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I. INTRODUCTION

The ability to concentrate light beyond the diffraction limit sets the optical properties of metal nanostructures
apart from their dielectric counterparts.1–3 Even when it comes at the cost of increased optical attenuation, the light-
concentration ability of metals enables study and application of localized light-matter interactions at length scales
unattainable with dielectric materials.1,3

A well-known example of the light-concentrating ability of metals is the phenomenon of extraordinary optical
transmission (EOT) through subwavelength metallic holes with sizes on the order of 100 nm.4–6 Squeezing light
through these tiny gaps has inspired important applications including advanced optical lithography,7 EOT-assisted
bio-sensing,8 sub-ps switching in metamaterials,9 and plasmonic enhanced detectors.10 These efforts are significant
demonstrations of new functionalities enabled by extreme light concentration. Yet, the electronic response of the
materials themselves used in these devices is still bulk-like. As a result, it is still mostly the materials that affect the
light.

One way to enable light to influence material properties is to make the light-matter interaction occur at the
quantum-scale. Quantum-scale here refers to the spatial extent of the electronic wavefunction in metals and bound
excitons in semiconductors. For most solids, this length scale is between 1 and 10 nm.11

Light-matter interaction at this length-scale can lead to several interesting quantum-mechanical effects. For exam-
ple, light-induced absorptive transition in most materials are understood under the electric-dipole approximation12

which supposes that the spatial extent of the electromagnetic wave causing the transition is much larger than that
of the atom/exciton. Shrinking the spatial extent of the driving field to the dimensions of the exciton can be ex-
pected to significantly modify the absorption rates and the selection rules governing them. Another example is that
of plasmon-assisted electron tunneling across an insulating gap. The requirements for this tunneling process are (a)
a gap-size on the order of electron wavefunction11 and (b) existence of high electric field across the gap. The scale
mismatch between the wavelength of light and the electron wavefunction once again makes it difficult to achieve
optimum tunneling conditions. With an ability to channel light into sub-10 nm gaps, however, one could achieve
efficient light-assisted tunneling and envision ways of direct THz frequency rectification (speeds unachievable with
electronic devices)13. Yet another example is that of broadband (non-resonant) enhancement of radiative transitions
achievable in metal-insulator-metal (MIM) gaps.14 With over 20× radiative enhancement already predicted in sub-50
nm gaps, shrinking the gap-size further indicates even further enhancements including the possibility of single-surface
plasmon generation through optical15 and electrical16 means.

There are several reasons for the difficulty in coupling light into quantum-scale gaps. Primarily, efficient coupling
of light from free-space to any metallic or dielectric structure on the quantum-scale is expected to be extremely low.5

This fact arises from simple geometric considerations based on overlap area, as well as from a large impedance mis-
match between bound propagating modes and free space planewaves. Additionally, there is a practical difficulty in
controllable fabrication of sub-10 nm devices with most conventional lithographic patterning methods. Several struc-
tures aimed at overcoming the abovementioned difficulties have been proposed. These structures include variations
on adiabatic mode transformers17,18, grooved channels19,20, wedges21 and, hybrid nanowire waveguides.22

The ultimate scale of plasmon localization considered in most of the above studies is 6 50 nm. We propose a new
class of structures that achieve sub 5 nm field localization and are yet amenable to fabrication using simple planar
deposition techniques. We consider a strongly confined, bound surface plasmon mode incident on a quantum scale
MIM gap structure. The incident surface plasmon mode represents a bound propagating surface charge oscillation
that can efficiently couple to the gap MIM provided that the metal interface is continuous and that the insulating
dielectric media is uniform. Scattering from the MIM waveguide structure occurs due to the mode mismatch between
the incident surface plasmon mode and the modes in the MIM waveguide. Given the range of applications and
opportunities for fundamental studies possible with coupling of light into quantum-scale waveguides, we feel it is
imperative to accurately quantify the coupling efficiency into such waveguides. Our main objective in the present
paper is to provide an analytic and numerical framework for accurate prediction of modal coupling efficiencies into
quantum-scale waveguides. This mode matching framework provides physical insight into scattering and coupling
processes in quantum-scale waveguides, and lays the ground work for new active plasmonic devices.

Our work differs from the existing body of research in the geometry being considered, the scale of predicted plasmon
localization, and the adopted numerical analysis approach. The junctions considered in our paper are between two
waveguides: a single metal dielectric interface, and MIM channel having entirely different modal spectra. In contrast,
many existing works analyze junctions between structurally identical waveguides that differ only in material parameters
(and hence have similar modal spectra).23,24 Whereas analyses of waveguide junctions with differing modal spectra
certainly exist,24,25 our modal analysis method is distinct and provides several independent means for identification
and correction of errors in implementation. We can explicitly examine the coupling between modes and evaluate by
symmetry modes that are important for scattering and loss. We also augment our rigorous mode-matching results
with intuitive and easily calculable effective Fresnel approximations and demonstrate their limitations.



3

Several noteworthy conclusions emerge from our study. For instance, we find the coupling efficiencies into sub-10
nm channel waveguides to be orders of magnitude higher than those expected from simple scaling arguments based
on the ratio of geometrical cross-sections. This large coupling enhancement is due to the strong confinement of
the incident single interface plasmon. We also find that, depending on the dielectric material filling the channel,
there is usually a specific channel width that maximizes the field-enhancement in the quantum scale gap. Both the
field enhancement and the scattering of the incident mode can be qualitatively reproduced with effective Fresnel
coefficients, but for accurate numerical prediction the complete mode matching problem needs to be solved. The
veracity of our conclusions is confirmed by excellent agreement with direct field solutions performed using finite-
difference time domain (FDTD) method. Our numerical studies aid us in forming simple guidelines to improve the
coupling efficiencies to quantum-scale waveguides.

We begin in Section II by developing the discrete plasmonic mode-matching theory for coupling from a single-
interface plasmon waveguide to a quantum-scale metal-insulator-metal (MIM) waveguide and leading up to the system
matrix equations that directly yield scattering coefficients. We numerically illustrate the application of this formalism
in Section III by determining coupling efficiency from a single-interface plasmon to a highly confined MIM mode with
a 10 nm channel width. In section IV, we assess the accuracy of the mode-matching technique by performing several
internal consistency checks and by comparing mode-matching results with finite-difference time-domain (FDTD)
method. We study the behavior of the coupling efficiency for varying quantum-scale channel width in Section V. We
conclude by providing two simple Fresnel-like approximations for rapid first-order designs of coupling structures to
quantum-scale waveguides.

II. PLASMONIC MODE-MATCHING THEORY

In this section, we briefly survey the three semi-analytical methods that are conventionally grouped under mode-
matching. Following that, we proceed to describe our method for studying plasmon coupling into quantum-scale gaps.
We end this section by obtaining matrix equations for the scattering coefficients of the incident field.

A. Rationale for mode-matching analysis

Most practical nanophotonic devices entail application of numerical methods for their analysis. Contemporary
numerical analyses employ either a finite-difference or a finite-element-based subdivision of the geometrical domain of
interest. Waveguides geometries like the ones considered in this paper (see Fig. 1) have geometrical features spanning
multiple orders of length scales: the quantum-scale gaps are typically sub-10 nm, while the propagation lengths are
several micrometers. Finite-difference-based subdivision of such geometries using a uniform grid-size renders the
computational analyses memory intensive. Even methods like FEM that allow non-uniform grid sizes tend to be
computationally intensive since smooth mesh-size variations are needed to for a reliable analysis (rapid mesh-size
variations tend to produce numerical reflections that interfere with physical fields).

Another general feature of field-solvers is the difficulty in extracting the scattering spectra from the calculated
field-profiles. This makes it challenging to identify the modes responsible for the electromagnetic behavior of the
devices and formulate simple design rules (e.g., the Fresnel-like approximations derived in Section VI).

