
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Viscous corrections to the resistance of nanojunctions: A
dispersion relation approach

Dibyendu Roy, Giovanni Vignale, and Massimiliano Di Ventra
Phys. Rev. B 83, 075428 — Published 24 February 2011

DOI: 10.1103/PhysRevB.83.075428

http://dx.doi.org/10.1103/PhysRevB.83.075428


LX12266

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Viscous corrections to the resistance of nano-junctions:

a dispersion relation approach

Dibyendu Roy1, Giovanni Vignale2 and Massimiliano Di Ventra1

1Department of Physics, University of California-San Diego, La Jolla, CA 92093.
2Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA.

It is well known that the viscosity of a homogeneous electron liquid diverges in the limits of zero
frequency and zero temperature. A nanojunction breaks translational invariance and necessarily
cuts off this divergence. However, the estimate of the ensuing viscosity is far from trivial. Here,
we propose an approach based on a Kramers-Krönig dispersion relation, which connects the zero-
frequency viscosity, η(0), to the high-frequency shear modulus, µ∞, of the electron liquid via η(0) =
µ∞τ , with τ the junction-specific momentum relaxation time. By making use of a simple formula
derived from time-dependent current-density functional theory we then estimate the many-body
contributions to the resistance for an integrable junction potential and find that these viscous effects
may be much larger than previously suggested for junctions of low conductance.

PACS numbers:

I. INTRODUCTION

Viscosity, namely the effect of momentum transfer be-
tween adjacent layers of a liquid, is a fundamental con-
cept in both classical and quantum physics1–3. In the
case of the electron liquid, it was shown by Abrikosov and
Khalatnikov (AK) more than fifty years ago that the vis-
cosity of a homogeneous liquid diverges at zero frequency
and zero temperature (in this precise order of limits)4.
The physical reason for this divergence is related to the
fact that at zero temperature the quasi-particles close
to the Fermi energy are very long-lived and can trans-
port momentum to distances arbitrarily far away from
the source of the perturbation. We thus expect that any
potential that breaks translational invariance would cut
off such divergence giving rise to a finite (albeit possibly
large) d.c. viscosity at zero temperature.

The problem has garnered renewed attention in the
past few years in the context of transport in nanoscale
systems5, where it was shown explicitly that the Lan-
dauer formula for the single-particle resistance of a nano-
junction Rs = h/(2e2

∑

j Tj) (the sum is over the eigen-

channels of transmission Tj)
6, fails to include certain

many-body effects, which cannot be described as single-
particle scattering from an effective potential.7,8 Within
the framework of the time-dependent current density
functional theory9,10, one clearly sees that such effects
arise from the frequency dependence of the exchange-
correlation (xc) field.11 More precisely, one can split
the full exchange-correlation potential into a static com-
ponent, which controls the transmission probability Tj

of the Landauer formula, and a dynamical component,
which corrects the Landauer formula11. Indeed, even
though the control of nanoscale junctions at the atomic
level is far from being ideal, it is now clear that the Lan-
dauer formula computed within the framework of ground-
state density-functional theory (DFT), overestimates the
measured conductance by at least an order of magnitude
in the case of low-conductance structures (e.g., molecu-

lar structures), while it provides reasonable agreement in
the case of metallic quantum point contacts, which show
high-conductance values12. Part of this discrepancy has
been attributed to errors in determining the position of
the energy levels of the system relative to the electro-
chemical potential in the leads – errors which in turn are
related to self-interaction corrections, discontinuities in
the xc potential as a function of particle number, and
so on.13 However, these corrections do not fully solve
the discrepancy between theory and experiments: other
many-body effects, in particular those related to the vis-
cous nature of the electron liquid, may play an important
role.

