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Abstract

The properties of UO2 result from rich f -electron physics, including electronic Coulomb inter-

actions, spin-orbit and crystal field effects, as well as inter-ionic multipolar coupling. We present

a comprehensive theoretical study of the electronic structure of UO2 using a combined application

of self-consistent DFT+U calculations and a model Hamiltonian. The Γ5 ground state of U4+ and

the energies of crystal field excitations Γ5 → Γ3,4,1 are reproduced in very good agreement with

experiment. We also investigate competing non-collinear magnetic structures and confirm 3-k as

the T = 0 K ground state magnetic structure of UO2.

PACS numbers: 71.27.+a, 71.15.Mb, 71.70.Ch
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I. INTRODUCTION

Uranium dioxide is an important and interesting material from both technological and

scientific perspectives. During the past half-century, the electronic structure of UO2 has

been thoroughly characterized by various experiments1–12 (for a recent review, see Ref. 13).

UO2 is a semiconductor with a 2 eV band gap1 and localized 5f 2-electrons that retain strong

atomic-like properties. Due to significant Coulomb interactions and spin-orbit (SO) effects,

the ground state of a free U4+ ion is the 3H4 nonet [see Fig. 1(a)]. When the crystal-field

(CF) of UO2’s fluorite structure is considered, 3H4 is split into the ground state Γ5 triplet and

the excited Γ3 doublet, Γ4 triplet, and Γ1 singlet, all approximately 0.15 eV above Γ5
6,9 [see

Fig. 1(b)]. When cooled below TN = 30.8 K, UO2 undergoes a first-order phase transition

from a paramagnetic to a transverse type-I antiferromagnetic (AF) phase2, which exhibits

a Jahn-Teller (JT) distortion of the oxygen cage5. Experimental studies now converge on

the view that the non-collinear magnetic structure and the oxygen distortion are of the 3-k

type7,9–11, i.e., the moment and lattice distortion are both along the 〈111〉 direction [see

Fig. 1(c)], instead of the previously proposed 1-k (〈001〉)14 and 2-k (〈110〉)5 structures.
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FIG. 1. Schematics of the 5f2 ground states and level splitting, in decreasing interaction strength,

of (a) free U4+ ion, (b) cubic CF, and (c) ordered 3-k non-collinear magnetic structure of bulk UO2:

left, direction of magnetic moments on uranium, designated by large arrows; right, distortion of

oxygen (small arrows) around a central U atom.

On the theory side, the CF model of Rahman and Runciman15 correctly predicted the Γ5

ground state of UO2 (Fig. 2). Recent CF calculations have obtained quantitative agreement
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with experimental excitation spectra by fitting model parameters to the measured data16,

by adding corrections to the point charge model17, or by extrapolating from the fitted values

for other actinide dioxides18. Models of magnetism in UO2, pioneered by the work of Allen14,

have explored the delicate interplay between multipolar and Jahn-Teller effects13.

First-principles calculations have to go beyond the local-density or generalized-gradient

approximations (LDA/GGA) to the density-functional theory (DFT) to correctly reproduce

the insulating character of UO2. Existence of an energy gap was demonstrated in Ref. 19

and 20 using the hybrid functional method21, in Ref. 22 using the self-interaction-corrected

LDA23, and in Ref. 24 using the DFT+U method25. CF splitting in actinide compounds has

been computed by using constrained f states without full self-consistency26 or by analyzing

band positions obtained from LDA/GGA calculations27. The 3-k structure of UO2 was

studied by Laskowski et al. using DFT+U28, but their results showed anomalous dependence

on the U parameter and both the calculated oxygen distortions and energy differences were

about an order of magnitude too large. Furthermore, the 3-k state was only stable with

large U values and a formulation of DFT+U that is usually only applied to metals. A

first-principles framework for self-consistently and accurately accounting for all the different

energy scales in Fig. 1 does not yet exist.