Mode-matching is a physically intuitive and a computationally efficient technique for analyzing scattering response of
electromagnetic structures. This technique is formulated in terms of individual modes of the constituent waveguides at
a junction and with the explicit goal of determining coupling between these modes. As a result, scattering coefficients
for each participating mode form the natural part of a mode-matching calculation. In particular, scattering coefficients
for the modes of interest can simply be read from the list of coefficients generated from the solution of mode-matching
equations.

Microwave components are routinely characterized using mode-matching. Recently this technique has gained promi-
nence for analysis of plasmonic structures ranging from planar interfaces23 to subwavelength waveguide junctions.26

Here we demonstrate the application of this powerful technique to analyze light concentration into quantum-scale
waveguides and show that it predicts coupling efficiencies far exceeding the ratio of geometric cross-sections.

B. Brief review of current approaches

With reference to Fig. 1, the algorithm for a typical mode-matching calculation can be enumerated as follows:
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FIG. 1. Schematic of the structure and the co-ordinate system convention. The single-interface plasmon is incident from left
on the quantum-scale gap. The structure is assumed to be semi-infinite on both sides in the z-direction and truncated with
perfect electric conductor (PEC) termination on top and bottom.

1. First, one determines the set of first N mutually orthogonal modes (mode indices and field profiles) supported
individually by the left and the right sides of the junction. This set of modes is expected to be mathematically
complete as N → ∞.

2. In the next step, one calculates the overlap integral of the mth mode on the left side with the nth mode on the
right side for all 1 6 m, n 6 N .

3. Finally the electric and the magnetic fields continuity at the junction is expressed in terms of the complex
scattering coefficients in a linear system of 2N equations in terms of the scattering coefficients whose solution
yields the desired scattering coefficients.

The choice of modes and the manner of enforcing the field continuity leads to several variants of the basic algorithm
presented above. If one chooses to work directly with physically open (unterminated) systems, then the spectrum
(i.e., set of modes) consists of a few bound modes and an infinite set of continuous modes. This approach found in
Shevchenkov’s book27 and has been applied recently by Oulton et al23 to calculate single-interface plasmon reflection
at the boundary of two dissimilar metallic/dielectric media. The continuous modes in this approach extend to infinity
and carry infinite energy. Considerable care has to be exercised in reinterpreting proper normalization of these modes,
both theoretically and computationally. The modes themselves can be obtained simply by a linear variation of the
transverse or longitudinal wavevectors and do not require solution of a complex transcendental equation.

An alternative method is to limit the transverse boundaries of the problem by terminating them with a perfect
electric conductor (PEC). Because of a forced finite spatial extent, the modes of the PEC terminated structures no
longer carry infinite energy and are conveniently normalizable. A PEC termination also leads to discretization of the
transverse wavevectors that need to be determined by solving for the complex zeros of the dispersion equation. There
are two approaches under this method depending on the way E and H field continuity conditions are enforced at the
junction. In the first approach, field continuities are enforced at a discrete number of points along the junction. More
points result in better field continuity as quantified by energy conservation across the junction. Early calculations of
Stegeman et al24,25,28 are based on this approach. The second approach is the formation of equations by taking dot
product of the continuity conditions with the set of orthogonal E and H fields calculated for the right- and the left-
hand sides of the junction. Although continuity at no junction point is ensured by this approach, overall convergence
is guaranteed to improve (in a Fourier sense) with inclusion of more modes in the calculation. A detailed discussion
of this approach (called the discrete mode-matching technique) is found in the recent article by Kocabas et al.26

We adopt the approach of Kocabas et al26 and extend it to structures having more than two layers. Our motivation
for this approach will become clear in the forthcoming sections. Briefly, the discrete mode-matching approach allows
a clear demarcation of the waveguide modes into three distinct classes. Inclusion of modes from each class into the
matrix equations is essential for accurate field representation and for obtaining field and Poynting vector continuity
at the junction.
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C. Discrete mode-matching technique

Since our ultimate goal is to couple light into deep-subwavelength quantum-scale gaps, we examine the waveguide
geometry shown in Fig. 1 as our basic structure. On the left (z < 0) is a region filled with a uniform dielectric of
permittivity ǫi (for x > 0) and a metal with permittivity ǫm (for x < 0). The right side of the junction(z > 0) is filled
with the metal except for a quantum-scale gap opening between 0 6 x 6 g. The z = 0 plane is the interface between
two half-spaces and is called the junction. A surface plasmon traveling on the metal-dielectric interface (termed a
single-interface plasmon) is incident from the left toward the junction. Upon encountering the discontinuity at the
junction, it undergoes reflection and scattering, and also transfers its energy to the bound mode of the gap (called the
gap plasmon or the gap mode). We aim to calculate the field-enhancement for the gap-plasmon mode and the amount
of energy transmitted, reflected, and scattered in the coupling process. In order to perform this calculation, we need
to determine all the modes supported by the geometries on both sides of the junction and their overlap integrals.

1. Modes of the truncated single-interface waveguide

The left side of the junction supports one bound surface plasmon mode which, in absence of material loss has
exponentially decaying field profiles in metal (x < 0) and the dielectric (x > 0). The single-interface waveguide
also supports modes that have oscillating field-profiles in the dielectric, the metal or both. If the structure were not
terminated with PEC walls, some of these modes would have undamped oscillations in their field profile and as a
result, would carry infinite amount of energy. These modes are conventionally termed ‘continuous’ modes to signify a
continuous variation of their transverse wavevector. A PEC termination has the effect of discretizing the transverse
wavevector. Moving the PEC discretization boundaries further apart (i.e., increasing h) lessens the magnitude of the
discretization bringing the modes closer to those of the semi-infinite waveguide. Although the presence of material loss
perturbs this strict classification, the modal spectrum retains the three distinct branches that resemble the spectrum
for the lossless waveguides.

The electric and the magnetic field profiles for all three kinds of modes of the single-interface waveguide can be
expressed as

HS
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
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The definitions of the various symbols and their expressions in Eqs. (1)–(3) appear in Table I. Superscript ‘S’ denotes
the quantities for the single-interface waveguide. Enforcing the continuity of the tangential fields HS

y and ES
z at x = 0

leads to the following dispersion equation for the truncated single-interface waveguide:

κS
m

ǫm
tanhκS

mh = −κS
i

ǫi
tanhκS

i a (4)

Equations (1–4) characterize all possible modes supported by an isolated truncated single-interface waveguide. Note
that for h → ∞, both tanh(κmh) and tanh(κia) → 1 and we recover the familiar single-interface plasmon dispersion
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Symbol Definition Expression

λ0 Vaccum wavelength

k0 Vaccum wavevector 2π/λ0

β Propagation constant

κm Transverse wavevector in metal
p

β2 − k2
0ǫm

κi Transverse wavevector in dielectric
p

β2 − k2
0ǫi

Z0 Vacuum impedence
p

µ0/ǫ0

p Polarization factor ǫi/ǫm or ǫg/ǫm

η
κG

m
/ǫm

κG

i
/ǫi

tanhκG
mh

A cosh κG
i g + η sinh κG

i g

TABLE I. Definitions of various quantities and their expressions in terms of the material parameters and wavelength.

from Eq. (4). For a lossless metal, these modes can be classified into three categories. Real κm and κi indicate fields
decaying into the metal and the dielectric and thus represent the bound single-interface plasmon mode. Real κm and
purely imaginary κi represents fields decaying into metal and oscillatory in the dielectric. We call these modes type-1
or T1 modes. The third type of modes have both κm and κi purely imaginary and their fields are oscillatory in both
metal and the dielectric. We call these modes type-2 or T2 modes. For real metals, values of κm,i (which, for ideal
lossless metals were purely real) are now accompanied by a small imaginary part and vice versa. All modes therefore
have an oscillatory profile with a decaying envelope. Even so, knowing where the roots lie for the lossless case helps us
track their orbits and classify them for the lossy case. Inclusion of both T1 and T2 modes in system matrix equations
is crucial for accurate representation of the fields.

