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We study the effects of spatially localized breakdown of time reversal symmetry on the surface of a
topological insulator (TI) due to proximity to a helical spin density wave (HSDW). The HSDW acts
like an externally applied one-dimensional periodic(magnetic) potential for the spins on the surface
of the TI, rendering the Dirac cone on the TI surface highly anisotropic. The decrease of group
velocity along the direction x̂ of the applied spin potential is twice as much as that perpendicular
to x̂. At the Brillouin zone boundaries (BZB) it also gives rise to new semi-Dirac points which
have linear dispersion along x̂ but quadratic dispersion perpendicular to x̂. The group velocity of
electrons at these new semi-Dirac points is also shown to be highly anisotropic. Experiments using
TI systems on multiferroic substrates should realize our predictions. We further discuss the effects
of other forms of spin density wave on the surface transport property of topological insulator.

PACS numbers: 71.10.Pm, 73.20.-r

I. INTRODUCTION

In the last few years there has been a growing interest
in topological insulators (TI), which are materials that
are insulators in the bulk but conduct two-dimensionally
on the surfaces1–6. The non-trivial topology of the wave-
function of such TI has been predicted to show metal-
lic surface conductivity that is topologically protected
against weak disorder and interaction effects. One of the
mechanisms by which the surface modes can be disrupted
is by breaking the time reversal invariance upon applying
a magnetic field. There have been several studies on the
effects of a magnetic field either applied directly perpen-
dicular to the surface of a TI7 or by the proximity effect
of a ferromagnet in a heterostructure8,9. On the other
hand, the effects of an antiferromagnet or a spin density
wave on the surface states of the TI is a topic which is
much less well-explored. We carry out such an analysis
of the effect of a spin density wave on TI transport in
this work.

Although an antiferromagnet, in the proximity to a TI,
does not affect the global time reversal symmetry (TRS)
in the latter, the staggered nature of the spins in the an-
tiferromagnet breaks the TRS locally. In this work, we
are interested in how this local TRS breaking affects the
surface states of the TI. However, the local TRS breaking
occurs at a length scale which is of the order of the lattice
spacing in the antiferromagnet (for e.g., 8.85 Å for MnO).
Therefore the effects of local TRS breaking occur at very
large momenta, which makes it difficult to observe them
in experiments. In order to redress this difficulty, we pro-
pose to study the effects of local TRS breaking by replac-
ing the antiferromagnet with a multiferroic material10

like orthorhombic RMnO3 (R being a rare earth element
like Tb or Dy) or the family of Fe1−xCoxSi with cubic

but noncentrosymmetric structure, which shows a heli-
cal spin density wave (HSDW) order with relatively long
periods (> 30 nm)11. The HSDW will couple to the
Dirac fermions on the surface of the topological insula-
tor due to the proximity effect by the above two kinds
of materials directly deposited on the top. The situa-
tion is similar to that of an externally applied charge
potential on graphene12. However, the contrast between
the two situations is that the 3D topological insulator
has spin polarized 2D Dirac fermions on its surface13,
whereas the Dirac fermions in graphene carry pseudo-
spin. Nevertheless, in analogy with the charge potential
applied to graphene, a spin potential can be used for TI
to manipulate the surface Dirac fermions.

It may be appropriate to ask about the motivation of
our theoretical work where we are proposing, using con-
crete theoretical calculations, that experiments be car-
ried out on a multiferroic-TI sandwich structure for the
observation of the topologically protected surface trans-
port in the TI surface states induced by the HSDW asso-
ciated with the multiferroic layer. This approach sounds
somewhat indirect, and indeed it is although the effect
of the HSDW-induced local TRS-breaking on TI surface
transport properties is intrinsically interesting in its own
right as we establish in this work.

