomena, i.e., structural/electronic instabilities with lattice
constant (step spacing) d = n × λF /2.

The existence of electronic/structural interplay associated
to surface states on noble metals has been shown for adatoms
and molecules adsorbed at cryogenic temperatures3. In the
most striking case Ce adatoms form a hexagonal lattice on
Ag(111) with parameter d that matches the surface state
Fermi wavelength ∼ λF /2, leading to the so-called nesting
of the Fermi surface with superlattice wave vectors. How-
ever, adatom lattices are delicate systems that become unsta-
ble at room temperature, and hence have little interest for ap-
plications. In dislocation patterns and arrays of steps elec-
tronic/structural instabilities have been claimed at 300 K7,8. In
the dislocation network induced by one monolayer of Ag on
Cu(111), the two-dimensional Fermi surface nesting and sub-
sequent gapping may explain the extra compression observed
in the Ag atomic lattice7. In step arrays in vicinal Cu(111),
the Fermi surface gap is observed with d = λF /2, where a

disorder instability is invoked, but not proved8.

In order to test the existence of electronic/structural inter-
plays, superlattices with tunable lattice constant are extremely
useful. For step arrays, the tunability is readily achieved with
curved surfaces. In this work we present a combined analy-
sis of the structure and the electronic states of tunable Cu and
Ag step superlattices, using curved crystals. A similar analy-
sis was previously done for Au, and presented elsewhere9. As
shown in Figs. 1 (a) and (b), our curved surfaces are defined
by α = ± 15◦ cylindrical sections around the [111] direc-
tion (α = 0). The 1D-superlattice is thus made of monatomic
steps that run parallel to the [11̄0] direction, whereas along
[112̄] the superlattice constant d is inversely proportional to
the macroscopic deviation (α) from the [111] direction as:

d =
h

sin α
(1)

where h is the monatomic step height. Therefore, d is ac-
curately and smoothly varied by scanning along [112̄] the re-
spective probes, i.e., the micron-size synchrotron light beam
in angle resolved photoemission spectroscopy (ARPES), and
the metallic tip in scanning tunneling microscopy (STM). This
allows us to measure d-dependent properties directly, such as
the surface band structure (Figs. 2 and 3) and the terrace con-
finement shift (∆E, Fig. 4) in ARPES, as well as the terrace
size distribution in STM (Figs. 5 and 6). From ∆E we derive
the superlattice potential strength (U0b in Fig. 1 (c)), which is
found to increase from Ag to Cu and Au. Such trend correlates
well with the observation of very strong structural instabilities
in Au (faceting), terrace size distribution variations in Cu, and
apparent structural stability in Ag step lattices. Moreover, a
quantitative estimation of the structural and the electronic en-
ergy variations in each case supports the existence of a deli-
cate interplay between electronic states and lattice structure in
step arrays of noble metals.
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II. EXPERIMENTAL

Ag, Cu and Au single crystals (Mateck GmbH, Germany)
were mechanically polished defining a α = ± 15◦ cylindrical
section (11.6 mm radius) around the [111] direction (α = 0)
[Fig. 1 (a))]. Fig. 1 (b) shows a photography of the Ag crys-
tal. As depicted in Fig. 1 (a), the two sides of the crystal cor-
respond to A-({100}-oriented microfacets) and B-type steps
({111̄} microfacets). All surfaces were prepared in vacuum
following the standard ion sputtering plus annealing cycling
used for flat crystals. The small size of the sample allows
a homogeneous preparation for all miscuts, ensuring reliable
d-dependent analysis. The low energy electron diffraction
(LEED) scans display smooth and sharp d-dependent splitting
across the sample for Cu and Ag10. In contrast the Au crystal
exhibited clear faceting in the ∼ 4◦-10 ◦ range, as discussed
elsewhere9.