2. Modes of the truncated MIM waveguide

Modes of the MIM waveguide on the right side of the junction have the same classification as the single-interface
case. The field-profiles and the dispersion relation, however, are different due to presence of three layers. The electric
and the magnetic field profiles for the truncated MIM waveguide can be written as
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The superscript ‘G’ denotes that the various quantities belong to the MIM waveguide. Enforcing Ez and Hy field
continuity at x = 0 and x = g interfaces results in the following dispersion equation for the MIM waveguide:

tanhκG
i g =

−2pκG
i κG

m tanhκG
mh

(κG
i )2 + (pκG

m)2 tanh2 κG
mh

(8)

Equations (5–8) characterize the three types of modes supported by the truncated MIM waveguide.
The success of a mode-matching calculation relies crucially on accurate determination and classification of all three

complex root types of the transcendental dispersion equations (4) and (8). Appendix A is therefore devoted to
transformation and solution of these equations using the fixed-point iteration scheme. Assuming for the moment that
we have the set of these roots, we can proceed to compute the mode overlap at the junction (step 2 in the algorithm
presented in section II B).

3. Field normalization and overlap integrals

The final step in the mode-matching analysis requires equating the junction fields expressed in terms of the modes
on the input (single-interface) side to those expressed in terms of the modes of the output (MIM) side. To convert the
continuity equations into those for the undetermined scattering coefficients, we take the inner product of the fields on
one side with those on the other side. This operation involves calculation of the field normalization coefficients and the
overlap integrals. Non-hermiticity of the Helmholtz operator for metallic waveguides requires a careful redefinition of
the inner product. Some recent papers26,29 consider these issues in detail and recommend defining the inner product
of any two modes m and n as:

〈Ex,m|Hy,n〉 ≡
∫ ∞

−∞

Ex,mHy,ndx (9)

For any two modes of the single-interface waveguide, we have the orthogonalization condition:

〈ES
x,m|HS

y,n〉 = ΩS(m)δmn (10)

where ΩS is the normalization coefficient of the mth single-interface waveguide mode and δmn is the Kronecker delta
function. For MIM waveguide modes we have, analogously,

〈EG
x,m|HG

y,n〉 = ΩG(m)δmn (11)

We also require two types of overlap integrals defined as:

CGS(m, n) ≡ 〈EG
x,m|HS

y,n〉 (12)

DSG(m, n) ≡ 〈ES
x,m|HG

y,n〉. (13)

These overlap integrals define interface transfer matrices that represent the coupling from incident to gap region, and
gap to incident region, respectively.

At this point, one has a choice of evaluating the overlap integrals using either a direct numerical integration or
substituting the field profiles listed in equations (1), (2), (5), and (6) to obtain analytical expressions for CGS and
DSG. In our experience, evaluation using analytical expressions is significantly faster and more accurate than numerical
integrations. This is due to the fact that integrands for the higher-order T1 and T2 modes are highly oscillatory in
the domain of integration. This sometimes results in numerical integration routines experiencing instabilities. In
Appendix B, we provide explicit expressions for the normalization and overlap integrals for the geometry in Fig. 1.
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Equation Take inner product with

Eq. (14) EG× ES× EG× ES×

Eq. (15) ×HG ×HS ×HS ×HG

TABLE II. Choices of inner products for forming the scattering matrix of the system.

4. Matrix equations for scattering coefficients

Once the normalization and the overlap integrals are evaluated, the final step is setting up the matrix equations in
terms of the scattering coefficients. If we assign m = 1 as the single-interface plasmon mode incident from the left,
the E- and H-field continuity equations at the junction can be expressed as:

HS
y,1 +

N
∑

m=1

rmHS
y,m =

N
∑

n=1

tnHG
y,n (14)

ES
x,1 −

N
∑

m=1

rmES
x,m =

N
∑

n=1

tnEG
x,n (15)

In equations (14) and (15) rm and tn are (yet undetermined) amplitude reflection and transmission coefficients,
and N is the total number of modes in the calculation and includes the bound plasmon modes, T1, and T2 modes.
Starting from Eqs. (14) and (15), we have four choices for forming matrix equations for rm and tn. These choices arise
from the field-pairs we choose to take the inner products of Eqs. (14) and (15) with and are depicted in the columns
of Table II. We implemented all four choices and found that the first two, involving E- and H-fields from the same
side, lead to ill-conditioned matrix equations. The other two, involving fields from different sides, lead to well-formed
equations and yield nearly identical results. Premultiplying Eq. (14) with EG

x,k and integrating over x yields

〈EG
x,k|HS

y,1〉+
N
∑
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rm〈EG
x,k|HS

y,m〉

=
N
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tn〈EG
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y,n〉 (16)

Using equations (11)–(13), Eq. (16) can be recast as

N
∑

m=1

rmCGS(k, m) − tkΩG(k) = −CGS(k, 1) (17)

Postmultiplying Eq. (15) with HS
y,k followed by integration over x yields

〈ES
x,1|HS

y,k〉−
N
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m=1
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x,m|HS

y,k〉

=

N
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n=1

tn〈EG
x,n|HS

y,k〉, (18)

which transforms after simplifying using equations (10), (12), and (13) to

rkΩS(k) +

N
∑

n=1

tkCGS(n, k) = ΩS(1)δ1k (19)
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Equations (17) and (19) yield a system of 2N equation when k assumes values between 1 6 k 6 N .
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where CGS is the N×N transfer matrix with elements CGSm,n = CGS(m, n), r = [r1, r2, . . . , rN ]T, t = [t1, t2, . . . , tN ]T,
and diag(ΩS,G) is an N×N matrix having entries ΩS,G(k) (1 6 k 6 N) along its diagonal and zero elsewhere. Following
a similar procedure with the fourth option in Table II yields an equivalent equation
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Solution of the linear equations (20) or (21) directly provides the amplitude reflection and transmission coefficients.
The corresponding energy scattering coefficients for the kth mode, Rk and Tk, may be obtained from rk and tk using
the relations

Rk = |rk|2
SS(k)

SS(1)
(22)

Tk = |tk|2
SG(k)

SS(1)
(23)

where SS(k) (SG(k)) is the Poynting vector of the kth mode of the single interface (MIM) waveguide. Appendix B 3
provides explicit expressions for SS(k) and SG(k).

III. CALCULATING LIGHT TRANSMISSION INTO QUANTUM-SCALE GAPS

The previous section presented the steps in the discrete mode-matching algorithm leading up to direct matrix
equations for scattering coefficients. In this section, we illustrate the implementation of the mode-matching algorithm.
We do this in steps starting with generation of a complete orthogonal set of modes of structure on both sides of the
junction followed by setting up of the matrix equations. The final result of our calculation is transmission efficiency
of a single-interface plasmon into a 10 nm gap sandwiched between two symmetric metals.

For our illustrative calculation, we consider a symmetric gold MIM diode with a gap g = 10 nm, operating at 850
nm. The permittivity of gold at 850 nm is assumed to be ǫm = −27− i0.83.30 The dielectric insulator on both sides of
the junction is silicon dioxide (ǫi = 2.1025). We truncate the domain by placing PEC walls at x = −2h = −1700 nm
and x = a = 2h + g = 1710 nm.

