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Using the quasiparticle self-consistent GW (QSGW ) and local-density (LD) approximations, we
calculate the q-dependent static dielectric function of undoped graphene, and derive an effective 2D
dielectric function corresponding to screening of point charges. In the q→0 limit, the 2D dielectric
constant is found to scale approximately as the square root of the macroscopic dielectric function. Its
value is ≃4, in agreement with the predictions of Dirac model. At the same time, in contrast with the
Dirac model, the dielectric function is strongly dependent on q. The QSGW approximation is shown
to describe QP levels very well, with small systematic errors analogous to bulk sp semiconductors.
Local-field effects are rather more important in graphene than in bulk semiconductors.

PACS numbers: 73.22.Pr, 71.27.+a, 73.22.-f

Graphene is a first truly two-dimensional (2D) crys-
tal, with unique electronic and structural properties
(for review, see Refs. 1–5). Screening of electron-
electron and electron-impurity interactions in graphene
is an important theoretical issue crucial for both many-
body effects in electronic structure6 and for transport
properties, especially, for electron scattering by charge
impurities5,7. An answer to even the basic issue about
the ground state of freely suspended graphene is cru-
cially dependent on the value of screened interaction
constant since it lies, probably, quite close to the point
of exciton instability, but it is still unknown at which
side of it8,9. A critical value of the impurity charge
for the relativistic collapse10,11, one of the most in-
teresting quantum field effects potentially observable
in graphene, is also dependent on the screened cou-
pling constant. Numerous works7,10,12–19 treat this is-
sue within the two-band Dirac model. But the Dirac
model does not take into account the many other bands
involved, which can include van Hove singularities in
electron density of states3 that may possibly be very
essential, specifically for screening20. Here we develop
a definition for an effective 2D dielectric function in
an ab initio context, and calculate it within the quasi-
particle self-consistent GW (QSGW ) and local-density
(LD) approximations. The former takes into account
many-body effects beyond the density functional GGA
or LDA schemes essential for correct description of ex-
cited states and thus screening effects21,22.

There are several GW calculations for graphene23–25,
where G and the screened Coulomb interaction W are
computed from the LDA. They all predict a notable
(20-40%) increase of the Fermi velocity vF at the Dirac
point K relative to the LDA(GGA) value, with vF be-
tween 1.1 and 1.2·106 m/s, in very good agreement with
experiment1–4. The dielectric function and optical con-
ductivity as a function of frequency ω for zero wave
vector q=0 was also calculated in Refs. 23,24. Here we
focus on the static dielectric function (ω=0) as a func-
tion of q. As mentioned above, this quantity is relevant
for calculations of resistivity via charge impurities5,7,

as well as for the problem of supercritical Coulomb
centers10,11 and possible exciton instabilities8,9.

The inverse dielectric function ǫ−1(r, r′, ω) relates the
change in total potential δV to an external perturbing
potential δV ext as21,22

δV (r, ω) =

∫

dr′ǫ−1(r, r′, ω)δV ext(r′, ω). (1)

ǫ−1 is obtained from a convolution of the polarization
operator Π and the bare Coulomb interaction v as

ǫ−1 = (1 − vΠ)
−1

.

In a system with translation symmetry, ǫ−1, Π, and
v can be expanded in Bloch functions {Bq

I (r)}, e.g.

ǫ−1(r, r′, ω) =
∑

qIJ
Bq

I (r)ǫ−1
IJ (q, ω)Bq

J

∗
(r′) (2)

The most common choice of {Bq

I (r)} are plane waves,

Bq
I (r) → Bq

G(r) = exp(i(q + G) · r), (3)

G being reciprocal lattice vectors.
Quantities of interest are coarse-grained averages of

ǫ−1
GG′(q, ω). The “macroscopic” response to a plane

wave perturbation is22

ǫM (q, ω) =
[

ǫ−1
G=0,G′=0(q, ω)

]−1

(4)

The matrix structure of ǫ−1 with G 6= G′ reflects lo-
cal field effects in terms of classical electrodynamics.
The quantity ǫM (q) is commonly approximated by just
ǫ(q); that is, the Umklapp processes, or local field ef-
fects are neglected. This is not such a bad approxima-
tion in sp semiconductors but as we show here, it is a
rather poor approximation in graphene. ǫM (q) corre-
sponds to screening potential δV ext with a single Fourier
component q. Selecting G=G′=0 averages ǫ−1 over the
unit cell, restricting the spatial variation to the envelope
exp(iq · r). While ǫM is a quantity of relevance to some
experiments, perhaps the most relevant is screening of a
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point charge in the graphene sheet, which governs e.g.,
scattering from impurities.