II. DYNAMICAL CORRECTIONS TO THE

RESISTANCE

Time-dependent current density functional theory pro-
vides some insight into the physical character of these
many-body corrections. Indeed, it was shown that the
dynamical corrections to the xc field give rise to a viscous
force9,10, similar to the ordinary hydrodynamic viscous
force, but controlled entirely by electron-electron inter-
actions - the ordinary hydrodynamic viscosity does not
explicitly depend on interactions, but relies implicitly on
the presence of collisions capable of establishing a local
thermodynamic equilibrium1. Thus, the resistance in ex-
cess of the Landauer formula could be interpreted as the
effect of the extra “friction” arising from the xc viscosity.
In Ref.7, this additional many-body resistance - which
was termed “dynamical” precisely because it vanishes in
a strictly ground-state formulation of the theory11 - was
estimated (assuming no current density variation in the
junction) in terms of the exchange-correlation (xc) vis-
cosity of the liquid7,8

Rdyn =
ηxc(0)

e2S2

∫
[

4

3
(∂xn

−1)2 + (∂⊥n
−1)2

]

d~r , (2.1)
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where x is the direction of current flow through the junc-
tion, ⊥ represents the transverse directions, S is the
cross-section area of the nano-junction, n is the ground-
state electron density calculated, e.g., from the self-
consistent static density functional theory (DFT) with
the xc functional treated within the local-density ap-
proximation (LDA), ∂x and ∂⊥ are derivatives along the
current flow and perpendicular to it, respectively. Here,
ηxc(0) > 0 is the zero-frequency xc viscosity of the ho-

mogeneous electron liquid at the average electron density
of the junction, and e is the charge of the electron. Thus
the dynamical correction increases the total resistance
of nano-junctions to Rtot = Rs + Rdyn

15. Notice that
the non-uniformity of the electron density is essential to
the effect: Rdyn vanishes, as it should, if n is spatially
uniform.

The precise definition of ηxc(0) in current density func-
tional theory is16

ηxc(0) = −n2 lim
ω→0

ℑmfxc,T (ω)

ω
, (2.2)

where fxc,T (ω) is the transverse component of the dy-
namical exchange-correlation kernel of the homogeneous
electron liquid at density n. The kernel itself is defined
as the difference between the inverse current-current re-
sponse functions of the interacting and non-interacting
system at the same density. This quantity admits a per-
turbative expansion in the interaction parameter rs of
the electron liquid – the average distance between elec-
trons expressed in units of the Bohr radius. Our initial
estimates of Rdyn were based on an extrapolated high-
density expansion of ηxc, which gave Rdyn of about 10%
of Rs for molecular junctions, but considerably smaller
for metallic quantum point contacts7,8. Since then, the
use of a more accurate expression for ηxc as a function of
rs, namely16

ηxc ≃
~n

60r
−3/2
s + 80r−1

s − 40r
−2/3
s + 62r

−1/3
s

, (2.3)

has been shown to produce considerably smaller correc-
tions for the case of two infinite jellium electrodes sepa-
rated by a vacuum gap.17 Indeed, this ηxc is of the order
of 10−7 Joule-sec/m3 for typical metallic densities such
as rs = 3 for gold, thus naively suggesting that these
dynamical corrections are small under all circumstances.

Before jumping to conclusions, however, it must be
noted that the expression (2.3) is not the appropriate
zero-frequency viscosity, as required by Eq. (2.2), but
rather was calculated in Ref.16 under the implicit as-
sumption ω ≫ 1/τ where τ is the momentum relaxation
time for a quasi-particle. This condition is easily sat-
isfied in the homogeneous electron liquid in the limit of
zero temperature T , since τ (in the absence of impurities)
tends to infinity as 1/T 2. It is certainly not satisfied in a
nanojunction where the main limiting factor to the quasi-
particle lifetime is the geometric size of the constriction
itself.5,18–20 Indeed, it is precisely the geometrical con-
striction experienced by the electron wave packets as they

move into the nanojunction that introduces a short mo-
mentum relaxation time5,18, which in turn cuts off the
divergence of the viscosity of the uniform electron liquid.