Locally resolved surface bands were measured with
ARPES using synchrotron light from the PGM beamline of
the Synchrotron Radiation Center (SRC) in Stoughton (Wis-
consin). We used a hemispherical Scienta SES200 analyzer
with energy and angular resolution set from 25 to 35 meV
and 0.1◦, respectively, and p-polarized light with the polar-
ization plane parallel to surface steps. The 100 µm diameter
light spot defined an effective ∆α ∼0.25◦, i.e., similar to the
nominal polishing accuracy of crystals9. The samples were
mounted with the [112̄] crystal direction running parallel to the
analyzer entrance slit, such that the 1D step superlattice band
dispersion could be directly imaged in the channelplate detec-
tor of the analyzer. For linefit analysis, channelplate images
were decomposed in single energy dispersion curves (EDC)
for each of the 127 channels. Peak fits were carried out us-
ing two lorentzian lines for the surface state and its umklapp
band convoluted by a gaussian to account for temperature and
experimental resolution. The series of fits determined peak
energy, width and intensity.

The structural quality of the step superlattices as a function
of d is defined from the standard deviation of the lattice con-
stant σ(d), i.e., the terrace width distribution measured across
the curved crystals with STM. Images have been systemati-
cally recorded using a variable temperature STM setup (Omi-
cron). The description of the analytical process of the STM
images, which is the same for the three crystals, was explained
in detail in the previous Au work9. In summary, we perform
a thorough analysis of individual frames with sizes between
400×400 and 20×20 nm2 using the WSXM software11. STM
images are automatically processed, applying a gaussian fit
to the resulting data that gives the value d̄ in each image, as
well as the standard deviation σ9. The STM analysis is al-
ways limited to surface areas exhibiting homogeneous step
arrays in the 1 µm scale, i.e., generally most of the surface
areas with miscut angles above 2◦. For each σ(d) point we
consider an average of 5 different frames. Error bars in d̄ are

estimated as ∆d̄ =
√

∆d̄2
a + ∆d̄2

b , where ∆d̄a stands for the

numerical precision determined by the fitting program, and
∆db = h(cosα/ sin2 α) × ∆α accounts for the local lattice
constant variability derived from the ∆α = 0.2◦ accuracy of

the surface orientation. Finally, the uncertainty in σ is defined
by the fitting program. STM experiments were carried out at
300 K for Cu and Au(111), and at 150 K for Ag, the latter
intended to attenuate the effect of bunching of surface steps
induced by the STM tip.

III. ARPES: DETERMINING THE SUPERLATTICE

POTENTIAL

Figures 2 and 3 display ARPES results for the Cu and Ag
curved surfaces, respectively. We show intensity plots show-
ing the surface bands perpendicular to the step arrays in Cu
and Ag [Fig. 2 (a) and 3(a)], EDC spectra at band minima for
different α [Fig. 2 (b) and 3(c)], Fermi surfaces [Fig. 2 (c)]
around the nesting point in Cu (d = λF /2 ∼ 17 Å,8), and also
the characteristic photon-energy dependence of the band umk-
lapps in the case of Ag [Fig. 3 (b)]. Generally measurements
with two photon energies need to be combined, i.e., a low pho-
ton energy of 21 eV, which provides high intensity and opti-
mum energy and angular resolution for individual EDC peak
analysis, and a high photon energy between 33 and 46 eV, to
better visualize umklapp bands. The latter are needed to de-
fine 2π/d, i.e., the actual terrace size d being probed in the
ARPES experiment. In Fig. 2 (a) lines are Kronig-Penney fits
to data (see below), whereas in Fig. 3 (a) parabolic fits mark
the dispersion near the band bottom. Due to the proximity of
the Fermi level, the surface state peak in Ag appears convo-
luted with the Fermi edge, making the band dispersion barely
visible in image plots such as those of Fig. 3 (a). In Fig. 2 (c)
the umklapp rings mark the intensity maxima at EF , allowing
to identify Fermi surface nesting. In agreement with previous
measurements8, the intensity drops at the crossing point of the
two Fermi rings from 7◦ to 8 ◦ miscuts, reflecting the presence
of the Fermi gap around the critical d = λF /2 ∼ 17 Å value.