Our main motivation for this work, however, arises
from the fact that so far there has been little direct ex-
perimental signature of the topologically-protected sur-
face transport in existing TI materials in spite of a great
deal of research activity14–22 aimed precisely toward the
direct and unambiguous observation of 2D surface TI
transport. All the convincing experimental evidence for
the existence of the topologically-protected surface 2D
TI states is currently based on the verification of the pro-
posed band structure through STM/STS or ARPES type
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spectroscopic measurements. The problem in the direct
observation of the surface 2D TI transport is that the cur-
rently existing TI materials are not good bulk insulators,
and the bulk conduction is always much stronger than the
surface conduction, making it impossible to observe the
surface 2D states unambiguously in transport measure-
ments. This problem of substantial bulk transport arises
from the fact that all existing TI materials, instead of be-
ing a bulk band insulator as band structure calculations
predict, turn out to be intrinsically doped in the bulk due
to defects and vacancies, giving rise to a large bulk con-
duction channel which competes directly with the surface
2D transport. For example, the two most recent (and also
most compelling) transport measurements14,15 see very
small putative surface 2D magneto-resistance oscillations
with a temperature dependent bulk resistivity which does
not behave like a standard band insulator at all. In par-
ticular, the bulk resistivity in these samples14,15 is of the
order of Ω·cm or less whereas an insulator typically has a
bulk resistivity which is 10–12 orders of magnitude larger.
Thus, the TI systems, even in these most compelling
measurements, show dominant bulk conduction with less
than 1% of the net conduction being inferred (through
the indirect fitting of the magneto-resistance data using
many free parameters and ad hoc multichannel conduc-
tion models) at best to be arising from the 2D surface
states. Another recent experiment16 concludes that no
2D surface conduction can be discerned at all in the TI
transport data because of the dominant bulk conduction.
Another recent experiment17 goes to the extreme of us-
ing a pulsed external magnetic field as high as 55T in
order to investigate the surface 2D transport, again em-
phasizing small observed features in the high-field resis-
tivity as the possible manifestation of the expected 2D
TI surface transport. Even the two very recent transport
measurements14,15 purportedly claiming the manifesta-
tion of 2D surface TI transport can only observe small
2D features in the derivative spectrum of the resistiv-
ity with respect to the applied magnetic field. This is a
most unsatisfactory state of affairs in sharp contrast to
the transport properties of well-established 2D quantum
systems, e.g. graphene, where 2D transport behavior23

without any bulk conduction problem whatsoever mani-
fests itself in every possible transport measurement in a
decisive manner, and one does not have to look for small
features in the derivative spectrum. The current situa-
tion in TI physics is thus extremely problematic with all
spectroscopic measurements providing reasonable verifi-
cation of the expected spin-resolved 2D Dirac cone band
structure on the TI surface whereas the fact that the
bulk is not an insulator is making it essentially impossi-
ble to see the expected 2D protected surface transport.
We point out in this context that the theoretical details
of how the surface 2D TI transport would behave, had
it not been contaminated by the unintentional bulk con-
duction problem plaguing the existing TI materials, are
reasonably well-known in the literature18.

Of course, further materials development in the exist-

ing TI systems leading to the effective suppression of the
unintentional bulk doping or the discovery of completely
new classes of TI materials where the bulk is a true insu-
lator could solve this problem instantaneously, but until
that happens, any idea which points toward the obser-
vation of surface TI transport should be welcome. It is
somewhat of an embarrassment that in spite of the huge
activity in TI research, a true Topological Insulator does
not yet exist since the existing systems are not true bulk
insulators due to the invariable presence of unintentional
bulk doping. Our proposal in the current work should be
seen in this light. We provide a method to directly isolate
surface transport features in TI systems in proximity to
a helical spin density wave as produced, for example, by
a multiferroic material. Since bulk conduction should be
relatively immune to the presence of the HSDW, whereas
the surface TI conduction should be affected qualitatively
as we show in this work, we believe that our predictions
could help provide the unambiguous observation of the
surface 2D TI transport properties. In addition, the cou-
pling between the HSDW and the 2D TI states leads to
nontrivial novel physics (e.g. the semi-Dirac points to be
discussed below) which is intrinsically interesting in its
own right.