We are then led to consider the opposite and physi-
cally correct limit of ω ≪ 1/τ . But here, we run into
the problem that the non-uniformity of the electron liq-
uid must be fully taken into account. If, for instance,
one calculates the d.c. viscosity of the homogeneous elec-
tron liquid, using the techniques developed by AK4 one
obtains (employing the Thomas-Fermi approximation for
the screened electron-electron (e-e) interaction)

ηAK =
~n

(r̃s)6
(1.813 × 103

T

)2
{π(1 + 2r̃s)

8
√

r̃s + r̃2s
− π

4

}−1

,(2.4)

where r̃s = αrs/π and α = (4/9π)1/3 ≃ 0.521. This
expression has two major shortcomings. First and fore-
most, it diverges at low temperature as 1/T 2, which
is the consequence of undisturbed momentum trans-
port by the long-lived quasi-particles of the homogeneous
electron liquid to distances arbitrarily far away from
the source of perturbation. Even at room temperature
ηAK = 1.12 × 104/T 2 Joule-sec/m3 (temperature T is
in Kelvin) for gold (rs = 3), which, if used in Eq. (2.1)
would produce unreasonably large values of Rdyn. Sec-
ond, the AK viscosity is conceptually different from the
xc viscosity: it arises from the full current-current re-
sponse function, not just from the exchange-correlation
kernel, and there is no simple way to separate the latter,
since the AK calculation is non-perturbative with respect
to the electron-electron coupling strength. Instead, in our
case, such a separation is essential, since the larger (elas-
tic) part of the resistance is already taken into account
exactly by the Landauer formula, and only the xc kernel
contributes to the dynamical (inelastic) correction. Thus,
we need a way to “zero-in” on the xc viscosity (defined
formally in terms of the xc kernel fxc in Eq. (2.2)) just
as we did in Ref.16 – but now we must go to the opposite
regime of ω ≪ 1/τ .

Equipped with this understanding, we first show that
the viscosity of the electron liquid in the nanojunc-

tion can be estimated by a dispersion relation approach,
which combines information about the high-frequency
elastic properties of the interacting electron liquid with
the short momentum relaxation time induced by the con-
striction. We then estimate the dynamical contribution
to the resistance of nanostructures from Eq. (2.1) and
show that this contribution is relatively small for nearly
transparent junctions but becomes sizeable in the limit
of zero transmission.

III. DISPERSION RELATION APPROACH

Let us then start by recalling that the viscosity η(ω)
and the shear modulus µ(ω), regarded as functions of fre-
quency, are respectively the imaginary and the real part
of a visco-elastic modulus µ̃(ω) ≡ µ(ω)−iωη(ω).1,3,16 The
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FIG. 1: The comparison between the viscosity calculated by
Abrikosov and Khalatnikov, ηAK , and the viscosity calculated
using the dispersion relation (3.2) for different values of rs.
The connecting lines are a guide to the eye.

shear modulus vanishes at zero frequency, since we are in
a liquid state, and tends to a finite value µ∞ at infinite
frequency, where by “infinite” we mean a frequency much
larger than 1/τ . On the other hand, the viscosity, η(ω),
varies from the desired value, η(0), at zero frequency to
zero at “infinite” frequency. Then, the Kramers-Krönig
dispersion relation tells us that

0 = µ(0) = µ∞ − 2

π

∫ ∞

0

η(ω)dω . (3.1)

We do not know the detailed frequency dependence of
η(ω), but we can assume that it roughly switches from
the d.c. value η(0) for ω < 1/τ to approximately zero for
ω > 1/τ . This simple reasoning leads from Eq. (3.1) to
the relation5,20

η(0) ≃ µ∞τ . (3.2)

The importance of this relation, in the present context,
is that it connects the quantity of primary interest, the
zero-frequency viscosity, to two quantities that can be
rather easily estimated, namely, the high-frequency shear
modulus – a positive definite quantity that can be ex-
pressed in terms of the exact energy of the electron liq-
uid – and the momentum relaxation time τ , which, as
we have discussed above, in a nano-junction is mostly
controlled by elastic boundary scattering from the con-
fining geometry. A crucial feature of this relation is
that it allows a neat separation of η(0) into two parts:
a “single-particle” contribution, which arises from the
non-interacting kinetic part of the shear modulus (see
Eq. (3.3) below), and an “exchange-correlation” contri-
bution, which actually determines, via Eq. (2.1), the dy-
namical correction to the resistivity.