In this paper, we present a unified DFT-based framework for calculating the electronic

spectra, magnetism and lattice distortions in UO2. Explicit f -f interactions and CF ef-

fects are treated using a model Hamiltonian with parameters derived from self-consistent

DFT+U calculations. The ground state wave functions that are obtained by diagonalizing

this Hamiltonian are used to set up initial conditions for self-consistent DFT+U calculations

of magnetism and lattice relaxations. Our approach allows us to accurately reproduce all

the different energy scales in Fig. 1, including the Γ5 ground state, Γ3,4,1 excited states, as

well as the energetics of competing magnetic structures, including 3-k, and their associated

lattice distortions, all within a unified self-consistent framework.

Before moving on to the details, we would like to stress that extra care should be taken

in first-principles calculations of f electrons. Several challenges are encountered in DFT

calculations of UO2 (and other actinide compounds in general). First, strong f -f inter-

actions and a weak crystal field result in an inherently complicated many-body problem.

For instance, since 5f 2 electrons hybridize weakly with the O 2p bands and remain well

localized, their true wavefunctions are in general multi-determinantal (see below for further
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discussions). Second, the higly localized nature of f electrons tends to magnify the inaccu-

racies of approximate exchange-correlation functionals. We have previously shown that the

self-interaction (SI) error of f -electrons is highly sensitive to the occupied orbital, and its

removal is non-trivial in both the DFT+U and hybrid-functional methods29. Therefore, an

improved version of DFT+U29 is required to remove such errors (∼ 0.1 eV) and access weak

CF effects. Third, the existence of a multitude of f-states often leaves DFT+U calculations

trapped in local minima, leading to difficulties in reproducibly finding the correct electronic

ground state. As a consequence, it is not uncommon for different authors to find inconsistent

and hard-to-interpret results with large errors (∼ 1 eV or even larger) even when using iden-

tical electronic-structure methods (see Refs. 29–36. and references therein). It is likely that

this issue contributed to the failure of previous studies to reliably examine the 3-k structure

of UO2.
28 Previously, we have shown that the local minima issue is also present in hybrid

functional calculations29. In this paper, we show that the multiple minima, corresponding

to different orbital states, contain valuable physical information about f -electrons that can

be used to help find the true ground state and excitation spectra.

FIG. 2. Low energy fn eigenstates of Hamiltonian 2 a) n = 1: Γ8 ground states and Γ7 doublet of

the j = 5/2 sextet b) n = 2: Γ5 ground states and the excited Γ3,4,1 of 3H4

II. METHOD

A. LDA+U calculations

All DFT calculations were carried out using the VASP code37, GGA-PAW potentials38, a

cutoff energy of 450 eV, and without any symmetry constraints to allow symmetry-breaking

solutions. Crystal field calculations were performed in the primitive cell of one UO2 formula
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unit with a 6 × 6 × 6 k-point grid. The lattice and ionic positions were frozen at the

experimental fluorite structure for crystal field calculations. These calculations, as discussed

in sectionIII A, are ferromagnetic with one uranium ion per cell. Magnetic structures were

calculated in the fcc supercell (4 formula units) using a 4 × 4 × 4 grid, first without and

then with full relaxation. Spin-orbit coupling was self-consistently incorporated for realistic

comparison with experiment.

To remove the orbital-dependent components of self-interaction errors (SIE) of f -

electrons, we use a formulation of the LDA+U method29 by modifying only the exchange

term, rather than both Hartree and exchange, of the LDA:

ELDA+U = ELDA + EX − EdcX, (1)

where the orbital-dependent Hartree-Fock exchange EX contains a term that approximately

cancels the on-site SIE in the Hartree energy of localized f -electrons; the remainder of the

LDA Hartree energy is exact by definition and therefore left unmodified in our approach.