We find that the surface states of the TI are sig-
nificantly modified in the presence of the HSDW. The
HSDW acts like an externally applied superlattice poten-
tial on the TI surface resulting in striking anisotropy of
the Dirac cones and group velocity of the surface states.
In particular, the group velocity along the direction of
the superlattice is monotonically suppressed as a func-
tion of the lattice potential strength and its period. For
the type of HSDW considered in Sec. II, which we call
proper HSDW,24 (see below), we find that novel semi-
Dirac points, whose low-energy characteristics are inter-
mediate between Dirac (massless) and zero-gap (massive)
semiconductors25,26, show up on the BZB. In Sec. III,
we discuss how the surface transport properties of the
topological insulator changes when the forms of the spin
density wave is changed. Section IV contains a summary
and conclusions.

II. THE PROPER HELICAL SPIN DENSITY

WAVE

A. Dirac cone on the BZ center

We begin by writing down the effective Hamiltonian for
the low-energy quasiparticles on the surface of a topolog-
ical insulator as,

H0(k) = ~vF (kxσx + kyσy) (1)

where vF ≃ 6.2 × 105 m/s is the Fermi velocity of Dirac
fermions in Bi2Se3

27 and σi are the Pauli matrices. The
Hamiltonian in Eq. (1) is characterized by an energy
spectrum εs,k = s~vFk where s = ±1 is the band index,
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and eigenstates given by

〈r|s,k〉 =
1√
2
eik·r

(

1
seiθk

)

, (2)

where θk is the angle of vector k with respect to the k̂x

direction.

In the presence of the HSDW on top of a TI, depicted
schematically in Fig. 1, the Hamiltonian (1) is modified28

to: H = H0(k) +U(x), where the potential U(x) for the
HSDW can be written as:

U(x) = Uyσy cos(
2π

L
x) + Uzσz sin(

2π

L
x), (3)

where L is the spatial period of the potential, and Uy,z are
the amplitudes of the HSDW24. For the case Uz < Uy, we
find no gapless states on the BZB. On the other hand, for
Uz > Uy, two Dirac points centered at (π

L ,±Ky) emerge
on the BZB, which will be discussed in Sec. III. For
the symmetric HSDW such that Uz = Uy = U0, which
we shall call proper HSDW, we find a single semi-Dirac

point at (kx, ky) = (±π

L
, 0) (Fig. 3a). In this section, we

shall focus on the case of a proper HSDW on TI.

In our calculation, we use the value of induced ex-
change field due to the magnetic proximity effect being
5 ∼ 50 meV29,30, which has been taken to be a reason-
able value28. The exchange-induced potential U(x) from
the HSDW creates a periodic potential on the surface of
the TI. The electronic eigenstates of such a Hamiltonian
can be written using Bloch’s theorem as

ψnk(r) =
∑

G

ei(k+G)·rc(n,k + G) (4)

where G =
2mπ

L
x̂ (m ∈ integer) is the reciprocal lattice

vector, ψnk(r) and c(n,k+G) are 2-spinor functions and
n is the band-index. Here kx is only limited to be in the

first Brillouin Zone (FBZ), i.e. kx ∈ [−π

L
,
π

L
]. The band

eigenstates ψnk(r) and the corresponding eigen-energies
En(k) are obtained as eigenvalues and eigenvectors of the
Bloch equation

[~vF ((kx +G)σx + kyσy) − Enk]c(n,k + G)

+ (Uyσy + iUzσz)c(n,k + G − 2π

L
)/2

+ (Uyσy − iUzσz)c(n,k + G +
2π

L
)/2 = 0. (5)

While the above Bloch equation may be solved by nu-
merical diagonalization to obtain numerical eigenvalues
and eigenvectors, more insight can be obtained into the
solutions around high symmetry points in the FBZ at
k = 0 and at the BZB by using perturbation theory.
The numerical results of diagonalizing Eq. 5 are shown in
Fig. 2, Fig. 3 and Fig. 4. The total Hamiltonian H0 +U
of the TI+HSDW system is invariant under a composite
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FIG. 1: (Color online) (a) Schematic diagram of the system.
The HSDW is on top of the topological insulator with the
periodicity L. (b) Energy of charge carrier dispersion versus
the wavevector k with k measured near the BZ center. Dashed
(green) and solid (blue) lines show the dispersion along the x̂
direction and along the ŷ direction, respectively with U0 = 50
meV and L = 90 nm (E(0, 0) was shifted to zero).

symmetry S = ΘT where Θ is the time-reversal opera-
tor and T is the operator corresponding to translation by
L/2. Since, the operator S, similar to the time-reversal
symmetry operator Θ, is both anti-unitary and satisfies
S2 = −1, the proximity to the HSDW does not open a
gap at k = 0. In other words, the HSDW preserves the
global time-reversal symmetry, it does not open up a gap
near k = 0 on the TI surface.

