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The interaction between two concentric carbon nanotubes is studied using a quantum electrodynamical 

approach which includes the absorptive and dispersive properties via the chirality dependent dielectric 

response functions for each carbon nanotube. It is found that at tube separations similar to their 

equilibrium distances, the interaction is dominated by the collective excitations in the electron energy 

loss spectra originating from interband transitions. The existence of strong low frequency transitions 

peaks from both tubes and their overlap are responsible for their stronger interaction. Nanotube 

chiralities possessing such collective excitation features are found to have the strongest interaction. 

 

Carbon nanotubes (CNTs) are quasi-one dimensional (1D) hollow wires consisting of one (single wall) 

or more (multi wall) rolled graphene sheets into cylinders1. The specific way of rolling is characterized 

by a chirality index (n,m), and determines the CNT electronic structure. The inter-tube interaction is of 

long ranged dispersive nature and its understanding is important in tailoring the properties of various 

CNT complexes. It is also important for experimental realization of new effects and devices recently 

proposed, such as trapping of cold atoms2 and their entanglement3 near CNTs, exciton-plasmon 

coupling4, surface profiling and nanolithography applications5. 

 

Various mechanisms may be responsible for governing the CNT interactions. It is known that 

geometrical factors such as nanotube separation and the π-stacking patterns6 are important. At the same 

time, the collective surface excitations in terms of each CNT dielectric response also have a profound 

effect on their mutual interaction; however their specific functionalities have not been qualitatively and 

quantitatively understood yet. Since CNTs of virtually the same radial size can possess different 
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electronic properties, investigating their interactions presents a unique opportunity to obtain insight into 

specific dielectric response features affecting the force between metallic and semiconducting cylindrical 

surfaces. Potentially this can also help unveil the role of collective excitations in the energetic stability 

of CNTs of various chiral combinations. 

 

CNTs interact with each other via the long ranged Casimir force induced by quantum electromagnetic 

fluctuations. The Casimir force is quantum mechanical and relativistic in its nature, and it has been 

studied extensively since the prediction of the existence of an attraction between neutral mirrors in 

vacuum7. After the first report of observation of this spectacular effect8, new measurements with 

improved accuracy have been done involving different geometries9. The Casimir force has also been 

considered theoretically with methods primarily based on the zero-point summation approach and 

Lifshitz theory10,11. Since the Lifshitz theory cannot be applied to geometries other than parallel plates, 

researchers have used the Proximity Force Approximation (PFA) to estimate the interaction between 

CNTs12,13. The method is based on approximating the curved surfaces at very close distances by a series 

of parallel plates and summing their energies. Thus, the PFA is inherently an additive approach, 

applicable to objects at very close separations (still to be greater than the objects inter-atomic distances) 

under the assumption that the CNT dielectric response is the same as the one for the plates.  

 

In this Letter, we consider the interaction between two concentric cylindrical graphene sheets using a 

quantum electrodynamical (QED) approach suitable for dispersing and absorbing media14. The method 

allows taking into account the full CNT cylindrical geometry by solving the Fourier-domain operator 

Maxwell equations with appropriate boundary conditions and including their particular dielectric 

functions. The dielectric functions are calculated beforehand based on the quasi-1D energy band 

structure of each CNT. It is found that at relatively small inter-tube separations the collective interband 

excitations have a profound effect on their mutual interaction. Thus, the chiralities of concentric 

graphene sheets with similar radial sizes exhibiting these features may be responsible for the most 
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preferred CNT pairs. Furthermore, our results seem to be in agreement with experimental measurements 

on determining the chirality of individual double wall CNTs6. 

 

The system is modeled by two infinitely long, infinitely thin, continuous concentric cylinders immersed 

in vacuum (see Fig.1). Atomistic calculations have shown that the thin shell approximation is fairly 

reasonable up to an error 3)/(~ RaCC with aCC being the 

carbon-carbon distance and R – the nanotube radius15. 