As graphene is a 2D system, we need to consider how
the impurity potential v(q) = 4π/q2 is screened in the
sheet. The (statically) screened potential from a point
charge at the origin may be written in cylindrical coor-
dinates r=(ρ, z, θ) and q=(q̄, qz, θq) as

W (ρ, z) =
1

2π

∫ ∞

0

dq̄ q̄J0(q̄ρ)W 2D(q̄, z) (5)

W 2D(q̄, z) = 4

∫ ∞

0

dqze
iqzz ǫ−1(q̄, qz)

q2
z + q̄2

(6)

Graphene is hexagonal, and ǫ−1 does not depend
on θq for small q̄. W 2D(q̄, z) is the 2D (Hankel)
transform of W (r), the analog of the 3D transform
W (q)=ǫ−1(q)v(q). In the absence of screening ǫ−1 = 1
and W 2D(q̄, z) reduces to the bare coulomb interaction
v2D(q̄, z):

v2D(q̄, z) = 4

∫ ∞

0

dqze
iqzz 1

q2
z + q̄2

=
2π

q̄
e−q̄z (7)

An appropriate definition of an effective 2D dielectric
function is then

ǫ2D(q̄, z) = v2D(q̄, z)/W 2D(q̄, z) (8)

This definition corresponds to a typical physical prob-
lem for graphene when both interacting charges lie at
the same plane (e.g., electrons and holes in the problem
of exciton instability). Also, this is a quantity which
can be compared with predictions of the Dirac model.
Graphene wave functions have some extent in z which
must be integrated over to obtain a scattering matrix
element. But the largest contribution originates from
z=0, so W 2D(q̄, 0) is a reasonable estimate for the scat-
tering potential. This is particularly so for small q̄ of
primary interest here.

In practice we carry calculations in a periodic array
of graphene sheets in the xy plane, spaced by a dis-
tance large enough that the sheets interact negligibly.
To calculate ǫ−1

G=G′=0(q, ω) we adopt the all-electron,
augmented wave implementation that was developed
for the quasiparticle self-consistent GW (QSGW ) ap-
proximation, described in Ref.26. It makes no pseudo-
or shape- approximation to the potential, and does not
use PWs (Eq. 3) for the product basis {B}, but a mixed
basis consisting of products of augmented functions in
augmentation spheres, and plane waves in the intersti-
tial region. The all-electron implementation enables us
to properly treat core states. We calculate ǫ−1(q, ω)
in the random phase approximation, using Bloch func-
tions for eigenstates21. These are obtained from single-
particle eigenfunctions Ψkn and eigenvalues ǫkn in both
the LDA and QSGW approximations. In both cases
the generalized LMTO method is used27,28.

QSGW has been shown to be an excellent predic-
tor of materials properties for many classes of com-
pounds composed of elements throughout the Periodic

Table, with unprecedented ability to consistently and
reliably predict materials properties over a wide range
of materials26,28. Nevertheless there are small, system-
atic errors: in particular bandgaps in insulators such
as GaAs, SrTiO3 and NiO, are systematically over-
estimated. Its origin can be traced to a large ex-
tent to the RPA approximation to the polarizability,
ΠRPA=iGG. The RPA bubble diagrams omit electron-
hole interactions in their intermediate states. Short-
range attractive (electron-hole) interactions induce red-
shifts in Im ǫ(q, ω) at energies well above the fundamen-
tal bandgap; see e.g. Fig. 6 in Ref.26. That ladder di-
agrams are sufficient to remedy most of the important
errors in ΠRPA was demonstrated rather convincingly
in Cu2O, by Bruneval et al.29. Moreover Shishkin et
al30 incorporated these ladder diagrams in an approxi-
mate way for several sp semiconductors, and established
that they do in fact largely ameliorate the gap errors.
Yang et al. investigated the effect of ladder diagrams
in graphene and graphite, and showed that in a man-
ner very analogous to ordinary semiconductors, these
diagrams induce a redshift in the peak of Im ǫRPA(q, ω)
near 5 eV,24 of ∼0.6 eV. They found a strong similarity
with conventional semiconductors, namely that the red-
shift from ladder diagrams approximately cancels the
error in the LDA joint density of states.