The exchange double-counting term EdcX accounts for the LDA exchange energy and is given

by a linear combination controlled by the c parameter of the exchange double-counting in

the Liechtenstein39 scheme and the on-site local-spin-density (LSD) exchange, conceptually

similar to hybrid functional approaches and serves the purpose of subtracting the orbital-

dependence of the LDA exchange energy. As a result, eq. 1 is self-interaction free to high

accuracy.

There is only one adjustable parameter, U , in our approach, and the other parameters

J and c can be determined at given U . As done in Ref. 29, we choose up to seven f 2 SSD

states of the U4+ ion that are analytically degenerate without considering spin-orbit, and

calculate these states’ total energy dependence on J and c. As shown in Fig. 3, optimal

values of J=0.6 eV and c = 0.5 are obtained at U =6 eV that minimize the energy difference,

i.e. the orbital-dependent self-interaction error. These J and c values are used throughout

the paper. We use U=6 eV in this paper and discuss the dependence of the results on U in

section III B. In the rest of the paper spin-orbit is included.
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FIG. 3. LDA+U energy of U4+ ion as function of J in different orbitals. SOC is not included.

B. On-site model Hamiltonian for f

We consider the following single-ion model for f -electrons:

H0 =
n∑
i=1

(f̂i + ζ l̂i · ŝi) + V̂ee, (2)

where the summation runs over n electrons for the one-body terms of cubic CF, f̂ , and SO

coupling of strength ζ. The electronic interaction V̂ee is parametrized by Slater’s integrals F k

(k = 0, 2, 4, 6)40. The matrix elements of f̂ between the basis states indexed by projections
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of orbital (m) and spin (σ) momenta are given by

〈mσ|f̂ |m′σ′〉 = δσσ′

∫
Ȳ l
m

[
16
√
π

3
V4(Y40 +

√
10

7
<Y44)

+ 32

√
π

13
V6(Y60 −

√
14<Y64)

]
Y l
m′dΩ, (3)

where V4,6 are cubic CF parameters41 and Y l
m are complex spherical harmonics. To study

the magnetic properties, an infinitesimal magnetization field B (B→ 0) is applied:

H ′ = H0 −
n∑
i=1

B · (gLl̂i + gSŝi)µB/~, (4)

where gL = 1 and gS ≈ 2 are the orbital and spin g-factors, respectively.

B
n = 1 n = 2

Γ8 µS µ Γ5 state µS µ

[001]

1 -0.54 1.57 a 0.97(1, 2) -0.86 2.06

2 -0.13 0.43 b 0.69[(1, 3) 0.00 0.00

3 0.13 -0.43 +(2, 4)]

4 0.54 -1.57 c 0.97(3, 4) 0.86 -2.06

[110]

1 -0.48 1.40 a 0.92(1, 2) -0.86 2.06

2 -0.28 0.83 b 0.69[(1, 3) 0.00 0.00

3 0.28 -0.83 +(2, 4)]

4 0.48 -1.40 c 0.92(3, 4) 0.86 -2.06

[111]

1 -0.44 1.28 a 0.92(1, 2) -0.86 2.06

2 -0.33 1.00 b 0.69[(1, 4) 0.00 0.00

3 0.33 -1.00 +(2, 3)]

4 0.44 -1.28 c 0.92(3, 4) 0.86 -2.06

TABLE I. For different magnetization directions B, the ground states Γ8 quartet (f1) and Γ5

triplet (f2), their spin and total magnetic moment in µB, and, for f2, the dominant determinants

in the corresponding f1 basis.

We first discuss the general properties of solutions to Eqs. (2)-(4) using the model param-

eters derived from DFT+U calculations (which will be discussed in detail in section III A).
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For n = 1, 14 eigenstates are obtained, the lowest being the Γ8 quartet (Fig. 2 and Table I).