Previous studies of CNT interactions based on the PFA-

Lifshitz theory have also demonstrated the applicability 

of this assumption for distances larger than a few times 

aCC
16. Thus here we consider that CNTs can be 

represented as infinitely thin cylinders. Further, each 

cylinder is characterized by the nanotube complex 

dynamic axial dielectric function ),( ωε 1,2Rzz  with the z-

direction along the CNT axis. The CNT azimuthal and radial dielectric tensor components are 

neglected, since the transverse response is known to be much smaller [17]. Experimental and theoretical 

studies show that the suppression of the transverse dielectric response arise from the cylindrical 

anisotropy of the system and the strong transverse dipolarization effects, and results in the CNT 

transparency for EM radiation polarized perpendicular to the nanotube axis17,18.   

 

The QED approach we employ here is a macroscopic theory. It was applied previously with success for 

distances larger than the carbon-carbon atomic separations to study near-field electromagnetic (EM) 

effects in pristine4 and hybrid CNTs with near-surface atomic states present19. The quantization scheme 

generates the second-quantized Hamiltonian ∑ ∫ ∫=

∞ +=
2,1 0

),(ˆ),(ˆˆ
i

ffddH ωωωω iii RRR  of the 

vacuum/CNT assisted EM field, with the bosonic operators +f̂  ( f̂ ) creating (annihilating) surface 

FIG. 1. Schematics of concentric CNTs in 

vacuum. The nanotube radii are R1 and R2 and 

the vacuum permittivity and permeability are ε0 

and μ0, respectively. The regions limited by the 

CNT surfaces are denoted as (1), (2), (3). 
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electromagnetic excitations of frequency ω at points ),,( 2,12,12,1 zR ϕ=1,2R . The Fourier-domain electric 

field operator at an arbitrary point ),,( zr ϕ=r  is given by 

∑ ∫=
⋅=

2,10 ),(ˆ),,(),(ˆ
i

di ωωωμω iii RJRrGRrE , where ),,( ωiRrG  is the dyadic EM field Green’s 

function (GF), and [ ][ ] zzzc eRfRRJ iii ),(ˆ)/(),(Im)/(),(ˆ 2/1
0

2
0 ωπεωεμωω =  is the surface current 

density operator selected in such a way as to ensure the correct QED equal-time commutation relations 

for the electric and magnetic field operators14. ze  is the unit vector along the CNT axis; 0ε , 0μ  and c 

are the dielectric constant, magnetic permeability and vacuum speed of light, respectively. 

 

The dyadic GF satisfies the wave equation 

IrrrrGrrG )'(),',(),',( 2

2

−=−×∇×∇ δωωω
c

                 (1) 

where I is the unit tensor. It can further be decomposed as )()0()( fs
scattfs

fs GGG += δ  with )0(G  and )( fs
scattG  

representing the contributions of the direct and scattered waves20, respectively, with a point-like field 

source located in region (s) and the field registered in region ( f ) (see Fig.1). The boundary conditions 

for Eq. (1) are obtained from the ones for the electric and magnetic field components on the CNT 

surfaces2,19 

[ ] 0),',(),',(
2,12,1

=−× −+ RRr ωω rrGrrGe                       (2) 

[ ]
2,12,12,1

),',(),(),',(),',( )2,1(
0 RRRr i ωωωμωω rrGrσrrGrrGe ⋅=−×∇× −+                  (3) 

where re  is the unit vector along the radial direction. The discontinuity in Eq. (3) results from the full 

account of the finite absorption and dispersion for both CNTs by means of their conductivity tensors 

approximated by their largest components [ ] )/(1),(),( 2,102,1
)2,1(

Tzzzz Si ρωεωεωσ −−= RR , with S being 

the CNT surface area, and ρT - the cubic density of the tubule. Following the procedure described in 

Ref. [20], we expand )0(G  and )( fs
scattG  into series of even and odd vector cylindrical functions with 

unknown coefficients to be found from Eqs. (2) and (3). This splits the EM modes in the system into TE 
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and TM polarizations. Eqs. (2) and (3) yield a set of 32 equations (16 for each polarization) with 32 

unknown coefficients., which we solve algebraically. 