In the limit of a perturbatively weak coupling to the

HSDW ( |U(G)|
~vF |G| ≪ 1), the leading order contribution of

the HSDW to the low-momentum (k ∼ 0) dispersion can
be characterized by the renormalization of the group ve-
locity and effective mass at k = 0. The group velocity of
states without the HSDW is isotropic around k = 0 with
constant magnitude vF . In presence of the HSDW, the
renormalized group velocity of quasiparticles parallel to

the wavevector k [vk̂ ≡ v(k) · k̂] around the Dirac point
(|k| ≪ 1) obtained within second order perturbation the-
ory can be written as

vk̂ − vF

vF
=

1

~vF

∂(E+,k − ε+,k)

∂k
= − U2

0L
2

8π2~2v2
F

(3 + cos 2θk)

(6)
From Eq. (6), it is clear that the renormalized group ve-
locity is anisotropic around the Dirac point and decays
monotonically, both with the amplitude of periodic po-
tential U0, and with the spatial period L of the potential.
Fig. 2 shows the result from a full numerical calculation.
We note that there is good agreement between the trends
from Eq. (6) and the full calculation (shown in Fig. 2a)
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FIG. 2: (Color online) (a) The group velocity vk̂ (measured
from the Dirac point) of charge carriers on the surface of the
TI in units of the Fermi velocity (vF ) versus the angle θk

with L = 90 nm. Dotdashed red, solid green and dashed blue
lines correspond to U0 being 10 meV, 30 meV and 50 meV,
respectively. (b) The inverse effective mass me/m∗

xx versus
U0 for the first band above the Dirac point on BZ center.
Dotdashed red, solid green and dashed blue lines are results
for L being 30 nm, 60 nm and 90 nm, respectively.

for weak potential strength.
The interaction with the HSDW introduces at k ∼ 0

a finite curvature along the x̂-direction to the previously
linear in k dispersion of the Dirac fermions. The effective
mass tensor at k = 0 from the curvature of the energy
band around the Dirac point is given by

(me

m∗

)

αβ
=

me

~2

∂2E(k)

∂kα∂kβ

∣

∣

∣

k=0
=

{
0, α, β = y, or α 6= β

8U2
0me

~3vFG3
0

, α, β = x

(7)

where me is the bare electron mass and G0 =
2π

L
. From

Eq. (7) the effective mass me/m
∗
xx grows as U2

0 , which
describes the small U0 behavior of the numerically deter-
mined effective mass shown in Fig. 2b.

B. Dirac Cone near BZ boundary

While the periodic potential from the HSDW in-
troduces renormalizations of the velocity and effective
masses at the center of the Dirac cone at k = 0, the
effect of the periodic potential is limited to being pertur-
bative since there is no degeneracy in the initial Dirac
spectrum near k = 0. However, such degeneracies do oc-
cur at the edges of the FBZ, which we have referred to
as the BZB, and non-perturbative effects of the potential
may be generated by coherent back scattering with mo-
menta G. Unlike the case of conventional crystals, where
such back-scattering opens up gaps, one finds the emer-
gence of new Dirac cones at the BZB in the presence of
interaction with the HSDW (Fig. 3a).