TABLE I: Energy gap EG and valence bandwidth Γ1v in di-
amond (eV); Fermi velocities vF in graphite and graphene
(106m/sec). There is a significant renormalization of the
bandgap from the electron-phonon interaction in diamond,
estimated to be 370 meV31. Thus QSGW overestimates
EG by a slightly smaller amount than in other semiconduc-
tors, and the scaling of Σ as described in the text results
in a slightly underestimated gap. The electron-phonon in-
teraction also reduces the Fermi velocity in graphene, esti-
mated to be 4 to 8% in an LDA-linear response calculation32 .
The calculated Fermi velocities should be reduced by this
much when comparing to experiment. vF calculated by
QSGW is slightly overestimated, for much the same reason
semiconductor gaps are overestimated. vF calculated from
the scaled-Σ potential, is slightly larger than vF calculated
LDA-based GW , i.e. GLDAW LDA23, just as semiconduc-
tor bandgaps are slightly larger. When renormalized by the
electron-phonon interaction, vF agrees very well with the
measured value33.

LDA QSGW scaled Σ Expt
EG, diamond 4.09 5.93 5.56 5.50
Γ1v, diamond 21.3 23.1 22.7 23.0 ± 0.2a

Γ1v , graphene 19.4 22.9 22.2
vF (H), graphite 0.77 0.99 0.94 0.91 ± 0.15
vF (K), graphene 0.82 1.29 1.20 1.1

aRef. 34

A redshift in the peak of Imǫ(ω) increases the static
dielectric constant ǫ∞, as can be readily seen through
the Kramers-Kronig relations. Remarkably, ǫ∞ as cal-
culated by the RPA in QSGW, is underestimated by a
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FIG. 1: QSGW bands of graphene (dotted red lines), com-
pared to LDA results (dashed blue lines) and QSGW results
with Σ scaled by 0.8 (solid green lines) described in the text.
The linear dispersion near K (or H, in graphite) is signifi-
cantly larger in the QSGW case. Differences are quantified
in Table I. The lowest lying unbound state can be seen as a
parabolic band starting at Γ near 3.5 eV. It corresponds to
the work function. LDA and QSGW work functions are very
similar, consistent with the observation that LDA predicts
work functions rather well in many systems.

nearly universal factor of 0.8, for many kinds of insu-
lators and semiconductors28, including transition metal
oxides such as NiO26, CeO2, and sp semiconductors30.
(This error is often approximately canceled in the LDA,
fortuitously. As Yang et al. noted, the cancellation
seems to apply to graphene in a manner similar to ordi-
nary semiconductors.) Because ǫ is systematically un-

derestimated, W = ǫ−1v and Σ = −iGW are system-
atically overestimated ; therefore QP excitation energies
are also systematically overestimated. We have found
that simply scaling by 0.8 (the nearly universal ratio
ǫQSGW
∞ /ǫexpt

∞ ) largely eliminates discrepancies between
QSGW and measured QP levels in a wide range of spd
systems, including all zincblende semiconductors, and
many other kinds of insulators. For graphene, we find
that the QSGW macroscopic (q→0) dielectric constant
was found to be 80% of the LDA one, consistent with
the universal pattern in bulk insulators noted above.
The many points of consistency with 3D behavior, both
in the QSGW QP levels and the dielectric response sug-
gest that QSGW will exhibit the same reliable descrip-
tion of the 2D graphene system, with similar system-
atic errors. To confirm this, some band parameters for
three pure (undoped) carbon compounds calculated by
QSGW and QSGW with Σ scaled by 0.8 are shown in
Table I. Scaling QSGW has a minor effect on the quasi-
particle levels: e.g. it reduces vF by 7%. As Table I
shows, vF falls in very close agreement with experiment
when Σ is scaled and the electron-phonon interaction is
taken into account, consistent with agreement in gaps
in the bulk insulators. Even though the QSGW and
LDA work functions are similar (Fig. 1), the valence

band is significantly widened relative to LDA,34 more
so in graphene than in diamond.