The EDC spectra in Figs. 2 (b) and 3 (c) correspond to the
surface band bottom at different α angles, reflecting the char-
acteristic upwards shift (∆E) of the surface band minimum
with respect to the (111) band (E0). The positive ∆E is the
clearest ARPES signature of repulsive step barriers and par-
tial confinement within d-wide terraces. In Ag [Fig. 3 (c)]
the surface state peak is cutoff by the Fermi level at high mis-
cut angles, and hence the peak position is only determined
after line fit analysis. Since E0 is simply measured at the
center of each crystal, we can obtain a very consistent and
accurate determination of ∆E versus d. In Fig. 4 we show
such terrace confinement effect ∆E plotted as a function of d
for the three curved crystals. ∆E is a very convenient mag-
nitude for ARPES studies of vicinal surfaces, since, unlike
gaps, it is barely affected by the inherent terrace size distribu-
tion broadening8. From ∆E one straightforwardly obtains the
barrier strength within the simplest approach for a 1D super-
lattice, i.e., a periodic succession of δ-like barrier potentials
of strength U0b located at step edges. The δ barrier is equiv-
alent to the finite potential barrier of height U0 and width b
depicted in Fig. 1 (c), with the advantage of allowing the sim-
ple 1D Kronig-Penney (KP) analysis of the superlattice12. In
the KP model, the one-dimensional band dispersion is given
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by the known expression:

E(kx) = E0 +
~

2

2m∗

1

d2
[cos−1(|T | coskxd) − φ]2 (2)

where m∗ is the electron effective mass of the surface state
and |T | and φ respectively are the modulus and the phase
of the energy-dependent, complex transmission coefficient12.
Making kx=0 and inserting the analytical expressions for |T |
and φ in Eq. 2, it immediately follows the terrace size effect
∆E = E(0) − E0 as:

∆E =
2~

2

m∗

1

d2

[

tan−1

(

q0

q

)]2

(3)

where q0 = (m∗/~
2) × U0b and q =

√

(2m∗/~2)∆E. Data
points in Fig. 4 correspond to ∆E versus (1/d) measured
across the three crystals. The reference energies E0 of the
(111) planes, measured at α=0◦, are -0.056 eV for Ag(111)
(100 K), -0.408 eV for Cu(111) (180 K), and -0.464 eV for
Au (150 K)15, agreeing with the literature8,12–14. The lines in
Fig. 4 represent fits to the data following Eq. 3, where we
assume m∗ = 0.41me for both Cu and Ag, m∗ = 0.27me

for Au9, and use U0b as the single fitting parameter. For the
three crystals, we find an extraordinary agreement with the
KP model, proving the correctness of this approach despite its
simplicity.

In Fig. 4 we note that a single value U0b holds for each
crystal at all d regimes, except in Au, where U0b changes
at both sides of the faceting region (4◦< α <10 ◦). The
small 0.6 eV·Å barrier for Ag steps was also suggested in
Ag/Cu(111) experiments16. The U0b = 1.7 eV·Å value found
for Cu contrasts with the large 7.0 eV·Å strength claimed in
Ref.8. The systematic analysis of Fig. 4 discards such a large
value. For Au and Cu, the present experiment allows us to
refine the conclusions drawn from the latest data collection of
flat samples13. U0b was found to fall within a constant 1-2
eV·Å range for d < 40 Å, in overall agreement with Fig. 4.
However, earlier data for d > 40 Å suggested a sharp barrier
increase for large terraces13. The inset in Fig. 4 is a zoom-out
of the large-d regime. The present ∆E(1/d) data fall away
from the hard wall case (U0b = ∞), although error bars indi-
cate that the infinite barrier cannot be discarded for d > 40-50
Å.