For n > 1, the Hamiltonian in Eq. (2) can be diagonalized via configuration interaction of

C14
n fn single Slater determinants (SSD) based on the f 1 eigenstates. The Γ5 ground states

of f 2 are shown in Table I, together with their dominant determinants, designated as (i, j)

using the indices of f 1 states in the left column of Table I. For magnetic moment along each

of the [001], [110], and [111] directions, the Γ8 quartet of f 1 includes states 1,4 (2,3) with

larger (smaller) spin and orbital magnetic momenta, while the Γ5 triplet of f 2 consists of

states a and c with |µ| = 2.06 µB and one dominant determinant [(1, 2) or (3, 4)], as well as

a non-magnetic state b dominated by two determinants (right column of Table I). Note that

the observed moment of the ordered state is smaller at 1.75 µB
5. The moment µ = 2.06µB of

the Γ5(a, c) states is slightly larger than the saturated 2µB characteristic of the 3H4 multiplet

because exchange and SOC interactions are all of comparable strength and other multiplets

slightly mix into the ground state and increase the effective moment15. In general, all the

f 2 eigenstates, including Γ3,4,1 (Fig. 2) are composed of multiple determinants.

C. Model parameters from LDA+U

The parameters for the model Hamiltonian in Eq. (2) are obtained by analyzing the

total energies and f wavefunctions calculated with LDA+U . In this procedure, many self-

consistent LDA+U calculations are first carried out, yielding solutions that are in general

local minima rather than the global minimum of UO2. Next, we extract the f 2 Kohn-Sham

wavefunction |Ψf〉, SSD by construction, from each solution, and compute the expected

energy according to Eq. (2)

〈Ψf |H0|Ψf〉 = x1V4 + x2V6 + x3ζ + x4F
2 + U, (5)

where xi’s represent the solution-dependent coefficient associated with model parame-

ters. Since the F k (k = 2, 4, 6) contributions of V̂ee are heavily correlated42, the following

approximation43 has been adopted in Eq. (5):

F 2 = F 4/0.668 = F 6/0.494, (6)

eliminating model parameters F 4 and F 6. Finally, expectation values of H (Eq. 5) of

the obtained solutions are fitted to the corresponding DFT+U total energies, yielding self-

consistent ab initio values of F 2, ζ and the crystal field parameters V4 and V6. We use the
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simple least-square method to perform the linear fitting. Here U in eq. (5) can be regarded

as a constant in the fitting and bears no direct physical meaning.

III. RESULTS AND DISCUSSIONS

A. Crystal field ground states and excitations

We carried out a series of 50 different self-consistent calculations with randomly initialized

f 2 states. Due to the existence of multiple local minima in DFT+U , these calculations

resulted in a range of energies spread over almost 2 eV [filled circles in Fig. 4(a)]. It is seen

that random wavefunction initialization has generated only one low-energy solution, while

the remaining runs were trapped in metastable high-energy states.
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FIG. 4. a) Fitting of DFT+U29 energy to Eq. 2 for 50 runs with random initial states (filled circles)

and 15 states with initial states constructed from f1 solutions (open circles). b) Predicted f2 CF

levels Γ5,3,4,1 compared to measured CF splitting9.

Obtained from the fitting procedure outlined in section II C, model parameters are ap-

plied in Eq. (2) to construct f 1 eigenstates and subsequently determine f 2 states by direct

diagonalization within the subspace of SSDs formed from f 1 eigenstates. To further improve

the quality of our fit and provide data points in the low-energy region that was poorly rep-
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resented in the randomly initialized sample [filled circles in Fig. 4(a)], we self-consistently

calculate the DFT+U energies of additional 15 two-electron SSD states that involve the 6

low energy f 1 orbitals (Γ8 and Γ7) for B//[001]; these points are shown as open circles in

Fig. 4a. The (1, 2) and (3, 4) states, which dominate the Γ5a and Γ5c ground states, are

also found to have the lowest energies in self-consistent DFT+U calculations, demonstrat-

ing that our method can reliably locate the electronic ground state. The other ground state

in Table I, Γ5b, has two dominant determinants and is not directly accessible in DFT+U .