A. Modes of the single-interface waveguide (z < 0)

Equation (4) governs the various modes of the single-interface waveguide. Any complex root-finding routine should,
in principle, be able to locate all the complex roots of Eq. (4). In practice, however, root-finding algorithms are
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FIG. 2. Magnetic field (Hy) schematics of the three mode types supported by the single-interface and MIM waveguides for an
ideal lossless metal. (a) and (d) represent the bound surface/gap plasmon modes with exponentially decaying field profile in
the metal and the dielectric. Plots (b) and (e) are the T1 modes with field profiles that are oscillatory in the dielectric and
exponential in the metal. Finally (c) and (f) represent the T2 with oscillatory field profiles in both metal and the dielectric.

sensitive to the initial guess and often return only those roots that are closest to the initial guess. The complex
roots of the truncated metallic waveguides are spaced closely together and direct root-searching seldom returns all
the required roots. The situation is remedied by solving the dispersion equations with the fixed-point iteration
(FPI) method by transforming them into forms that directly yield the roots belonging to a specific branch.31 These
transformations for a single-interface waveguide are as shown in Appendix A1.

1. Bound mode: The single-interface plasmon

FPI solution of th Eq. (4) for the bound single-interface plasmon mode yields its propagation constant as βS/k0 =
1.5099244 − i0.0019570. The imaginary part of βS represents the propagation loss that arises due to the imaginary
part of the metal permittivity. We note that this mode is an approximation to the true plasmon mode traveling
at the interface of semi-infinite metal and dielectric half-spaces. The propagation constant of the true mode is
given by the well-known formula βS

∞/k0 =
√

ǫmǫi/(ǫm + ǫi). For the material parameters in our example we obtain
βS
∞/k0 = 1.5099188− i0.0019578. PEC truncation at ±2λ thus introduces an error of about 0.0414%(3.6790×10−4%)

in the imaginary (real) parts of the propagation constants. Pushing the truncation boundary to ±4λ reduces the error
to 2.290 × 10−6% (8.920 × 10−9%). Convergence of the imaginary part of βsp is slower with increasing truncation
boundary than that of the real part. For all the computations presented in this paper, we have kept the truncation
boundary at ±2λ.

2. T1 and T2 modes

For lossless materials, T1 modes are characterized by a real κm and an imaginary κi. The T1 modes are exponentially
decaying into the metal but oscillatory in the dielectric media. Eq. (4) can be transformed to reflect this fact and
solved using fixed-point iteration using Eq. (A3). For a truncated single-interface waveguide, there are denumerably
infinite number of T1 modes. Figure 3(a) shows the real and the imaginary parts of the first 200 T1 modes. T2 modes
of a lossless single-interfce waveguide are characterized by imaginary values of both κm and κi indicating purely
oscillatory fields in the metal and the dielectric. Once again, a transformation of Eq. (4) reflecting this fact allows us
to obtain the T2 roots using Eq. (A5). The real and imaginary parts of the first 309 T2 roots are plotted in Fig. 3(b).

Whereas the continuous roots of a single-interface waveguide having real metals lie close to the imaginary axis as
nominally expected, Fig. 3 reveals the intricate structure of the spectrum. This structure originates from the interplay
of metal loss and truncation. For a fixed metal loss, extending the truncation boundary leads to lesser peak deviation
from the imaginary axis, but increases the number of oscillations. On the other hand, for a fixed truncation boundary,
increasing metal loss leads to damping of the oscillations (in both T1 and T2 modes). One possible explanation of
the oscillatory behavior in Fig. 3 is found in reference26 where it is explained in terms of coupled mode-splitting of a
1-D metallic photonic crystal waveguide.
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FIG. 3. Real and imaginary parts of the T1 and T2 continuous roots of the truncated single-interface waveguide [(a) and (b)]
and MIM waveguide [(c) and (d)]. In both waveguides, the metal is gold and the dielectric is silicon dioxide.

B. Modes of the MIM waveguide (z > 0)

Determining the MIM waveguide modes proceeds in a way similar as those of the single-interface waveguide. The
governing dispersion equation (Eq. (8)) has a richer set of modes due the three-layered structure. The MIM waveguide,
has a reflection symmetry about the line x = g/2 imparting an odd/even symmetry to its modes. Transforming Eq. (8)
to reflect this symmetry significantly eases obtaining its roots to a great degree of accuracy. These transformation
are specified in Appendix section A2.

1. Bound mode: The gap plasmon

Using the transformation of Eq. (8) in the form show in Eq. (A7), we solve for the gap plasmon mode of the
truncated lossy MIM waveguide to obtain βG/k0 = 3.9994922− i0.0440002. The gap plasmon mode of the truncated
MIM waveguide is an approximation to the bound mode of the gap between two semi-infinite metals (having a
propagation constant βG

∞). Within the 16 digit numerical precision of our computation, βG was identically equal
to βG

∞. Unlike the single-interface plasmon mode, the gap plasmon mode of the truncated MIM waveguide has a
vanishingly small value at both PEC boundary. As a result, its propagation constant is practically unchanged from
the that of the true gap plasmon mode.

2. T1 and T2 modes

Transformations of Eq. (8) appropriate for obtaining T1 and T2 roots of the MIM waveguide are shown in Appendix
sections A 2b and A2 c. Figure 3(c) shows first 22 T1 continuous roots of the truncated IM structure. The imaginary
part of these roots reaches very high values (κm ≃ 800k0) even for the first few roots. As a result, these modes
corresponding to these roots have highly oscillatory field profiles in the metals. To obtain accurate convergence of
scattering coefficients in a practical mode-matching calculation, one needs to include roots only up to κm ≃ 25k0.
Consequently, T1 continuous modes of quantum-scale gaps beyond the first few do not couple to any modes of
the single-interface plasmon. Only first 3–5 need to be included to obtain accurate field and scattering coefficient
convergence.

Figure 3(d) plots the first 459 T2 continuous roots of the truncated MIM waveguide. The odd and the even roots
have distinct orbits and are interlaced with each other. T2 continuous modes of the MIM waveguide couple efficiently
to both T1 and T2 modes of the single-interface waveguide and consequently play an important role in the scattering
of the single-interface plasmon into the gap mode. For accurate implementation of the mode matching algorithm, it
is critical to not miss any T2 modes of the MIM waveguide in the range of 0–25k0.
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Parameter Value

λ0 (Vaccum wavelength) 850 nm

ǫm (Metal permittivity) −27 − i0.83

ǫi (Insulator permittivity) 2.1025

g (Gap width) 10 nm

h (PEC truncation boundary) 2λ0

T1 modes of single-interface waveguide 200

T2 modes of single-interface waveguide 309

T2 modes of MIM waveguide 200

T2 modes of MIM waveguide 469

TABLE III. List of parameters used for the mode matching algorithm
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FIG. 4. (a) Amplitude reflection and (b) amplitude transmission coefficients for all modes obtained from solutions for matrix
equations (20) and (21) using the parameters in Table III.

C. Orthogonality and completeness of the modes

Mutual orthogonality and completeness of the single-interface and MIM waveguide modes was directly assumed in
constructing the matrix equations (17) and (19). A validation of this assumption is critical for ensuring the accuracy
of the resulting equations (20) and (21). A rigorous proof of the orthogonality and completeness of the obtained set
of modes belongs to the realm of generalized Sturm-Liouville theory and is outside the scope of our paper. Moreover,
such a general proof is of limited use in ensuring the completeness of modes obtained numerically. We therefore
perform a numerical test of modal orthogonality and completeness as described in Appendix C. We emphasize that
obtaining the numerical verification of mode orthogonality and completeness is a crucial step before proceeding to
enforcing field continuity at the junction and calculation of scattering coefficients.

D. Solution of system matrix equations

The final step in the mode-matching algorithm is enforcement of tangential field continuity (Hy and Ex) at the
junction (z = 0 plane). This leads to the matrix equation system (20) and (21), either of which can be solved to
directly obtain the scattering coefficients. We set up the system using the parameters listed in Table III.

Figure 4 (a) shows the scattering amplitude for the modes on the single-interface waveguide. The coefficient of any
given mode is indicative of how strongly it couples to the incident single-interface plasmon. The m = 1 is the single
interface plasmon mode and it has an amplitude reflection coefficient of |r1| = 0.849191.