As a first test of the reasonableness of this approach
and also to lend support to its quantitative accuracy, let
us apply it to the calculation of η(0) for the homogeneous
electron liquid, with µ∞ the full high-frequency shear

FIG. 2: A schematic of the potential (4.1) - for a constant
value of z - used in this work to represent the scattering off a
nanojunction.

modulus given, for example, in Eq. (103) of Ref.21. This
can be written as

µ∞ = µs + µxc,∞

=
2

5
nǫF − n

[

14

15
ǫxc(rs) +

4

5
rsǫ

′
xc(rs)

]

, (3.3)

where µs = 2nǫF/5 is the non-interacting shear modu-
lus (arising from Pauli exclusion principle) with ǫF being
the Fermi energy, and the remainder, µxc,∞, is expressed
in terms of the exchange-correlation energy per particle,
ǫxc, and its derivative ǫ′xc with respect to the electron
liquid parameter rs.

22 In the homogeneous electron liq-
uid the momentum relaxation time, τ , is limited only by
electron-electron interactions and therefore diverges with
temperature T as 1/T 2:3

1

τee
=

π

8~ǫF

(εk − ǫF )2 + (πkBT )2

1 + e−(εk−ǫF )/kBT
ξ3(rs) (3.4)

where εk is the energy of the quasi-particle. For a typical
density of rs = 3, ξ3(rs = 3) ≃ 0.5 and τee ≃ 5×10−7/T 2

s at the Fermi energy. For this set of parameters, from
Eq. (3.2) we then obtain η(0) = µ∞τee ∼ 1.6 × 104/T 2

Joule-s/m3 which is in good agreement with ηAK =
1.12×104/T 2 Joule-s/m3. The same level of agreement is
found for a wide range of rs values of typical metallic sys-
tems, as shown in Fig. 1. It is also worth stressing that
the agreement we find with our dispersion relation ap-
proach is extremely good for rs < 4 despite the assump-
tions we have made in reaching Eq. (3.2). The reason why
the agreement between the two viscosities decreases with
increasing rs can be attributed to the fact that Eq. (3.4)
for the relaxation time is strictly valid for small values of
rs. These results thus lend strong support to the present
approach to compute viscosity in terms of the relaxation
time τ .

IV. AN INTEGRABLE MODEL

Having checked that the dispersion relation (3.2) gives
both a qualitative and a quantitative account of the d.c.
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viscosity we can now proceed to the estimate of the lat-
ter in the presence of a nanojunction. We consider the
following confining potential (see Fig. 2 for its schematic)
which - despite its simplicity - is a reasonable choice to
mimic the scattering properties of nanostructures

V (x, y, z) =
A+B(y2 + z2)

cosh2(αx)
. (4.1)

where x is along the direction of charge flow. The param-
eters A and B determine the strength of the potential
in the longitudinal and transverse direction, respectively,
and 1/αmeasures the extension of the potential along the
x direction. Here, we are interested to study transport on
a length scale such that 1/α≪ lee ≃ √

Dτee, with D be-
ing the diffusion constant. This simple integrable model
allows us to calculate both the elastic momentum relax-
ation time τk, the longitudinal transmission coefficient
Tkx

(defined as the transmission probability for processes
which do not change the incident transverse momentum),
and the equilibrium density n(x). In the linear-response
regime, τk due to boundary scattering from the poten-
tial (4.1) can be estimated by employing the generalized
Fermi golden rule,

1

τk
= LxL

2
⊥

∫

k′ 6=k

dk′

4π2~
δ(ǫk′ − ǫk) |〈φk|V (x, y, z)|ψk′〉|2,(4.2)

with Lx ∼ lee along x and L⊥ being the length of the elec-
trodes in the direction perpendicular to x. We use ǫk =
~

2k2/2me with me being the electron mass. The general-
ized Fermi golden rule allows us to study the full range of
longitudinal transmission for all values V (x, y, z), while
in the Born approximation of the Fermi golden rule one
could only study longitudinal transmission near unity
since its validity is limited for V (x, y, z) ≪ EF .