Therefore, the data flow between the model Hamiltonian and DFT+U calculations is bi-

directional: DFT+U provides model parameters, while the model guides the DFT+U to

the ground state and gives access to multi-determinant states.

F 2 F 4 F 6 ζ V4 V6

U = 6 eV 5.649 (3.773) (2.790) 0.230 -0.093 0.0157

U = 4.5 eV 5.495 (3.670) (2.714) 0.209 -0.106 0.0163

U4+ ion44 6.439 5.295 3.440 0.244

Ref.16 using ref.44 -0.112 0.024

Ref.9 -0.123 0.0265

Ref.18 -0.155 0.0333

TABLE II. Fitted parameters (in eV) using Eqs. (2), (3), and (6), compared with prior studies.

The final fitted parameters are shown in Table II. Compared to the values obtained by

fitting the spectra of free ions44, the ionic parameters F k and ζ in the UO2 solid are somewhat

suppressed due to hybridization and screening effects. The calculated cubic CF parameters

V4 and V6 are slightly smaller than those fitted to experimental data or extrapolated from

other actinide oxides9,16,18. The Hamiltonian in Eq. (2) can now be diagonalized. The

predicted energies of the three lowest excited CF levels Γ3,4,1 are in reasonable agreement

with experiment9 with errors of approximately 10-20 meV [Fig. 4(b)]. A notable deviation

is overestimation of the splitting between these levels.

Finally, we note that the input J = 0.6 eV used in our DFT+U calculation differs from

the fitted value of J ′ = (286F 2 + 195F 4 + 250F 6)/6435 in Table II. This is because the

role of the former is to minimize the SI error in DFT+U , while the latter represents on-site
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exchange, and some difference between them is expected when used with an approximate xc

functional. A perfect xc functional would make the input U or J unnecessary and predict

physically meaningful output J ′ or F k.

B. Dependence on input U

To illustrate the effect of the only adjustable variable in our approach, U , the same

calculations were repeated using U = 4.5 eV. As shown in Table II and Fig. 4(b), the results

change only slightly and remain in good agreement with experiment. Note that when U ,

which controls the degree of electron localization, is decreased, the ionic parameters F k

and ζ also decrease, i.e. away from the free ion values, while the CF parameters increase,

suggesting that the f -electrons become more delocalized. Such a picture of opposite influence

of electron localization on free ion and CF parameters is consistent with the observed trend

that increase of the CF interaction results in a reduction in the free-ion parameters for the

same ion in different chemical environment45.

C. Magnetic properties

Finally, we discuss the effects of inter-ionic interactions and magnetic properties of UO2.

Various magnetic structures within a cubic supercell of four formula units were calculated,

first without and then with lattice relaxation. The previous approximation of representing

the Γ5 ground state with the (1, 2), (3, 4) SSDs was adopted. Table III shows the energies

Es (static lattice), Er (after full relaxation), and the total magnetic moments µ assuming

ferromagnetic (FM) and type-A anti-ferromagnetic (AAF) configurations along the [001]

(reference), [110], and [111] directions. In all cases, the calculated µ of ∼ 2.1–2.2 µB is

close to the saturated value 2.06 µB in Table I and larger than the measured 1.74 µB
2. The

reduction of the ordered moment is a topic of considerable interest, but the mechanisms,

such as the dynamical Jahn-Teller effect46, are beyond the scope of this work. Given that

the (1, 2)/(3, 4) states are the CF ground states within our computational approach and

the calculated moment is not too far from 1.74 µB, we continue to use these settings for

non-collinear magnetic calculations.

Table III shows that for each magnetization direction, the AAF configuration is always
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lower than the FM configuration, in agreement with experiment. The energy differences

Es(FM) − Es(AAF) are in the 4-6 meV range, suggesting that multipolar interactions and

anisotropy are weak. These weak, mostly isotropic interactions underlie the success of the

simple fitting procedure of Section II C (root-mean-square error = 35 meV) in FM config-

urations of 15 〈001〉 solutions and 50 solutions with random magnetic moment directions.