Transmission coefficients for the modes of the MIM waveguide are shown in Fig. 4(b). The gap plasmon mode has
a transmission coefficient of |t1| = 1.32457 indicating a field enhancement of ≃ 32.5% upon its transmission into the
gap. The transmission coefficients for m > 2 represents the scattering amplitudes into these higher order modes.

IV. ERROR ANALYSIS OF MODE-MATCHING TECHNIQUE

In this section, we aim to establish the conceptual and numerical validity of the mode-matching calculation presented
in the previous section. In order to extract numerical conclusions from the scattering coefficients, it is essential that the
convergence and estimates of the numerical accuracy be obtained. We perform this error analysis by applying several
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FIG. 5. (a) Real and (b) imaginary parts of the junction magnetic field reconstructed from the scattering coefficients. (c) and
(d) show the real and imaginary parts of the reconstructed electric fields. The dashed (black) and continuous (orange) lines
are left- and right-handed reconstructions, respectively, from the single-interface waveguide and MIM waveguide modes. Note
the different x-axis scale on the electric field plots (c) and (d). Only the electric-field profile between is ±300 nm is shown to
highlight the differences in the reconstructed fields.

internal consistency checks to the scattering amplitudes, by verifying the error in continuous/conserved quantities and
by comparing mode-matching-obtained field profiles against independent finite-difference time-domain calculations.

1. Verifying upper bound on r1

The coefficient r1 can be simply read from Fig. 4(a) and verified to be less than unity. There is no such simple
upper bound on the other coefficients. For example, t1 can have values greater than unity without violating power
conservation. This is because t1 represents the peak field amplitude of the gap plasmon mode. On the other hand,
the total power in the mode is related to the integrated area under the field curves. The gap plasmon field can have
a higher peak value and still have less power than the incident field.

2. Verifying field continuity

Although electric and magnetic field continuity was enforced in construction of system matrix equations, the
matching of the field values is satisfied only in a Fourier sense. A point-by-point field matching can only be achieved
by including the infinitely many modes supported by the system. It is therefore a useful check to visualize the quality
of field-continuity at the junction. We perform this check by reconstructing the junction fields in two different ways
from Eq. (14). Using the left hand side of Eq. (14), we can write the left-hand reconstruction of the junction magnetic
fields as:

HL
y (x, z = 0) =

N
∑

m=0

rmHS
y,m (24)

Similarly, using the right-hand reconstruction can be expressed as

HR
y (x, z = 0) =

N
∑

m=0

tmHG
y,m (25)

The left- and right-hand reconstructed fields are plotted in Fig. 5. The real and imaginary parts of the reconstructed
magnetic fields dieplayed in Fig. 5(a) and (b) show an excellent match along the entire junction. The electric fields
in (c) and (d) match > 150 nm away from the junction but show a poor match in and around the gap. This is a
consequence of the large discontinuity in the electric field induced by the significant permittivity mismatch (-27.0
versus 2.1). The quality of the electric field matching improves with increasing number of modes. The close matching
of electric-fields, however, is unnecessary for obtaining accurate scattering coefficients as shown in subsection IV 4.
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FIG. 6. Convergence of (a) amplitude reflection coefficient |r1| and (b) amplitude transmission coefficient |t1| with increasing
number of modes in a mode-matching calculation. The x-axis denotes the number of modes included in the calculation from
each part of the spectrum for the respective side of the junction. For example x = 20 signifies 1 bound mode (single interface
plasmon for z < 0 and MIM gap plasmon for z > 0), 20 T1 modes and 20 T2 modes. The solid red and the dashed green lines
represent |r1| and |t1| calculated using the equivalent systems of equations Eq. (20) and Eq. (21) respectively.

3. Verifying power conservation

Truncating the modal expansion at n = N introduces negligible but finite error in the field continuity at the
interface. One of the ways to quantify the error is to compute the scattered power in all modes and check for power
conservation. For the formalism developed in section II C 4, the power conservation condition can be written as

N
∑

k=1

Rk +
N
∑

k=1

Tk = 1 (26)

Computing the above sum using Eq. (22) and (23), and rk and tk obtained through our solution (Fig. 4), we evaluate
the above sum to be 0.9992 which represents about 0.082% error in energy conservation. In Eq. (26), R1 = 72.3102%
represents reflection into the single-interface plasmon mode and T1 = 23.5551% is energy transmission into the MIM
mode. Together, R1 and T1 account for 95.8656% of the energy. The rest 4.1344% is scattering into single interface
and MIM modes k > 2.

4. Convergence with number of modes

The final consistency check considered for the present mode-matching implementation is convergence of the the
scattering coefficients with the number of modes. Whereas convergence, by itself, does not indicate accuracy (i.e.,
coefficients may converge to wrong value), large variations in the coefficients points to possible errors in finding and
including proper roots or the implementation of mode-matching algorithm. Figure 6 shows the how the surface
plasmon amplitude reflection and transmission convergence with inclusion of increasing number of modes from the
single-interface and MIM sides of the junction. Inclusion of about 100 modes results in the scatering coefficients
converging to within < 0.1% of their final values. Furthermore, the r and the t coefficients calculated using the
equivalent matrix equations (20) and (21) approach to the same value with increasing number of modes.

5. Comparison with FDTD calculations

In addition to the internal consistency checks considered in subsections IV 1–IV 4, we compared the results of
the mode-matching algorithm against the full-field finite-difference time-domain simulations. As shown in Fig. 7,
a surface plasmon is incident from the left side and undergoes reflection and transmission upon encountering the
junction. The simulation boundary is terminated with perfectly matched layers (PMLs) that absorbs the outgoing
MIM gap plasmon and simulates an ideal semi-infinite MIM waveguide in the z > 0 region. The resulting electric field
profile is shown in Fig. 7(a). For comparison with mode-matching method, we calculate the electric field along the
AA′ cutline shown by the dotted line.The electric field plots calculated with FDTD and the mode-matching method
are overlaid in Fig. 7(b). We note that no normalization has been applied to the calculated fields—they are plotted
as is. It is seen that the two fields match closely within the gap and are practically indistinguishable away from it.
The slight difference between in the fields within the gap is caused by FDTD mesh discretization. More importantly,
the field enhancement in the gap (i.e., the amplitude transmission coefficient) calculated using the two methods is in
excellent agreement. A favorable comparison with the FDTD calculations puts the mode-matching algorithm on a
firmer footing as a tool for analysis and optimization of light-coupling into quantum-scale gaps.
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FIG. 7. (a) Electric field profile in the MIM waveguide calculated using finite difference time domain (FDTD) method. The
electric field taken along the cutline AA′ is used for comparison with mode matching algorithm. (b) Comparison of the electric
fields calculated using the mode matching method (black solid line) and FDTD method (orange, filled circles). In (b) the
electric field profiles are plotted ‘as is’ (i.e., they are unnormalized).

V. VARIATION OF THE COUPLING EFFICIENCY WITH CHANNEL WIDTH

Previous sections detailed various steps in the implementation of the mode-matching algorithm and provided several
verifications of the accuracy of the obtained solutions. Having demonstrated the possibility of obtaining > 20%
coupling into a 10 nm gap, one naturally inquires about the behavior of the coupling efficiency for smaller and
larger gap sizes. It is of particular interest to know if decreasing gap dimensions result in progressively larger field
enhancements, and if so what are the limits of such field-enhancements. This information would be crucial to designing
plasmonic devices that aim to harness the quantum-scale light-matter interactions. The present section is devoted
to exploring the above questions by applying the mode-matching theory to examine the behavior of the coupling
efficiency as a function of the gap size. The entire mode-matching calculation, including root-searching of the single-
interface and MIM waveguide dispersion equations, has to be carried out for every gap size considered. In addition,
the accuracy of the calculations has to be verified using the consistency checks detailed in section IV.