We choose the incident wave-function φk(x, y, z) with

three components of initial momentum kx, k
j
y, k

j′

z as a
combination of plane-waves with proper boundary con-
ditions, i.e., open boundary condition along the direc-
tion of transport and φk(x, y = 0, L⊥, z) = φk(x, y, z =
0, L⊥) = 0.

φk(x, y, z) =
2√
LxL⊥

eikxx cos(kj
yy) cos(kj′

z z) , (4.3)

We use the exact scattering state ϕk′
x
(x) of the one-

dimensional potential 1/ cosh2(αx) along the x−direction
and plane waves with the same boundary conditions
as the incident state in the transverse directions. For
the transverse wave-functions, plane-waves are a bet-
ter choice than the harmonic potential eigenstates in
the asymptotic region, since in that region the curva-
ture of the harmonic potential becomes infinitesimally
small. Surely, the use of plane waves - instead of an ex-
act scattering state |ψk′〉 of the full potential in Eq. (4.1)
- would seem a limitation of our calculations. How-
ever, we stress that the use of an asymptotic state of
ψk′(x, y, z) is also not the right choice in Eq. (4.2),
since the asymptotic state is a better approximation
only far away from the action of the potential (where
V (x, y, z) = 0), while |〈φk|V (x, y, z)|ψk′〉| of Eq. (4.2) is
nonzero only for V (x, y, z) 6= 0.

The scattered wave-function ψk′(x, y, z) with momen-

tum k′x, k
p
y , k

p′

z is thus

ψk′(x, y, z) =
2√
NL⊥

ϕk′
x
(x) cos(kp

yy) cos(kp′

z z) , (4.4)

with

ϕk′
x
(x) = (1 − ξ2)−ik′

x/2αF[−ik′x/α− s,−ik′x/α+ s+ 1,−ik′x/α+ 1, (1 − ξ)/2] , (4.5)

and ξ = tanh(αx), where kp
y = (2p + 1)π/L⊥ and

kp′

z = (2p′ + 1)π/L⊥with p, p′ = 0,±1,±2.., s = (−1 +
√

1 − 8meA/α2~2)/2 and F (β, γ, δ, z) is the hypergeo-
metric function. The normalization factor N is fixed by
∫ Lx/2

−Lx/2 dx |ϕk′
x
(x)|2 = N .

We separately evaluate τ
||
k
, τ⊥

k
the longitudinal and

transverse relaxation times, respectively, with 1/τk =

1/τ
||
k

+ 1/τ⊥
k

. We include in τ
||
k

only those contributions
of momentum relaxation which do not change the index
of incident transverse channels, while all other processes
are included in τ⊥

k
. Due to its symmetry in the trans-

verse plane, the potential in Eq. (4.1) does not allow
processes in which the y and z components of the in-

cident momentum change simultaneously. For example,
if we choose the incident state with j, j′ = 0, the allowed
contributions in τ⊥

k
come from the channels with indices

p = 1, 2, · · · , pc, p
′ = 0 and p = 0, p′ = 1, 2, · · · , pc,

where pc is the maximum number of allowed transverse
channels.