The accurate determination of the barrier strength for Au,
Cu and Ag steps is very important in the understanding
of electron scattering at surfaces, e.g., in novel topologi-
cal surface states, for which noble metal surfaces are the
non-topological reference17. STM and ARPES measure-
ments of the step barrier in noble metals have always ap-
peared contradictory, revealing in fact complex underlying
physics4–6,8,12,13,18. The analysis of standing wave patterns
formed around isolated steps indicate high reflectivity and par-
tial leakage (absorption) into bulk states4–6. By contrast, dense
arrays of steps always exhibited surface band dispersion and
reduced d-size effects in ARPES12,13,19, as also observed in
Figs. 2 and 3. This is only explainable with small barriers that
allow significant electron transmission.

Scattering differences between arrays with low and high
density of steps were traced to the smooth transformation of
surface states of large (111) terraces into bulk resonances in
densely stepped surfaces12,13,18,19. Although fluctuations and
disorder of the step lattice in Cu14, or surface state depopula-
tion in Ag20, both occurring at d = λF /2, have been claimed
to trigger the transition from surface states to surface reso-
nances, such a transition may naturally be expected. In re-
ciprocal space, due to the effective vanishing of the support-
ing band gap out of the [111] direction12, and in real space,
due to resonance build up by surface/bulk state overlap at step
edges18, which significantly extends inside terraces21. Hence,
a complex bulk/surface nature characterizes electronic states
in step arrays, such that the distinct sensitivity to bulk and sur-
face may explain the differences observed between ARPES
and STM. In this respect, ARPES accurately determines the
whole k-dependent spectrum12,13, although it is affected by
crystal imperfections and size distribution broadening that are
avoided in STM.

One question that arises from Fig. 4 is why U0b increases
from Ag to Cu and to Au. The answer can shy new light on
the nature of the step potential, a key issue that has been barely
discussed in the past12,22. It is generally assumed that U0b is
related to the local electrostatic dipole at the step edge21,22,
although the effective barrier strength may depend on wave
function properties of the surface state12,22. Since the lat-
ter is similar in Ag, Cu and Au one may reasonably expect
U0b to scale with the step dipole moment. However, consis-
tent data on dipole moments of steps for the three metals do
not exist. There are only partial comparative measurements
in surface/vacuum23 or surface/electrolyte interfaces24, which
point to the trend found for U0b in Fig. 4, i.e., the step dipole
in Au is found bigger than in Cu or Ag, and larger for A steps
versus B steps.

Coming back to the issue of the structural/electronic inter-
play, electronic instabilities are expected at 1D nesting values
d = n × λF /2, for which supperlattice gaps lie at EF . Gaps
are clear in Au ARPES data9 and Cu (Fig. 2,8), but are hardly
visible in Ag (Fig. 3), as expected from its small U0b barrier.
In Fig. 4 we have marked the d = n×λF /2 values determined
from the 1D KP bands E(kx) calculated using the respective
U0b in Eq. 2. KP bands for Cu are shown superimposed to
ARPES data in Fig. 2 (a), indicating overall good agreement.
In Cu we obtain λF /2= 17 Å and λF = 32 Å, for Ag, λF /2 =
45 Å, whereas in Au, λF /2 = 20 Å and λF = 36 Å. Note that
λF in Au lies exactly at the lower faceting onset at α ∼ 4◦9.
Faceting is not present in Ag or Cu, which show a gradual
change in lattice constant, reflected in the smooth evolution of
∆E in Fig. 4. However, Cu in fact shows d-size distribution
instabilities at λF /2 < d < λF , as discussed next.