The dimension of the gap in the MIM waveguide decides the spatial extent of the waveguide mode. This spatial
extent, in turn, impacts the the overlap between the incident and the transmitted modes and determines the coupling
efficiency. To analyze the effect of gap size on the coupling, we work with the same parameters listed in Table III
but now vary the gap smoothly between 1 nm and 50 nm. These gap sizes cover practically realizable quantum-
scale dimensions (using, for example, thin-film deposition techniques) and link up to the familiar regime of EOT
(g > 50 nm). Figure 8 shows the influence of gap variation on the transmission and reflection of the surface plasmon
mode.

As shown in Fig. 8(a) and (c) the amplitude and energy reflection increase monotonically toward perfect reflection
with decreasing gap-size. This behavior is expected since the single-interface plasmon encounters an increasingly
complete metallic wall with decreasing gap size. What is surprising, however, is that > 10% of the incident energy
is coupled even into a gap as small as 3.5 nm as evident in Fig. 8(d). Geometrically, the ratio of the cross-sections

of the two waveguides forming the junction is roughly
[

R
(

κG
i

)]

g ≃ 0.87% where
[

R
(

κG
i

)]−1
is the decay length of

the single-interface plasmon mode in the air and is a measure of its spatial extent. The energy coupling efficiency
is therefore nearly 12 times the ratio of geometrical cross-sections. An alternative way to gauge the efficiency is to
compare the fraction of the coupled energy to the ratio of spatial extents of the incoming and the transmitted modes.
The spatial extents, LS and LG, of the single-interface and the gap plasmon modes are proportional to the sum of

the reciprocals of their transverse wavevectors in the metal and the dielectric: LS =
[

R
(

κS
i

)]−1
+
[

R
(

κS
m

)]−1
and
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FIG. 8. Influence of gap-size variation on transmission/reflection efficiency. The transmission is into the symmetric gap plasmon
mode only. The various parameters used for this calculation are listed in Table III with the exception of the gap size g which
is varied smoothly between 1 nm 6 g 6 50 nm. The dashed and dotted line represent the transmission/reflection coefficients
calculated by the single-mode and plane-wave Fresnel approximations, respectively.

LG =
[

R
(

κG
i

)]−1
+
[

R
(

κG
m

)]−1
. For g = 3.5 nm as considered above, LG/LS ≃ 8.7% and is comparable to the fraction

of the energy coupling. The ratio of the modal extents is thus a better predictor of the coupling efficiency than the
geometrical cross-sections.

The amplitude transmission coefficient represents the field-enhancement factor and shows a non-monotonic variation
with decreasing gap size as shown in Figure 8(c). Decreasing the gap-size from 50 nm results in progressively increasing
field-enhancement till about a g = 10 nm. In the same range of gap sizes, the total energy transmission shows a
monotonic decrease as seen in Fig. 8(d). Whereas the peak value of the field is indicative of the field enhancement,
the power carried by the mode is proportional to its peak value and its transverse extent. Thus, the anti-correlation
in figures 8(c) and 8(d) for 10 nm 6 g 6 50 nm implies that the transverse mode extent shrinks faster with decreasing
gap size than the increase of field enhancement.

For g < 10 nm, the energy transmission continues to decrease monotonically, but the amplitude transmission reverses
its increasing trend and now shows a monotonic decrease with decreasing gap size. For the materials and geometric
parameters of this problem, the amplitude transmission (field-enhancement) is maximized at g ≃ 8 nm with a value
close to 33%. The energy transmission corresponding to the maximum field enhancement is ≃ 20%. The existence
of such a maximum can be explained by examining the behavior of the effective index of the gap plasmon mode as a
function of the gap size shown in Fig. 9(a). The attenuation of the mode (proportional to I(βG)) increases sharply
for g < 10 nm causing the field amplitude inside the gap to drop rapidly.

For gap sizes > 50 nm, the amplitude and energy transmissions asymptotically approach 1/
√

2 and 1/2, respectively.
The reason for this behavior can be understood by noting that Fig. 8 (d) shows the energy transmission into the even

gap mode. As the gap-size increases, the effective index of this mode approaches that of the single-interface plasmon
leading us to expect perfect (100%) transmission. Yet, it is crucial to remember that the symmetry of MIM waveguide
imposes a symmetry on the even mode whereas a single-interface plasmon mode lacks a definite symmetry. Thus, even
for an arbitrarily large gap size, the field profiles of the single-interface plasmon and the symmetric gap plasmon do
not overlap beyond the plane of symmetry of the MIM waveguide. As a result, the symmetric mode by itself cannot
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a

b

FIG. 9. (a) The variation of the real (blue, solid line) and the imaginary (red, dashed line) of the MIM waveguide propagation
constant with decreasing gap size. (b) Full-field calculation of coupling phenomenon into a 1 nm gap verifying the cutoff-like
phenomenon predicted by modematching calculations Fig. 8(c).

couple with 100% efficiency regardless of the gap size. The antisymmetric (odd) gap plasmon mode is essential in
order to reconstruct the non-symmetric single-interface plasmon and draw out its entire energy. In the limit of large
gap size the nearly degenerate even and odd modes carry equal energy. This required superposition is depicted in the
inset to Fig. 8(d). The amplitude transmission of the even mode therefore asymptotically approaches 1/

√
2 following

the limiting value of 50% energy coupling.

The field amplitude inside the gap directly impacts the strength of several quantum optical phenomenon including
electron tunneling, absorption, and emission. An existence of a gap size that maximizes the transmitted field amplitude
could prove crucial for design of nano-optical devices intending to rely on extreme light concentration for their
operation.

VI. FRESNEL FORMULAS FOR LIGHT CHANNELING INTO QUANTUM-SCALE GAPS

Having obtained the coupling and the reflection coefficients via a rigorous mode-matching analysis, it is of interest to
see the effectiveness of the well-known Fresnel reflection formulas in reproducing these observations. Such formulas are
often useful tools for rapid first-order designs and a quantification of their range of validity is potentially valuable. In
this section, we provide two Fresnel-like formulas based respectively on a plane wave and single-mode approximations.
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A. Plane-wave approximation

For normal incidence, the reflection and transmission coefficients are given by the well-known formulas:

rSP =
βG − βS

βG + βS
, (27)

tGP =
2
√

βGβS

βG + βS
, (28)

RSP = |rSP|2, (29)

TGP = |tSP|2
SG(1)

SS(1)
. (30)

In Eqs. (27)–(30), rSP (tGP) is the surface (gap) plasmon amplitude reflection (transmission) coefficient. The subscript
‘P’ signifies the use of the normal-incidence, plane-wave Fresnel approximation. In this approximation the energy
transmission is usually obtained as TGP = 1 − RGP. Use of this formula, however, resulted in over a 100% deviation
from the exact mode-matching result. We therefore calculated the amplitude transmission coefficient from the plane-
wave formula, but obtained energy transmission by weighing the amplitude transmission by the ratio of the Poynting
vectors of the single-interface and the gap plasmon modes.

The approximate amplitude and energy transmission/reflection coefficients calculated using plane-wave Fresnel
formulas are plotted by dotted line in Fig. 8. It is seen that the plane-wave approximation significantly underestimates
both the energy and amplitude reflection for all gap sizes considered. The amplitude transmission is significantly
underestimated for smaller gap sizes, but converges toward the exact result for increasing gap sizes.