  

Using the expressions for the electric and magnetic fields, the EM stress tensor is constructed14,21 

[ ])()(
2
1)()()( 2121 r'r,Tr'r,TIr'r,Tr'r,Tr'r,T +−+= Tr              (4) 

[ ]∫
∞

=
0

2

2

1 ),',(Im)( ωωω
π

rrGr'r,T
c

d                             (5) 

[ ]∫
∞

∇××∇−=
0

2 '),',(Im)( ωω
π

rrGr'r,T d                       (6) 

We are interested in the radial component rrT  which describes the radiation pressure of the virtual EM 

field on each CNT surface in the system. The force per unit area exerted on the tubes surfaces is given 

by14 

( )[ ] 2,1,)()(limlim )1()( =−= +

→→
iF i

rr
i

rrRri
i

r'r,Tr'r,T
rr'

                 (7) 

F1,2 found from Eq. (7) are of equal magnitude and opposite direction indicating attraction between the 

cylindrical surfaces. The interaction force thus obtained accounts simultaneously for the geometrical 

curvature effects (through the GF tensor) and the finite absorption and dissipation of each CNT (through 

their dielectric response). 

 

To determine ),( ωε 1,2Rzz  (and zzσ , accordingly), we first calculate each CNT energy bandstructure 

using the nearest neighbor tight binding model. Then, the random-phase approximation (RPA) is 

applied to find the chirality dependent dielectric response with the electronic dissipation processes taken 

into account in the relaxation time approximation. The RPA model used to calculate CNT optical 

response can be found in several references22,23, and here we utilize it with parameters taken from Ref. 

[17]. Such an approach is known to reproduce reasonably well the optical spectra of CNTs with larger 

diameters (> 1 nm), where electron-electron correlations and curvature induced inter-tube 
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hybridization23 seem to be less significant. The dielectric function is decomposed into a Drude part and 

a part originating from (transversely quantized) interband electronic transitions inter
zz

D
zzzz εεε += . 

 

We compare our results with the case of infinitely conducting parallel plates. We take the 

limit ∞→)2,1(σ , ∞→2,1R  while keeping dRR =− 21  and find 
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   (8) 

where 2,12,1 xRx = , )(xI n  and )(xK n are the modified Bessel functions of the first and second kind, 

respectively. Eq. (8) is obtained by making the transition to imaginary frequencies ωω i→ , and using 

the Euclidean rotation technique as described in Ref. [21]. This can be evaluated by summing the series 

using the large-order Bessel function expansions24. The 

result is F ~ (-1/3)(ħcπ2/240d 4), which is about 1/3 of the 

well-known result for two parallel plates7. This deviation 

originates from 0≠zzε  only in our uniaxial model for the 

CNT dielectric response. 

 

To illustrate numerically the inter-tube interaction, we 

have chosen the inner CNT to be the achiral (12,12) 

metallic nanotube, and to change the outer tubes. Thus 

one can envision concentric CNTs consisting of 

metal/metal or metal/semiconductor combinations of 

different chiralities but of similar radial dimensions. Fig. 2 shows that F decreases in strength as the 

tube separation increases. This dependence is monotonic for the zigzag (m,0) and armchair (n,n) outer 

FIG. 2. The Casimir force per unit area as a function 

of the inter-tube separation d, for different pairs of 

CNTs. The inset shows force found with the full 

dielectric function and the Drude contribution only 

for the same CNT pairs indicated in the figure. 
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tubes, but it happens at different rates. The attraction is stronger for (n,n) outer CNT as compared to the 

attraction for the outer (m,0) ones. For chiral tubes F decreases as a function of d in a rather irregular 

fashion. It is seen that for relatively small d, the force can be quite different. For example, the attraction 

between (27,4)@(12,12) and (21,13)@(12,12) differ by ~20% in favor of the second pair, even though 

the radial difference is only 0.2 Å. The difference becomes smaller as the CNTs separation becomes 

larger, and they eventually become negligible as the force diminishes at large distances. 