IV. STM: ANALYSIS OF THE TERRACE WIDTH

DISTRIBUTION

The curved surface approach allows a straightforward struc-
tural analysis of the step superlattice as a function of d, us-
ing STM. In Au, such analysis allowed us to characterize the
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faceting transition (miscut range, terrace and step structure) of
the crystal, which in turn made it possible to establish a likely
connection between the faceting instability and the electronic
states at the α ∼ 4◦ onset9. In Cu and Ag we have not detected
faceting instabilities. Images in top panels of Fig. 5 exemplify
the main STM observation, i.e. monatomic step arrays with
sizeable variations in lattice quality across the curved surface,
which are accounted for by means of the terrace width distri-
bution σ(d̄) analysis. At certain d values (e.g, 23.5 Å) the step
lattice looks sharp, whereas at others (d= 18.7 Å) step edges
appear rougher. This qualitative observation is reflected in the
image analysis of the bottom panels, where we plot the statis-
tical variation of d (in entire multiples of atomic rows) across
the image. The gaussian fit gives the mean terrace size d̄, as
well as the standard deviation σ in each case.

In Figs. 6 (a) and (b) we plot the standard deviation σ
as a function of the average terrace size d̄ in Cu and Ag,
as determined from the statistical analysis of STM images
extended to the whole crystals. Within the framework of
the classical elastic model, the σ(d̄) plot is very meaningful.
In such classical theory, step interactions are assumed to be
dipole-like, and hence described by an inverse square poten-
tial U(x) = Ã/x22,25. Ã refers to the step-step interaction

strength, which varies as (σ/d̄)−426. Thus, for constant Ã
there is a direct proportionality between d̄ and σ, i.e., a linear
σ(d̄) plot reflects an elastically stable (constant Ã) step lattice.

In Fig. 6, straight lines fit the A and B step data separately.
In general, in both Cu and Ag, B data show larger scattering
than A data, but the same trends. In Ag, within error bars,
we observe a good linear fit, particularly in A steps. In con-
trast, Cu data neatly deviate from the line between λF /2 and
λF , defining a dip with minimum at d̄= 23 Å. In fact, the step
array is visually sharper in Fig. 5 (a) for d̄= 23.5 Å, as com-
pared to d̄= 18.7 Å. By contrast to the Cu behavior, the data
for Ag indicate, within error bars, an apparent stability, i.e., a
constant Ã value. Note that differences between Ag and Cu in
σ(d̄) plots correlate well with the respective superlattice po-
tential derived from Fig. 4, i.e., weak for Ag and strong for
Cu. In the following we try to discuss more quantitatively
such connection.

V. DISCUSSION: ELECTRONIC AND ELASTIC ENERGY

INSTABILITIES

For a quantitative evaluation of any electronic/structural
interplays, one must compare the characteristic energy vari-
ations involved at critical lattice constants, i.e., electronic
∆Eelec versus elastic ∆Eelas. In step arrays, these can be
respectively estimated assuming the 1D KP band structure for
the 1D lattice of Eq. 2, and the elastic theory.

∆Eelec is related to the presence of the superlattice gaps at
EF [Figs 2 (a) and (c)], which cause abrupt changes in the
occupation of the surface band. To evaluate the surface state
occupation, we numerically calculate the number of electronic
states per surface atom Ne using the following formulas for
2D systems:

D(ǫ) = 2 ×
1

(2π)2

∫

E(k)=const

dSE

|gradkE(k)|
(4)

Ne =

∫ 0

E0

D(ǫ)dǫ (5)

where ǫ stands for the electron energy, D(ǫ) for the 2D density
of states, and dSE is an area element of the constant energy
surface perpendicular to k. Eqs. 4 and 5 have been numeri-
cally integrated assuming, along kx, the KP band structure of
Eq. 2, and along ky , a free-electron-like dispersion. In Fig.
6 we plot the resulting Ne(d) curve on top of the σ(d̄) plots.
Ne increases steadily, but instabilities at successive gap cross-
ings are clearly observed. In Cu we find ∆Ne ∼ 0.001 e−

ripples, whereas in Ag, due to the smaller U0b potential, ∆Ne

is reduced to ∼0.0002 e−/atom.
The corresponding variation in electronic energy ∆Eelec

can be estimated following the criterium applied in Ref.8, i.e.,
from the difference in electronic energy between gapped KP
bands and gapless free-electron bands with constant occupa-
tion Ne. The total electronic energy per surface atom Eelec is
derived from the known equation:

Eelec =

∫ 0

E0

ǫD(ǫ)dǫ (6)

The direct integration of Eq. 6 using the band structure of
Eq. 2 results in the electronic energy for the KP lattice EKP

elec .