B. Single-mode approximation

From the discussion in section IV 3, we note that for a 10 nm gap, modes other than the fundamental bound
modes on both sides carry about 4% energy that we term as scattering. Within this energy error, we may construct
Fresnel formulas for transmission/reflection coefficients retaining only the fundamental modes in the waveguides. Field
continuity equation in terms of fundamental modes may be obtained from Eq. (20) and yield the single-mode Fresnel
formulas:

rSF =
σSσG − σ2

GS

σSσG + σ2
GS

, (31)

tGF =
2σSσGS

σSσG + σ2
GS

, (32)

RSF = |rSF|2, (33)

TGF = |tSF|2
SG(1)

SS(1)
, (34)

where, rSF (tGF) is the surface (gap) plasmon amplitude reflection (transmission) coefficient obtained using the single-
mode Fresnel approximation. For notational convenience, we have defined σS(G) ≡ ΩS(G)(1) and σGS ≡ CGS(1, 1).

The transmission/reflection coefficients calculated using the single-mode Fresnel formulas Eqs. (31)–(34) are plotted
in Fig. 8 using dashed lines. The single-mode approximation, still underestimates the exact mode-matching results
for amplitude and energy reflection but improves the estimate in comparison to the plane-wave approximation. The
agreement in the amplitude transmission is good for sub-5-nm gaps but deteriorates thereafter. Unlike the plane-
wave Fresnel formulas, the single-mode Fresnel equations, overestimate the transmission coefficients. For the energy
transmission, the agreement of the full mode-matching results is better with Eq. (30) than Eq. (34)

Both the plane-wave and the single-mode Fresnel approximations reproduce the monotonic decrease in amplitude
transmission for g 6 10 nm. This leads us to believe that the cut-off-like phenomenon is roughly related to the
maximum of the transmission given by Eq. (28) as a function of gap size. Overall, the single-mode Fresnel equations
provide a good first-order approximation to the reflection and transmission coefficients for quantum-scale gaps. The
quality of the approximation improves for smaller gap sizes due to the higher order modes carrying a negligible amount
of energy.
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Parameter Definition/Relation Mode type

K k0

√
ǫi − ǫm All

γi −iκi T1 and T2

γm −iκm T2

κm

p

K2 + κ2
i Bound plasmon

κm

p

K2 − γ2
i T1

γi

p

K2 + γ2
m T2

TABLE IV. Equations and definitions relating the transverse wavevectors in the metal and the dielectric for the mode types
indicated in the rightmost column.

VII. CONCLUSIONS

We have numerically demonstrated high-efficiency coupling into sub-10 nm quantum-scale waveguides using com-
putationally efficient framework of plasmonic mode-matching theory. Examining a single-interface to MIM waveguide
junction, we predict coupling efficiencies over 10% into < 5 nm gaps and reaching up to 24% for a 10 nm gap size,
rivaling typical fiber-to-semiconductor waveguide coupling efficiencies.

These high coupling efficiencies are accompanied by significant enhancements in the electromagnetic fields trans-
mitted into the gaps. Our analysis also demonstrates existence of an optimum gap size that maximizes the field
enhancement. The optimum gap size depends on the material and geometrical parameters of the waveguide and, for
the numerical values considered in our paper is 8 nm.

Our demonstration of high field enhancements and energy coupling into sub-10 nm waveguides make it possible
to envision nanophotonic devices using light matter interaction at scales beyond those achievable in conventional
dielectric and plasmonic devices. Applications of such quantum-scale waveguide devices may include direct rectification
of optical radiation, engineered artificial optical non-linearities, and novel metamaterial phenomenon unobserved in
natural materials.
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Appendix A: Transformation and solution of dispersion equations

In this section we specify the transformations of the dispersion equations (4) and (8) and provide expressions that
enable us to solve them using the fixed-point iteration (FPI) method.31 In the FPI technique, we rewrite a given
algebraic equation F (z) = 0 in an alternative form z = f(z) where f(z) is obtained by an algebraic manipulation of
F (z). Starting with an initial value z0, successive values of z are obtained according to zn+1 = f(zn). If |f ′(z)| < 1
these values form a convergent sequence whose limit is the solution of the original equation. The transformations
outlined below recast the dispersion equations into forms appropriate for an FPI implementation. Different forms are
seen to be optimal for locating the roots belonging to a specific branch.

The twelve FPI forms (Eqs. (A1)–(A12)) given in the following are each mathematically equivalent to the corre-
sponding parent dispersion equation (4) or (8) and are specified in terms of the transverse wavevectors κi or κm.
Equations relating κi and κm for various root types are defined in Table IV. In our experience the FPI technique is
relatively insensitive to initial guess and κi,0 = k0 can be used in most practical cases. The iteration is understood
to be performed in terms of the variable appearing on the left hand sides of Equations (A1)–(A12). The quantities
appearing on the right hand side are to be treated as functions of this left-hand-side variable and are to be evaluated
using the relations defined in Table IV.
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1. Single-interface dispersion equation

a. Bound plasmon mode

To obtain the propagation constant of the bound plasmon mode on the single-interface side (z < 0), we rewrite
Eq. (4) as

κi,n+1 = −pκm,n tanh(κm,nh) coth(κi,na) (A1)

Equation (A1) is cast to be solved using FPI.

b. T1 modes

For T1 modes on the single-interface side, κi is imaginary (for lossless metals) and κm is real. We rewrite Eq. (4)
accounting for this fact by substituting κi → iγi:

γi

ǫi
tan(γia) =

κm

ǫm
tanh(κmh), (A2)

which can be transformed into iterative form as

γi,n+1 =
1

a

{

Mπ + tan−1

[

pκm,n

γi,n
tanh (κm,nh)

]}

(A3)

Insensitivity of Eq. (A3) to initial guess implies that successive complex T1 roots for single-interface side may be
simply found by using the initial guess γi,0 = k0 and inputting M = 1, 2, 3, . . ..

c. T2 modes

For T2 modes both κi and κm are imaginary (for lossless metals) and are replaced as (κi, κm) → (iγi, iγm). With
this substitution, the dispersion equation (4) assumes the form

γi

ǫi
tan(γia) = −γm

ǫm
tan(γmh). (A4)

To determine the T2 roots by FPI, we use the half-angle identity tan(z/2) = − cot z ±
√

1 + cot2 z to express
tan(γmh/2) in terms of the other quantities in Eq. (A4). We then invert the tangent function and obtain even and
odd T2 roots by the following FPI formula:

γe,o
m,n+1 =

2

h

[

Mπ + tan−1
(

Un ±
√

1 + U2
n

)]

(A5)

where Un = (pγe,o
m,n/γe,o

i,n ) cot(γe,o
i,n a) with superscripts ‘e’ and ‘o’ referring, respectively, to even (+) and odd (−) T2

modes. The mode index starts from M = 0 for even modes and M = 1 for odd modes.

2. MIM dispersion equation

a. Bound plasmon mode

The dispersion Eq. (8) for a truncated even MIM waveguide separates naturally into even and odd modes as follows

tanh(κig/2) =











−pκm
κi

tanh(κmh) Even modes

− κi
pκm

coth(κmh) Odd modes

(A6)

leading to FPI forms

κi,n+1 =

{

−pκm,n tanh(κm,nh) coth
κi,ng

2 Even modes

−pκm,n tanh(κm,nh) tanh
κi,ng

2 Odd modes
(A7)

For the gap thicknesses considered in this paper, the MIM waveguide supports only the even mode.
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b. T1 modes

For T1 modes of the MIM waveguide, we account for the imaginary nature of κi by substituting κi → iγi. We start
from Eq. (A6) and craft the following FPI forms for even and odd T1 modes by inverting the tangent function on the
left-hand side. We have

γi,n+1 =
2

g

{

Mπ + tan−1

[

pκm,n

γi,n
tanh(κm,nh)

]}

(A8)

for the even T1 modes and

γi,n+1 =
2

g

{

Mπ − tan−1

[

γi,n

pκm,n

coth(κm,nh)

]}

(A9)

for the odd T1 modes of the MIM waveguide. As with the T1 modes of the single-interface plasmon waveguide, the
successive even and odd T1 modes are calculated by iterating according to Eqs. (A8) and (A9) . The mode index M
assumes values M = 0, 1, 2 . . . for odd modes and M = 1, 2, 3 . . . for even modes.

c. T2 modes

Substituting (κi, κm) → (iγi, iγm) to reflect the dominantly imaginary nature of κi and κm for T2 modes leads to
the transformation of Eq. (A6) as

tan(γig/2) =











−pγm
γi

tan(γmh) Even modes

γi
pγm

cot(γmh) Odd modes

(A10)

The T2 roots of the MIM waveguide are found by inverting the (co)tangent functions on the right-hand side resulting
in the FPI forms

γm,n+1 =
1

h

{

Mπ − tan−1

[

γi,n

pγm,n

tan
γi,ng

2

]}

(A11)

for the even T2 modes and

γm,n+1 =
1

h

{

Mπ + tan−1

[

γi,n

pγm,n

cot
γi,ng

2

]}

(A12)

for the odd modes. The mode index M assumes integer values starting from M = 0 and M = 1 for even and odd
modes respectively.