 

We also calculate the force using the D
zzε  contribution alone in each dielectric function. The inset in 

Fig.2 indicates that F is stronger when the interband transitions are neglected. The decay of F vs. d is 

monotonic. Including the inter
zzε  term reduces the force at different rates due to the chirality dependent 

interband electronic transitions.  At large separations, the discrepancies between the force calculated 

with the full dielectric response, and those obtained with the Drude term only become less significant. 

We find that for d~15 Å, this difference is less than 10%. 

 

To investigate further the important functionalities originating from the cylindrical geometry and the 

CNT dielectric response properties, F is calculated for different achiral inner/outer nanotube pairs. 

Studying zigzag and armchair CNTs allows tracking generalities from )(ωε  in a more controlled 

manner. The results are presented in Fig. 3. We have chosen representatives of three inner CNT types – 

metallic (12,12), semi-metallic (21,0), and semiconducting (20,0) nanotubes. They are of similar radii, 

8.14 Å, 8.22 Å and 7.83 Å, respectively. We see that depending on the outer nanotube types, the F vs d 

curves are positioned in three groups. The weakest interaction is found when there are two zigzag 

concentric CNTs (top two curves). The fact that some of these are semi-metallic and others are 

semiconducting does not seem to influence the magnitude and monotonic decrease of the force. The 

attraction is stronger when there is a combination of an armchair and a zigzag CNT as compared to the 

previous case. The curves for (m,0)@(12,12), (n,n)@(21,0), and (n,n)@(20,0) are practically 

overlapping, meaning that the specific location of the zigzag and armchair tubes (inner or outer) is of no 
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significance to the force. The small deviations can be attributed to the small differences in the inner 

CNT radii. Finally, we see that the strongest interaction occurs between two armchair CNTs (red curve). 

These functionalities are not unique just for the considered CNTs. We have performed the same 

calculations for many different tubes, and we always 

find that the strongest interaction occurs between two 

armchair CNTs and the weakest – between two zigzag 

CNTs (provided that their radial dimensions are 

similar). 

 

The results from these calculations show that the CNT 

collective excitation properties have a strong effect on 

their mutual interaction. This is particularly true for the 

relatively small distances of interest here, for which the 

dominant contribution of plasmonic modes to the Casimir interactions has been realized for planar25,26 

and linear27 metallic systems. To elucidate this issue here, we calculate the Electron Energy Loss 

Spectroscopy (EELS) spectra, given by [ ])(/1Im ωε− , using the RPA model17, and compare them for 

various inner and outer CNTs combinations – Fig. 3 (inset). The peaks in EELS are interpreted as 

collective plasmon excitations originating from interband transitions between the Brillouin zone van 

Hove singularities of each CNT1,28 .  

 

Considering F as a function of d and the specific form of the EELS spectra, it becomes clear from the 

inset in Fig.3 that the low frequency excitations, given by peaks in [ ])(/1Im ωε− , are key to the strength 

of the inter-tube interaction. We always find that the strongest force is between the CNTs with well 

pronounced overlapping low frequency peaks. This is consistent with the conclusion of Ref. [27] for 

generic 1D-plasmonic structures. However, in our case we deal with the interband plasmons originating 

from the space quantization of the transverse electronic motion, and, therefore, having quite a different 

FIG. 3. The Casimir force per unit area as a function 

of the inter-tube separation d for selected tube pairs. 