For the 2D free-electron gas, first we find the energy Ẽ0 in Eq.
5 at which the electron density for KP bands and free electron
bands are strictly the same NKP

e (E0) = Nfree
e (Ẽ0). For

such Ẽ0 we integrate Eq. 6 to obtain Efree
elec . The electronic

energy instability ∆Eelec is thus defined as:

∆Eelec = Efree
elec (Ẽ0) − EKP

elec(E0). (7)

Applying Eqs. 4-7 around λF /2 we find ∆Eelec ∼0.3
meV/atom in Cu in contrast to the much smaller
∆Eelec ∼0.005 meV/atom found in Ag.

For ∆Eelas we consider the step interaction contribution to
the surface free energy γ. In a vicinal surface with monatomic
steps, γ can be expressed in terms of the miscut α and as a
function of the temperature T 2,25:

γ(α) = γ0 + β
| tan α|

h
+

B(T )

a||h3
| tanα|3 (8)

where γ0 represents the surface energy of (111) terraces, β the
step energy per unit length, h the step height, a|| the atomic
distance parallel to the steps, and B(T ) the step interaction
term. The latter includes both the entropic interaction g(T ),
which is dominant at extremely low step densities, and the di-
rect step-step interaction. For the specific case of step-step
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interactions of dipole type U(x) = Ã/x2, B(T ) can be writ-
ten as2:

B(T ) =
g(T )

4







1 +

[

1 +
2π2Ãa||

3g(T )

]1/2






2

(9)

For a moderate step density, which is the case of the 0◦-15◦

miscut range analyzed in this work, Ã > g(T ), and B(T ) is
reduced to:

B(T ) ≃
π2a||

6
Ã (10)

In systems with faceting instabilities, such as Au9, two
phases compete with their distinct terrace and step energies27,
namely the first and second terms in Eq. 8. In Cu and Ag we
have a single phase, and hence lattice instabilities involve the
third term of Eq. 8. Noting again that a constant interaction
strength Ã leads to a linear σ(d̄) plot, the dip observed in Fig.

6 for Cu may be assumed as due to ∆Ã changes, which in turn
lead to elastic free energy changes ∆γ = ∆Eelas as:

∆Eelas =
π2

6h3
| tan α|3 ∆Ã =

π2

6d3
∆Ã (11)

The strong (σ/d̄)−4 dependence of Ã makes it difficult to

obtain reliable Ã values from STM data26. Among Cu(111)
vicinals σ/d̄ is found close to 0.3, being Ã ∼ 6 meV·Å26.

Assuming Ã= 6 meV·Å for d= 17 Å, the drop from σ/d̄ =

0.28 to σ/d̄ = 0.14 for d= 23 Å leads to an increase of Ã to
96 meV·Å. The latter value is typical for strongly interacting
steps such as those in Pt(111)25. Thus, around λF /2 for Cu in

Fig. 6, we estimate ∆Ã = 90 meV·Å, which results (Eq. 11,
d= 17-23 Å) in ∆Eelas=0.07-0.17 meV/atom.

Therefore, based on the simple KP and elastic models, the
same 0.1 meV order of magnitude is estimated in Cu step lat-
tices for electronic instabilities, caused by opening the gap

at EF , and elastic instabilities, caused by changes in step in-
teraction strength. In the case of Ag, note that data in Fig.
6 exhibit the same slopes as in Cu, and hence it is reason-
able to expect similar elastic energy variations upon similar Ã
changes. Thus, the small ∆Eelec= 0.005 meV/atom involved
in the Fermi gap crossing in Ag would not be sufficient to
trigger a visible ∆Eelas instability in Fig. 6.