On physical grounds of local thermodynamic equilib-
rium in the electrodes, we can assume that the incident
state is prepared with the lowest transverse momentum
component, i.e., j, j′ = 0. Therefore, for an incident
state at the Fermi energy, kx = kF

√

1 − 2(π/kFL⊥)2

and k0
y = k0

z = π/L⊥. The longitudinal transmission co-
efficient Tkx

along x for the longitudinal momentum kx of
the incident state is calculated from ϕkx

(x), and is given
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FIG. 3: Longitudinal momentum relaxation time τ
||
k

as a func-
tion of the transmission coefficient Tkx along the x-direction
for rs = 3. Inset shows the corresponding transverse momen-
tum relaxation time τ⊥

k .

by23

Tkx
=

sinh2(πkx/α)

sinh2(πkx/α) + cosh2(π
2

√

8meA/~2α2 − 1)
,(4.6)

with 8meA/α
2
~

2 > 1. We find after some algebra

1

τ
||
k

=
me

~3|kx|
|I(−k0

x)|2
(

A+BL2
⊥

(π2 − 6)

6π2

)2
, (4.7)

1

τ⊥
k

=
meB

2L4
⊥

π4~3

pc
∑

s=±1,p=1,2..

1

|kp
x|

(2p+ 1)2

p4(p+ 1)4
|I(skp

x)|2,(4.8)

where I(kp
x) = (1/

√
N )

∫ Lx/2

−Lx/2
dxe−ikxxϕkp

x
(x)/ cosh2(αx).

kp
x [= kF

√

1 − ((2p+ 1)2 + 1)π2/(kFL⊥)2] is the lon-
gitudinal momentum of the scattered electron in the
transverse channel of indices p and p′ = 0.

The transverse and longitudinal relaxation times are
plotted in Fig. 3 for the electron density rs = 3, and
typical dimensions of nanoscale junctions, namely Lx =
20 nm, L⊥ = 5 nm and 1/α = 2 nm. We always keep
the transverse confinement potential strength (BL2

⊥ >
55 eV) at far above the Fermi energy (ǫF = 5.57 eV
for rs = 3), and tune the height (A) of the longitudinal
barrier across the Fermi energy to have different values
of the transmission coefficient Tkx

.
Figure 3 confirms our initial hypothesis, namely that

the elastic relaxation time is the dominant contribution
to the total relaxation time for |k| = kF and for a wide
range of temperatures: 1/τ = 1/τee + 1/τk ≈ 1/τk. We
finally note that if we start with an incoming state with
j, j′ 6= 0, then the incident longitudinal momentum kx at
the Fermi energy is smaller than that of the incident state
j, j′ = 0 we have considered so far. The corresponding
longitudinal transmission Tkx

is also relatively smaller for
the same longitudinal barrier height A. Thus, we find a
faster longitudinal relaxation and a slower transverse re-
laxation time at the same barrier height. However, if we
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FIG. 4: Zero-frequency xc viscosity ηxc in a nanojunction as
a function of the transmission coefficient for rs = 3.

plot the total relaxation time as a function of the longi-
tudinal transmission coefficient by reducing the barrier
height, we find that the total relaxation time is qualita-
tively and quantitatively similar as for the j, j′ = 0 initial
state.

We are now ready to estimate the desired viscosity
from Eq. (3.2), and from Eq. (2.1) the dynamical correc-
tions to the single-particle resistance. For this we need
only the xc component of the shear modulus, since the
xc viscosity in the d.c. limit is ηxc(0) = µxc,∞τF . This
quantity is plotted in Fig. 4 with µxc,∞ given by the
second term on the right hand side of Eq. (3.3) and τF
evaluated above for different values of Tkx

.