The insets show the EELS spectra for several CNTs. 
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frequency-momentum dispersion law (constant) as compared to that normally assumed (linear) for 

plasmons29. A weaker force is obtained if only one of the CNTs supports strong low frequency 

interband transitions. The weakest interaction happens when neither CNT has strong low frequency 

peaks in EELS. For the cases shown in Fig.3, one finds well pronounced overlapping transitions in the 

(12,12) CNT at ω1=2.18 eV and ω2=3.27 eV, and at ω1=1.63 eV and ω2=2.45 eV in the (17,17) CNT. 

At the same time, no such well defined strong low frequency excitations in the (21,0) and (30,0) CNTs 

are found. Fig. 3 shows that the attraction in (17,17)@(12,12) is much stronger than the attraction in 

(30,0)@(21,0), even though the radial sizes of the involved CNTs are approximately the same. One also 

notes that for the case of (17,17)@(21,0) there is only one such low frequency excitation coming from 

the armchair tube, and consequently the force has an intermediate value as compared to the above 

discussed two cases. 

 

We performed calculations of the interaction force between many CNT pairs and made comparisons 

between the relevant regions of the EELS spectra. It is found that, in general, armchair tubes always 

have strong, well pronounced interband excitations in the low frequency range. Zigzag and most chiral 

CNTs have low frequency interband transitions4, too, but they are not as near as well pronounced as 

those in armchair tubes; their stronger excitations are found at higher frequencies. 

 

We further investigate how the collective excitations from the EELS spectra influence the interaction by 

considering two concentric cylinders with radii R1=11.63 Å and R2=8.22 Å. The dielectric function of 

each cylinder is taken to be of the generic Lorentzian form )(1),( 2
2,1

22
2,1 Γ+−Ω−= ωωωωε iR  with 

Ω=2.7 eV and Γ=0.03 eV. Then, the EELS spectrum has only one resonance at ω1,2 for each cylinder. 

This generic form allows us to change the relative position and strength of the peaks and uncover more 

characteristic features originating from the EELS spectra. In Fig. 4, the force as a function of the peak 

frequency of the outer cylinder is shown when the frequency for the inner cylinder is kept constant (four 

values are chosen for ω2). One sees that the local minima in F vs ω occur when ω1 and ω2 coincide. In 
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fact, the strongest attraction happens when the structure has the lowest excitations at the same frequency 

ω1= ω2=0.81 eV. It is evident that the existence of relatively strong low frequency EELS spectrum and 

an overlap between the relevant peaks of the two structures 

is necessary to achieve a strong interaction.  

 

This study clearly demonstrates the crucial importance of 

the collective low energy surface plasmon excitations 

along with the cylindrical geometry for the long-ranged 

interaction in a double wall CNT system. The presented 

approach provides the unique opportunity to investigate 

these features together and to uncover underlying 

mechanisms of the energetic stability of different double 

wall CNT combinations. Our results are in good agreement 

with experimental measurements on determining the 

chirality of individual double wall CNTs. Electron diffraction methods6 have shown that the chiral 

spectrum of nanotubes with average size distributions has displayed a tendency for both the inner and 

outer tubes to be of armchair type. Thus our results may be viewed as describing one of the possible 

reasons for the preference of having a double wall CNT formed by two armchair ones.  

 

In summary, we have applied a QED approach to study the interaction between concentric CNTs with 

the realistic dielectric response taken into account. We found that at distances similar to the equilibrium 

separations between graphitic surfaces the attraction is dominated by the low energy (interband) 

plasmon excitations of both CNTs. The key attributes of the EELS spectra resulting in the strongest 

interaction are the existence of low frequency transitions, their strong and well pronounced nature, and 

the overlap between the low frequency peaks belonging to the two CNTs. Thus, we have shown that the 

FIG. 4. The Casimir force per unit area as a 

function of the frequency of the peak in EELS of 

the outer cylinder, while the inner cylinder peak 

frequency ω2 is constant. Results are shown for 

four values of ω2. The dielectric functions are 

modeled by a generic Lorentzian. 
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collective surface excitations and their chirality dependent characteristics play a profound role in the 

interaction strength in double wall CNT systems. 
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