When the wavevector k is on the first BZB ((kx, ky) =
(π/L, ky)), the two states |s,k〉 and |s,k − (2π/L, 0)〉 are
degenerate before the periodic potential is applied. In the
presence of an applied potential, the largest contribution
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FIG. 3: (Color online) (a) Semi-Dirac charge carrier disper-
sion versus the wavevector k with k measured from (kx, ky) =

(
π

L
, 0) on the BZB. Dashed (green) and solid (blue) lines show

the linear dispersion along the x̂ direction and the quadratic
dispersion along the ŷ direction, respectively with U0 = 50
meV, L = 90 nm and G0 = 2π/90 nm−1 (E(π/L, 0) was
shifted to zero). (b).The energy gap ∆E between the first
and the second band at the BZB versus ky for charge carriers
above the Dirac point with U0 = 50 meV and G0 = 2π/90
nm−1. Dotdashed (red) , solid(green) and dashed (blue) lines
correspond to L being 30 nm, 60 nm and 90 nm, respectively.

to the energy eigenvalues at the edges of the BZ comes
from these two degenerate states. For the clockwise helix,
the backscattering amplitude leads to an energy gap on
the BZB that is given by,

∆E(ky) = U0

(

1 − s
√

1 + (kyL/π)2

)

, (8)

where s = ±1 represents the positive or negative bands
in the Dirac cone. In the lower band of the Dirac cone,
i.e. s = −1, the above gap is maximum at ky = 0 and
decreases monotonically with |ky |. The positive band is
more interesting with a gap that vanishes at ky = 0.
From the full numerical calculation in Fig. 3b, we can
see that the energy gap of the positive band on the BZB
increases monotonically then decreases with ky.

If we change the sign of both Uy and Uz, the physics
will not change since the total Hamiltonian is invariant
under this transformation T , where T is the operator
corresponding to translation by L/2 in the x̂ direction.
The chirality of the helix depends on the relative sign of
the Uy and Uz in the HSDW potential. The effects of
the clockwise helix on the upper band of the Dirac cone
is the same as the anticlockwise helix on the lower band
of the Dirac cone. For the anticlockwise helix, the minus
sign in Eq. 8 should be changed to a plus sign, which
leads to a vanishing gap at ky = 0 for the lower band.

As with the Dirac cone at k = 0, an understanding of
the low-energy dispersion and the corresponding trans-
port properties associated with the Dirac cone at the
BZB is obtained by calculating the group velocity and
effective mass. Second order perturbation theory leads to
a strongly anisotropic group-velocity vk̂ measured from

the gap-less point at (kx, ky) = (
π

L
, 0) which is written
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FIG. 4: (Color online) (a) Anisotropic vk̂/vF measured from
the semi-Dirac point on the BZB versus the angle θk with
L = 90nm. Dotdashed (red), solid (green) and dashed (blue)
lines correspond to U0 being 10 meV, 30 meV and 50 meV,
respectively. (b) The inverse effective mass me/m∗

yy versus

L around the point (kx, ky) = (
π

L
, 0) for the lower band of

the semi-Dirac point for three U0. Note the negative effective
mass (corresponding to Fig. 3 (a)).

as

vk̂ =
~v2

FG0 cos θk
√

U2
0 + ~2v2

FG
2
0

(9)

For comparison, the full numerical calculation is shown
in Fig.4. The effective mass tensor at the new gapless
point for the clockwise helix, calculated within second
order perturbation theory similar to Eq. 7, is given by

(me

m∗

)

αβ

∣

∣

∣

k=(π/L,0)
=

{

0, α, β = x, or α 6= β

2(~vFG0 ± U0)/G
2
0, α, β = y

(10)
where the ± corresponds to the upper or lower band

around the semi-Dirac point at (kx, ky) = (
π

L
, 0). Eq.

9 and 10 together show the highly anisotropic dispersion
of the semi-Dirac point on BZB: a dispersion linear along
the periodic direction x̂ but quadratic along the perpen-
dicular direction ŷ. For the anticlockwise helix, the ef-
fective mass tensor given in Eq. 10 is still valid except
now the gap for the lower band vanishes at ky = 0. Fig.
4a shows the angular dependence of the group velocity
vk from a full numerical calculation. The velocity vy is
seen to have zero component regardless of the strength
of the applied potential. The dependence of the renor-
malized group velocity vk/vF is a decreasing function of
the amplitude of the applied potential. In Fig. 4b, we
plot the dependence of the inverse effective mass of the
lower-band of the semi-Dirac point at the BZB (in the

vicinity of (kx, ky) = (
π

L
, 0)) on the applied potential pe-

riod L and amplitude U0 respectively. We find that the
effective mass along the ŷ-direction changes sign from
positive to negative as a function of L and U0. The dis-
persion at small ky for parameters U,L0 corresponding
to negative effective mass is shown in Fig. 3(a). In this
case, the bands at larger ky turn up leading to the emer-
gence of another fermi surface. There is no such fermi
surface doubling for parameters with positive mass.