Careful checks for convergence were made in various
parameters. To check supercell artifacts, a “small” 3D
unit cell with the graphene planes repeated at a spacing
equivalent to 4 atomic layers of graphite (25 a.u.) was
compared against a “large” cell, with graphene planes
spaced at 8 layers. The bands from −∞ to EF +5 eV
were found to be a very similar, with a slight increase
in vF (1.23→1.29 ·106 m/s). k convergence in the con-
struction of Σ was monitored by comparing QP levels
generated on a 6×6×2 k mesh to a 9×9×2 mesh. QP
levels were nearly identical: vF differed by <1% in the
both the small and large 3D cells.

ǫ−1
00 (q, ω) must be integrated with a fine k mesh. To

deal with the delicate q→0 limit, we calculated ǫ−1 in-
tegrating on a standard k mesh including Γ, and an
offset mesh (Eqns. 47 and 52 in Ref. 26), and averaged
them. We present data for averaged 18×18×4 meshes.
Calculations without local fields were also performed for
a pair of 24×24×4 meshes. ǫ(q||, qz=0, ω=0) calculated
by 18- and 24- (averaged) mesh integrations were essen-
tially indistinguishable for q>0.1×2π/a, and differed by
a few percent for q>0.02×2π/a.
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FIG. 2: (Top) Static dielectric function ǫ00(q̄, qz=0) along
the (100) line in graphene, with local fields included and
without. q̄ is in units of 2π/a=2.56Å−1. The q→0 limit is
delicate and there is some uncertainty in its value. Shown for
comparison is the same function calculated from the LDA
potential. In the q̄→0 limit, ǫ00 calculated by QSGW is
∼0.8 smaller than the LDA result, similar to the ratio found
in bulk semiconductors. (Bottom) Effective layer dielec-
tric function ǫ2D(q̄, z=0) as defined by Eq. (8), with local
fields, calculated within the QSGW and LD approximations.
Local fields significantly reduce ǫ00. The LDA result for
ǫ00(q̄=0.086,qz=0) without local fields is ≃4, which agrees
with the ω→0 limit in Fig. 11 of Ref.35.

ǫ00(q̄, qz) was calculated on a grid of points {q̄, qz};
the qz=0 case is shown in the first panel of Fig. 2. It was
found that ǫ00 is well parametrized (max error <0.1) by

ǫ−1
00 (q̄, qz) =

a2(q̄) + q2
z

ǫ00(q̄, 0) a2(q̄) + q2
z

(9)

a2(q̄) =
a0a1q̄

2

a1 + q̄2
≈ a0q̄

2 (10)

where a0=1.3 and 1.2 for QSGW and LDA, respec-
tively, and a1=1.6(2π/a)2. The approximate form for
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a in Eq. 10 is sufficient for any q where ǫ00 differs sig-
nificantly from unity. With Eq. (9) W 2D can be inte-
grated analytically. Taking the approximate expression
for a2(q̄) we obtain

ǫ2D(q̄, z) =
γ(γ2 − 1)

γ(a0 − 1) + (γ2 − a0)e(1−γ)q̄z
(11)

where γ =
√

a0ǫ00(q̄, 0).
Fig. 2 shows both kinds of dielectric functions, ǫM

corresponding to the macroscopic polarizability, and the
effective 2D static dielectric function ǫ2D(q̄, z=0) calcu-
lated from Eq. (9). Local fields reduce the strength of
the screening. The difference between LDA and QSGW

results are modest; and as noted earlier, the LDA re-
sults are likely to be slightly better because they benefit
from a fortuitous cancellation of errors. As q̄→0, γ is
significantly larger than a0 and unity. Keeping only
the leading order in γ, we obtain the surprising result
that ǫ2D(0,z=0)≈

√

a0ǫ00(q̄, qz=0). ǫ2D(0,z=0) is quite
close to the prediction of the Dirac model7,12,14. Such
a model predicts ǫ(q) = 1 + πe2/2~vF ≈ 4.4 indepen-
dent of q. We find ǫ2D(q̄, z=0)≈3.5 for q̄→0, but, in an
essential difference with the Dirac model, ǫ2D is a very
strong function of q̄.