Finally, since in the present model the transverse vari-
ation of the density is small, we evaluate only the lon-
gitudinal contribution to Rdyn from Eq. (2.1) using the
full wavefunction ψk(x, y, z) and by defining the planar
average

〈n(x)〉 =
1

L2
⊥

∫ L⊥/2

−L⊥/2

∫ L⊥/2

−L⊥/2

dydz
∑

k≤kF

|ψk(x, y, z)|2(4.9)

with the proper normalization of 〈n(x)〉 corresponding
to the bulk density of rs = 3 deep into the leads. This
quantity is plotted in Fig. 5. Introduction of the poten-
tial V (x, y, z) induces two effects: one is the reduction
of the xc viscosity entering Eq. (2.1) due to fast momen-
tum relaxation, and the other is the increase of the den-
sity gradient. These two effects together determine the
value of the dynamical resistance corrections in Fig. 5.
In agreement with what was previously reported7, this
dynamical resistance is relatively small at large trans-
missions due to the small variation of the density across
the junction. However, it increases substantially at very
low transmissions with values that can greatly exceed,
for this particular model, the dynamical resistances esti-
mated previously17.
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V. CONCLUSION

In conclusion, we have introduced a dispersion-relation
approach to estimate the d.c. viscosity which provides
very good agreement with the estimates obtained us-
ing the standard non-perturbative calculation for the
homogeneous electron liquid. This approach tremen-
dously simplifies the calculations of the viscosity and
allows to estimate this quantity in the presence of a
nano-constriction where the momentum relaxation time
is dominated by the elastic collisions at the junction.
We have then computed the many-body contribution to
the resistance of the junction for an integrable potential
and found that while this resistance is relatively small
for transparent barriers it is substantially higher for low
transmission barriers, a fact which goes in the right di-
rection in explaining the well-known (and yet unsolved)
discrepancy between theory and experiments in molecu-
lar junctions12.
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6 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys.

Rev. B 31, 6207 (1985).
7 Na Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys.

Rev. Lett. 94, 186810 (2005).
8 Na Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys.

Rev. Lett. 98, 259702 (2007).
9 G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).

10 G. Vignale, C. A. Ullrich and S. Conti, Phys. Rev. Lett.
79, 4878 (1997).

11 G. Vignale and M. Di Ventra, Phys. Rev. B 79, 014201
(2009).

12 See, e.g., M. Di Ventra, S.T. Pantelides, and N.D. Lang,
Phys. Rev. Lett. 84, 979 (2000); M. Di Ventra and N.D.
Lang, Phys. Rev. B 65, 045402 (2002); Y. Xue, S. Datta,
and M.A. Ratner, J. Chem. Phys. 115, 4292 (2001); J.J.
Palacios, A. J. Prez-Jimenez, E. Louis, E. SanFabian, and

J. A. Verges, Phys. Rev. B 66, 035322 (2002).
13 See, e.g., C. Toher, A. Filippetti, S. Sanvito, and K. Burke,

Phys. Rev. Lett. 95, 146402 (2005).
14 V. U. Nazarov, G. Vignale, and Y.-C. Chang, unpublished.
15 A similar effect was recently noted in the calculation of

the zero-temperature resistivity of bulk metals14 : plain
electron-impurity scattering underestimates the resistiv-
ity, and the inclusion of the exchange-correlation viscos-
ity brings it in better agreement with experiment. Also,
while not arriving at the same Eq. (2.1), similar conclu-
sions about the presence of many-body corrections to the
Landauer formula have been reached in M. Koentopp, K.
Burke, and F. Evers, Phys. Rev. B 73, 121403 (2006).

16 S. Conti and G. Vignale, Phys. Rev. B 60, 7966 (1999).
17 J. Jung, P. Bokes, and R. W. Godby, Phys. Rev. Lett.98,

259701 (2007).
18 M. Di Ventra and T.N. Todorov, J. Phys. Cond. Matt. 16,

8025 (2004).
19 R. D’Agosta and M. Di Ventra, J. Phys. Condens. Matter

18, 11059 (2006).
20 R. D’Agosta, N. Sai, and M. Di Ventra, Nano Lett. 6, 2935

(2006).
21 I. V. Tokatly, Phys. Rev. B 71, 165105 (2005).
22 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
23 L. D. Landau and E. M. Lifshitz, Quantum Mchanics,

Course of Theoretical Physics (Butterworth-Heinemann,
Oxford, 1997), Vol.3.