III. OTHER FORMS OF SPIN DENSITY WAVE

A. The HSDW with Uz 6= Uy

In this subsection, we shall discuss the case of a HSDW
with different amplitudes in the ŷ and ẑ directions (i.e.
Uy 6= Uz) with the propagation direction of the spin den-
sity wave still along the x̂ direction. In order to study the
effects of helical spin density wave with Uz 6= Uy, we first
use the perturbation theory to calculate the renormalized
velocity in the BZ center. In the limit of a perturbatively

weak coupling to the HSDW ( |U(G)|
~vF |G| ≪ 1), the renormal-

ization of group velocity (near the Dirac cone) given in
Eq. 6 within second order perturbation theory should be
modified to:

vk̂ − vF

vF
= − L2

8π2~2v2
F

[

2U2
y + U2

z (1 + cos 2θk)
]

(11)

It is clear that the above formula goes to Eq. 6 for the
proper HSDW. We notice that the spin density wave in
the ŷ direction does not induce the anisotropic group
velocity near the Dirac cone, which is also confirmed by
the full numerical calculation. We present the angular
dependence of the renormalized group velocity for two
extreme limits Uy = 0 and Uz = 0 in Fig. 5.

We shall next explain the conditions for the appear-
ance of the Dirac cones on the BZ boundary, which are
supported by full numerical calculations as presented in
Fig. 6 and 7. The largest contribution to the energy
eigenvalues at the BZ boundary comes from these two
degenerate states |s,k〉 and |s,k − (2π/L, 0)〉, which are
degenerate before applying the periodic potential. Only
considering the above two states and using the relation
θk−(2π/L,0) = π− θk on the BZB, we can write down the
two band Hamiltonian within perturbation theory as:

H(k) =









s~vF

√

(π

L

)2
+ k2

y
1
2 (sUy − Uz cos θk)(i cos θk + sin θk)

1
2 (sUy − Uz cos θk)(−i cos θk + sin θk) s~vF

√

(π

L

)2
+ k2

y









, (12)
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where s = ±1 denote the band index and θk is the angle
between the vector k and the x̂ direction. Diagonaliz-
ing the above Hamiltonian we could get two eigenvalues
written as:

ǫ1 = s~vF

√

(π

L

)2
+ k2

y − 1

2

√

(sUy − Uz cos θk)2

ǫ2 = s~vF

√

(π

L

)2
+ k2

y +
1

2

√

(sUy − Uz cos θk)2

∆E =| sUy − Uz cos θk |,

(13)

From the last equation in Eq. 13, we can clearly see that
there are gapless states when sUy = Uz cos θk, since 0 <
cos θk ≤ 1 for k on the BZ boundary (i.e. k = (π/L, ky)).
Therefore, we can have gapless states only for Uz ≥ Uy.
In addition, the energy charge carrier dispersion becomes
parabolic along both x̂ and ŷ directions, which can be
seen from Fig. 6(a) and 7(a). For the clockwise helix, the
energy gap opened on the BZ boundary near k = (π/L, 0)
is shown as a function of ky for three different values
of Uz,y. In Fig. 6(b) and Fig. 7(b) the energy gap is
plotted as a function of ky for Uy/Uz = 0.8 and Uz/Uy =
0.8 respectively. It is seen that the energy gap is non-
monotonic function of |ky | in the former, and monotonic
in the latter case. The helical spin density with Uy 6=
Uz affect the energy charge carrier dispersion on the BZ
center similar to the proper HSDW, rendering the Dirac
cone on the BZ center highly anisotropic. The velocity
of the Dirac cone along x̂ direction (the helix propagates
along the x̂ direction) is smaller than that perpendicular
to x̂. When we go to the extreme limit , where one of the
components Uy,z is set to zero (the spin density wave),
the energy gap in the presence of the spin density wave
with magnetization in only one direction (ŷ or ẑ), further
simplifies to:

∆E =

{ | Uz cos θk |, Uy = 0

| Uy |, Uz = 0
(14)

Full numerical calculation shows (see Fig 8) the depen-
dence on ky for the energy gap opened on the BZB with
the presence of the spin density waves in either ẑ or ŷ di-
rection. The latter dependence is not predicted correctly
within the second order perturbation theory which sug-
gests that the energy gap for Uz = 0 is independent of
ky (see second line of Eq. 14). Finally, one should note
that the Hamiltonian has different symmetries along ŷ
and ẑ directions. For a spin density wave only in the
ŷ direction, the total Hamiltonian satisfies the relation:
σzHσz = −H , from which we can see that the upper
and the lower band of the Dirac cone are symmetric.
While for the spin density wave only in the ẑ direction,
the total Hamiltonian satisfies particle-hole symmetry,
i.e. σxH

∗(−k)σx = −H(k). The upper and the lower
band of the Dirac cone are also symmetric when the spin
density wave only has component in ẑ direction. The ve-
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FIG. 5: (Color online) (a) The group velocity vk̂ (measured
from the Dirac point) of charge carriers on the surface of the
TI in units of the Fermi velocity (vF ) versus the angle θk

with L = 90 nm and Uy = 0. Dotdashed red, solid green and
dashed blue lines correspond to Uz being 10 meV, 30 meV and
50 meV, respectively. (b) The group velocity vk̂ (measured
from the Dirac point) of charge carriers on the surface of the
TI in units of the Fermi velocity (vF ) versus the angle θk

with L = 90 nm and Uz = 0. Dotdashed red, solid green and
dashed blue lines correspond to Uy being 10 meV, 30 meV
and 50 meV, respectively.

-0.4 -0.2 0.0 0.2 0.4

0

5

10

k�G0

E
Hm

eV
L

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
0

2

4

6

8

10

ky�G0

D
E
Hm

eV
L

a b

10 (meV)

30 (meV)

Uz = 50 (meV)
k ‖ kx

k ‖ ky

FIG. 6: (Color online) (a) Energy charge carrier dispersion
versus the wavevector k with k measured from (kx, ky) =

(
π

L
, 0) on the BZB. Dashed (green) and solid (blue) lines show

the linear dispersion along the x̂ direction and the quadratic
dispersion along the ŷ direction, respectively with Uz = 50
meV, Uy = 40 meV, L = 90 nm and G0 = 2π/90 nm−1

(E(π/L, 0) was shifted to zero). (b)The energy gap ∆E be-
tween the first and the second band at the BZB versus ky

for charge carriers above the Dirac point with L = 90 nm and
Uy = 0.8Uz . Dotdashed (red) , solid(green) and dashed (blue)
lines correspond to Uz being 10 meV, 30 meV and 50 meV,
respectively.

locity perpendicular to the x̂, which is the same as the
original Fermi velocity of Bi2Se3, remains unaffected in
the presence of the periodic potential in the ẑ direction.

B. Cycloidal spin density wave

In this subsection, we analyze the effects of the cy-
cloidal spin density wave on the surface states of topo-
logical insulator. In the presence of the cycloidal spin
density wave on top of the topological insulator31,32, the
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the linear dispersion along the x̂ direction and the quadratic
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meV, Uy = 50 meV, L = 90 nm and G0 = 2π/90 nm−1

(E(π/L, 0) was shifted to zero). (b)The energy gap ∆E be-
tween the first and the second band at the BZB versus ky

for charge carriers above the Dirac point with L = 90 nm and
Uz = 0.8Uy . Dotdashed (red) , solid(green) and dashed (blue)
lines correspond to Uy being 10 meV, 30 meV and 50 meV,
respectively.