VI. SUMMARY

In summary, using curved crystals we carried out a con-
sistent surface state and structure analysis of Ag, Cu, and Au
step lattices with smoothly varying d, using ARPES and STM.
With ARPES we measured the superlattice band structure and
the terrace confinement effect as a function of d. From the
latter we accurately obtained the superlattice potential, which
remains constant upon d variation, but increases from Ag to
Cu and to Au. With STM we measured the d-size distribution
in Cu and Ag. We detect step lattice instabilities in the case
of Cu within the λF /2 < d < λF range. The quantitative es-
timation of both lattice (terrace width) and electronic (Fermi
energy gap) instabilities based on classical elastic theory and
Kronig-Penney band structure give the same (0.1 mev/atom)
order of magnitude in Cu, suggesting the presence of elec-
tronic/structural interplays. By contrast, the weak electron po-
tential in Ag appears insufficient to promote instabilities in the
step lattice, which in fact appears structurally stable in STM.
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FIG. 1: (a) Schematic description of the Au, Cu, and Ag curved

crystal samples and (b) photography of the 6×6 mm2 Ag crystal used

in this work. α stands for the miscut deviation with respect to the

(111) surface at the center of the crystal. (c) Side-view sketch of the

1D periodic potential in a step superlattice with lattice constant d and

U0b barriers at step edges.
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FIG. 2: (a) Photoemission intensity plots showing the surface band

dispersion measured around d = λF /2 at different miscut angles in

curved Cu. The solid lines are Kronig-Penney bands that indicate the

presence of a Fermi gap. (b) EDC spectra for band minima at differ-

ent angles, from which the d-size effect (∆E) is straightforwardly

determined. (c) Photoemission intensity at the Fermi energy for dif-

ferent miscuts in Cu. The rings mark the intensity maxima and hence

the Fermi surface. For 7.2◦ and 8.1◦ miscuts the intensity weakens

at the ring crossing region, indicating the presence of a gap.
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FIG. 3: (a) Photoemission intensity plots showing the surface state

band in Ag at different miscut angles. (b) Photon-energy-dependence

of the surface state band in Ag at α= 3.6 ◦. Umklapps are better

observed near the Γ point of the bulk band structure, probed with 33-

36 eV photon energy. (c) Surface state peak fits carried out at surface

band minima in curved Ag at α=0◦ [(111) surface] and α=8.5◦. In

the latter, the peak is cutoff by the Fermi edge, which needs to be

deconvoluted by line fitting.
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FIG. 4: Terrace-size confinement effect for Ag, Cu, and Au step

lattices. Solid lines are fits to the respective sets of data using the

Kronig-Penney model to extract the step barrier strength U0b. Sub-

sequently, one obtains the d = n×λF /2 values indicated. The black

line is calculated for U0b = ∞. The gap of data beyond λF /2 in Au

corresponds to its faceting range. The inset is a blow out of the large-

d region, where only Cu data are shown. The accuracy at this range

does not allow to discard the hard wall case found in STM.
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FIG. 5: Characteristic STM images (top) from Cu curved surfaces

showing (a) relatively broad (18.7 Å) and (b) sharp (23.5 Å) step

lattices. The respective statistical image analysis (bottom) renders

the average terrace size d̄ and the standard deviation σ.
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FIG. 6: Terrace width variation σ as a function of the average lattice

constant d̄ for (a) Cu and (b) Ag, as determined with STM. A linear

function is expected in lattices with inverse square Ã/x2 step inter-

actions, but constant Ã strength. Straight lines fit separately A and

B step data in each crystal. For Cu, a dip (dotted line) is observed

between λF /2 and λF , suggesting a structural instability triggered

by surface states. The surface electron density curves shown on top

are calculated with the Kronig Penney model and the U0b values of

Fig. 4. They exhibit ripples at critical n × d = λF /2 points