We also find that the different magnetization directions differ in energy by less than 9 meV,

suggesting that our procedure for removing the orbital-depedent SI error is highly accurate.

Indeed, the f 2 wavefunctions differ considerably for the three principle directions (see Table

I), which would result in SI errors of 0.1 ∼ 0.2 eV using the unmodified DFT+U approach.

Nevertheless, we take additional care to remove any remaining SI errors, however small they

they appear to be, by subtracting a reference energy Ed for each principle magnetization

direction d = 〈001〉, 〈110〉, or 〈111〉: Ed = [Es(FM)+Es(AAF)]/2. With this correction, the

AAF configurations in the three directions, as well as the 3-k structure (magnetic moment

along 〈111〉, see Fig. 1c), are essentially degenerate before lattice relaxation.

The magnetic transition temperature of antiferromagnetic UO2 is estimated with a clas-

sical Heisenberg model on an fcc lattice:

H = −JH
∑
〈ij〉

~si · ~sj, (7)

where the summation is over all nearest neighbor sites 〈ij〉 with unit spin ~s. The FM/AAF

energy difference per UO2 is ∆E = 6JH − (−2JH) = 8JH . As shown in Table III, ∆E ≈ 6

meV, corresponding to TN = 3.18JH/kB
47, or about 28 K, in excellent agreement with the

experimental value 30.8 K.2

After relaxation without symmetry constraints, we obtain the energies listed in the right

column of Table III. The computed moments µ become slightly larger than the static values.

The relaxation energy Er and the corrected Er−Ed are large (> 50 meV) due to differences

between the static (fixed to experimental a = 5.47 Å) and relaxed lattice parameters. The

energy differences between competing magnetic configurations increases to ∼ 10 meV; these

values are consistent with the Néel temperature of TN = 30.8 K2. The relaxed structures

with µ//〈111〉 are clearly more stable than 〈001〉 and 〈110〉. We have enumerated all AF

〈111〉 structures within the fcc unit cell and found that the 3-k structure indeed has the

lowest energy. The associated oxygen lattice distortion (amplitude 0.024 Å) is also of the

3-k type, though slightly larger than the measured 0.014 Å5.
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static relaxed

config. Es Es − Ed |µ|/µB Er Er − Ed |µ|/µB

[001] FM 0 (ref) 3.3 2.11 -57.3 -54.0 2.20

[001] AAF -6.5 -3.3 2.11 -61.9 -58.6 2.35

[110] FM -8.2 2.1 2.15 -65.5 -55.2 2.33

[110] AAF -12.4 -2.1 2.15 -71.8 -61.5 2.22

[111] FM -8.5 2.4 2.22 -70.3 -59.5 2.22

[111] AAF -13.2 -2.4 2.21 -76.3 -65.5 2.27

3-k -13.8 -3.0 2.21 -81.1 -70.3 2.39

TABLE III. Energy (in meV per UO2) for different magnetic structures, without and with ionic

relaxation.

IV. CONCLUSIONS

In summary, we have studied the electronic structure of UO2 using an aspherical-self-

interaction free DFT+U method coupled with a model Hamiltonian. The Γ5 crystal field

ground states, as well as the CF excitation energies are reproduced in good agreement with

experiment. Various magnetic structures are investigated with careful initialization of the

orbital and magnetic states. The inter-ionic interactions are found to be weak and largely

isotropic. When self-interaction errors are accounted for, the 3-k structure is essentially

degenerate with other antiferromagnetic configurations and becomes the ground state only

when lattice relaxations are considered. Our work demonstrates the usefulness of electronic

structure calculations for f -compounds with proper treatment of self-interaction errors and

multiple self-consistent local minima corresponding to different orbital states; this approach

can be readily applied to defect supercells and other f -compounds.
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