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

5

10

15

20

25

30

35

ky�G0

D
E
Hm

eV
L

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
10

15

20

25

30

35

40

ky�G0

D
E
Hm

eV
L

a b

10 (meV)

30 (meV)

Uy = 50 (meV)

10 (meV)

30 (meV)

Uz = 50 (meV)

FIG. 8: (Color online) (a) The energy gap ∆E between the
first and the second band at the BZB versus ky for charge
carriers above the Dirac point with L = 90 nm and Uy = 0.
Dotdashed (red) , solid(green) and dashed (blue) lines cor-
respond to Uz being 10 meV, 30 meV and 50 meV, respec-
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ond band at the BZB versus ky for charge carriers above the
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10 meV, 30 meV and 50 meV, respectively.

potential is modified to:

Uc(x) = Uxσx cos(
2π

L
x) + Uy,zσy,z sin(

2π

L
x), (15)

The term involving σx in the magnetic potential will dis-
appear under the gauge transformation:

e−iA(x)HeiA(x) = H0 + Uy,zσy,z sin(
2π

L
x), (16)

where H0 is the single Dirac fermion Hamiltonian with-
out applied potential as given in Eq. 1 and the function

A(x) is given by:

A(x) = −UxL

2π~
sin
(2πx

L

)

(17)

For the general periodic function of spin density wave
along x̂ direction, i.e. F (x)σx, the σx term will disap-
pear if we apply the gauge transformation eiAF (x) with
AF (x) = −

∫ x

c
F (x′)/~dx′ (c is any constant). Thus, the

effects of the cycloidal spin density wave comes from the
term with σy,z, which goes to the extreme limit as dis-
cussed in Sec.III A.

IV. SUMMARY AND CONCLUSIONS

In summary, we have considered the effects of a helical
spin density wave on the surface states of a topological
insulator and also the effects of other spin density wave
on the surface transport property of topological insula-
tor. We find that the HSDW acts like an effective spin
potential on the TI surface and breaks the local time
reversal invariance in the latter. The applied spin poten-
tial has two main consequences: First, the group velocity
of electrons at the Dirac point is strongly suppressed in
the direction transverse to the periodic potential. Sec-
ondly, new semi-Dirac points emerge for the first upper
(lower) band at the Brillouin zone boundaries that corre-
sponds to the right-handed (left-handed) chirality of the
applied proper HSDW. The semi-Dirac points are char-
acterized by linear dispersion parallel to the direction x̂
of the applied periodic potential but quadratic dispersion
perpendicular to the x̂ direction. When the chemical po-
tential of the TI is such that the semi-Dirac points at the
BZBs give the main contribution to transport, we expect
the surface transport properties to be highly anisotropic.
This is because at these points, the dispersion is linear in
one direction and quadratic in the other. The momentum
space location of these new semi-Dirac cones can also be
manipulated by applying an in-plane magnetic field to
the HSDW. Such a magnetic field10 can change the ori-
entation of the spin rotation axis relative to the pitch
vector of the HSDW. By studying the effects of such a
change in the applied periodic potential on the new semi-
Dirac cones and measuring the anisotropic component of
the transport, it should be possible to isolate the surface
state contribution from the bulk in the total conductance
in topological insulators with relatively small bulk gaps.
The number of Dirac cones appearing on the BZ bound-
ary is determined by the relative ratio of Uz/Uy, which
could be zero, one or two corresponding to Uz/Uy < 1,
Uz/Uy = 1 and Uz/Uy > 1, respectively. We also prove
that the spin density wave with spin vectors along x̂ di-
rection will not change the surface transport property
of a three dimensional topological insulator. One par-
ticular advantage of our proposal is that the proposed
experiment can be carried out in the existing TI systems
without any problem arising from the bulk conduction (as
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a result of unintentional bulk doping by defects), which is
invariably present in almost all current TI systems, since
the bulk transport is isotropic and presumably unaffected
by the presence of the HSDW.

Although the proposed system in this work is a sand-
wich structure of a TI and a multiferroic, we believe that
this structure may turn out to be a suitable candidate
for the direct manifestation of the elusive 2D transport
properties even in the presence of considerable bulk con-
duction since the anisotropy introduced by the presence
of the HSDW would only affect the surface transport
properties without affecting much the bulk conduction
behavior. Given the great current interest and activity
in the observation of the 2D surface transport properties
in TI materials14–23, we are optimistic that our proposed
structure could go a long way in establishing the exper-
imental behavior of 2D surface transport in topological
insulators.
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