The case of small q̄ (q̄∼kF≤10−2 Å−1) is relevant for
transport properties. In this region our first-principles
calculations do not dramatically contradict predictions
of the Dirac model. At the same time, for the prob-
lem of supercritical Coulomb centers and relativistic
collapse (fall on the center)10,11 distances of order of
several inverse lattice constants are essential (this is
the radius of screening cloud, according to renormal-
ization group analysis10), which corresponds to larger
q. They are essential as well for the problem of exci-
tonic instabilities8,9. For this region our results show
that the Dirac model overestimates the screening.

Acknowledgments

MIK acknowledges support from Stichting voor Fun-
damenteel Onderzoek der Materie (FOM), the Nether-
lands. MvS was supported by ONR contract N00014-7-
1-0479 and NSF QMHP-0802216. We thank F. Guinea
for helpful discussions.



5

1 A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183
(2007).

2 M. I. Katsnelson, Mater. Today 10, 20 (2007).
3 A. H. C. Neto et al, Rev. Mod. Phys. 81, 109 (2009).
4 A. K. Geim, Science 324, 1530 (2009).
5 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi,

preprint arXiv:1003.4731.
6 J. Gonz‘ales, F. Guinea, and M. A. H. Vozmediano, Nucl.

Phys. B 424, 596 (1994).
7 T. Ando, J. Phys. Soc. Japan 75, 074716 (2004).
8 D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
9 J. Sabio, F. Sols, and F. Guinea, Phys. Rev. B 81, 045428

(2010); ibid, arXiv:1007.3471.
10 A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Phys.

Rev. Lett. 99, 236801 (2007); ibid, Phys. Rev. Lett. 99,
246802 (2007).

11 V. M. Pereira, J. Nilsson, and A. H. Castro-Neto, Phys.
Rev. Lett. 99, 166802 (2007).

12 B. Wunsch et al, New J. Phys. 8, 318 (2006).
13 M. I. Katsnelson, Phys. Rev. B 74, 201401(R) (2006).
14 E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

(2007).
15 M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, Phys.

Rev. B 76, 233402 (2007).
16 M. Polini, A. Tomadin, R. Asgari, and A. H. MacDonald,

Phys. Rev. B 78, 115426 (2008).
17 E. Rossi and S. Das Sarma, Phys. Rev. Lett. 101, 166803

(2008).
18 L. Brey and H. A. Fertig, Phys. Rev. B 80, 035406 (2009).
19 M. M. Fogler, Phys. Rev. Lett. 103, 236801 (2009).
20 M. I. Katsnelson and A. V. Trefilov, Phys. Lett. A 109,

109 (1985); ibid, Phys. Rev. B 61, 1643 (2000).
21 F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys

61, 237 (1998).
22 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys.

74, 601 (2002).
23 P. E. Trevisanutto et al, Phys. Rev. Lett. 101, 226405

(2008).
24 L. Yang et al, 186802 (2009).
25 C. Attacalite and A. Rubio, Phys. Stat. Sol. (b) 246,

2523 (2009).
26 T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys.

Rev. B 76, 165106 (2007).
27 To ensure completeness in the interstitial floating orbitals

were placed in the “empty sites” where nucleii would fall
if graphene were turned into graphite. An spdfspd basis
was used for C atoms.

28 S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys.
Rev. Lett. 93, 126406 (2004); M. van Schilfgaarde, T.
Kotani, S. V. Faleev, Phys. Rev. Lett. 96, 226402 (2006);
ibid, Phys. Rev. B 74, 245125 (2006).

29 F. Bruneval et al, Phys. Rev. Lett. 97, 267601 (2006).
30 M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev.

Lett. 99, 246403 (2007).
31 M. Cardona and M. L. W. Thewalt, Rev. Mod. Phys. 77,

1173 (2005).
32 C.-H. Park et al, Phys. Rev. Lett. 99, 086804 (2007).
33 Y. Zhang et al, Nature 438, 201 (2005).
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