Appendix B: Expressions for normalization constants, overlap integrals and Poynting vectors

As mentioned at the end of section II C3, numerical integration routines experience difficulties in calculating the
normalization and overlap integrals for higher-order modes because of their rapidly oscillating field variations making
it necessary to obtain closed-form expressions from analytical evaluation of integrals. In the following, we provide
closed-form expressions for field normalization constants the single-interface and gap-plasmon sides and the overlap
integrals between the two pairs of fields on both sides. We also provide expressions for the power carried by modes
on each side (i.e., their Poynting vector) to aid in verifying the power conservation. The normalization constants and
overlap integrals are used in section II C4 to form the matrix equations for the scattering coefficients and Poynting
vector integrals are used in Eqs. (22) and (23) to verify power conservation.

1. Normalization Coefficients

The normalization coefficients for the single-interface and MIM fields follow from the orthogonality conditions and
are defined by Eqs. (9)–(11). The explicit expressions for ΩS(n) and ΩG(n) are obtained by straightforward integration
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of elementary functions and we provide below only the final expressions. In the expressions below, R and I denote
the real and the imaginary parts, respectively.

For the single-interface plasmon we have,

ΩS(n) = 〈ES
x,n|HS

y,n〉 ≡ V1 + V2 (B1)

where

V1 =
βS

nZ0

2ǫmk0

1

cosh2(κS
m,nh)

(

h +
sinh(2κS

m,nh)

2κS
m,n

)

V2 =
βS

nZ0

2ǫik0

1

cosh2(κS
i,na)

(

a +
sinh(2κS

i,na)

2κS
i,n

)

Similarly, for the gap plasmon the normalization integral is

ΩG(n) = 〈EG
x,n|HG

y,n〉 ≡ W1 + W2 + W3, (B2)

where

W1 =
βG

n Z0

2ǫmk0

1

cosh2(κG
m,nh)

(

h +
sinh(2κG

m,nh)

2κG
m,n

)

W2 =
βG

n Z0

2ǫgk0

{(

sinh(2κG
i,ng)

2κG
i,n

+ g

)

+η2
n

(

sinh(2κG
i,ng)

2κG
i,n

− g

)

+ 2ηn

(

cosh(2κG
i,ng) − 1

2κG
i,n

)}

W3 =
βG

n Z0

2ǫmk0

A2
n

cosh2(κG
m,nh)

(

h +
sinh(2κG

m,nh)

2κG
m,n

)

The quantities ηn and An are obtained from η and A defined in Table I by replacing κm → κG
m,n and κi → κG

i,n.

2. Overlap Integrals

The overlap integrals between the two field pairs are defined by Eqs. (9), (12), and (13). For the first integral we
have

CGS(m, n) = 〈EG
x,m|HS

y,n〉 ≡ U1 + U2 + U3, (B3)

where

U1 =
βG

mZ0

2ǫmk0

1

cosh(κG
m,mh) cosh(κS

m,nh)

×
[

sinh[(κG
m,m + κS

m,n)h]

κG
m,m + κS

m,n

+
sinh[(κG

m,m − κS
m,n)h]

κG
m,m − κS

m,n

]
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U2 =
βG

mZ0

2ǫgk0

1

cosh(κS
i,na)

×
[

sinh[(κG
i,m + κS

i,n)g − κS
i,na] + sinh(κS

i,na)

κG
i,m + κS

i,n

+
sinh[(κG

i,m − κS
i,n)g + κS

i,na] − sinh(κS
i,na)

κG
i,m − κS

i,n

+ ηm

cosh[(κG
i,m + κS

i,n)g − κS
i,na] − cosh(κS

i,na)

κG
i,m + κS

i,n

+ ηm

cosh[(κG
i,m − κS

i,n)g + κS
i,na] − cosh(κS

i,na)

κG
i,m − κS

i,n

]

U3 =
βG

mZ0

2ǫmk0

Am

cosh(κG
m,mh) cosh(κS

i,na)

×
[

sinh[(κG
m,m + κS

i,n)h]

κG
m,m + κS

i,n

+
sinh[(κG

m,m − κS
i,n)h]

κG
m,m − κS

i,n

]

For the second overlap integral we have,

DSG(m, n) = 〈ES
x,m|HG

y,n〉 ≡ T1 + T2 + T3, (B4)

where

T1 =
βS

mZ0

2ǫmk0

1

cosh(κS
m,mh) cosh(κG

m,nh)

×
[

sinh[(κS
m,m + κG

m,n)h]

κS
m,m + κG

m,n

+
sinh[(κS

m,m − κG
m,n)h]

κS
m,m − κG

m,n

]

T2 =
βS

mZ0

2ǫik0

1

cosh(κS
i,na)

×
[

sinh[(κS
i,m + κG

i,n)g − κS
i,ma] + sinh(κS

i,ma)

κS
i,m + κG

i,n

+
sinh[(κS

i,m − κG
i,n)g − κS

i,ma] + sinh(κS
i,ma)

κS
i,m − κG

i,n

+ ηn

cosh[(κS
i,m + κG

i,n)g − κS
i,ma] − cosh(κS

i,ma)

κS
i,m + κG

i,n

− ηn

cosh[(κS
i,m − κG

i,n)g − κS
i,ma] − cosh(κS

i,ma)

κS
i,m − κG

i,n

]

T3 =
βS

mZ0

2ǫik0

An

cosh(κS
i,ma) cosh(κG

m,nh)

×
[

sinh[(κS
i,m + κG

m,n)h]

κS
i,m + κG

m,n

+
sinh[(κS

i,m − κG
m,n)h]

κS
i,m − κG

m,n

]
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3. Poynting Vectors

For the PEC truncated domain considered in this paper, the Poynting vector for the nth mode can be defined in
terms of the field quantities as

SS,G(n) =
1

2
R

[

∫ h+g

−h

ES,G
x,n

(

HS,G
y,n

)∗
dx

]

(B5)

where R denotes the real part, (·)∗ indicates complex conjugation, and the definition holds for either the single-interface
(S) or the gap (G) modes. For the single-interface modes the Poynting vector is

SS(n) =
Z0

2k0

∣

∣

∣

∣

∣

1

cosh2(κS
m,nh)

∣

∣

∣

∣

∣

×
(

sinh(2κS
mR,nh)

2κS
mR,n

+
sin(2κS

mI,nh)

2κS
mI,n

)

R

(

βS
n

ǫm

)

+
Z0

2k0

∣

∣

∣

∣

∣

1

cosh2(κS
i,na)

∣

∣

∣

∣

∣

×
(

sinh(2κS
iR,na)

2κS
iR,n

+
sin(2κS

iI,na)

2κS
iI,n

)

R

(

βS
n

ǫi

)

(B6)

SG(n) =
Z0

2k0

∣

∣

∣

∣

∣

1

cosh2(κG
m,nh)

∣

∣

∣

∣

∣

(

sinh(2κG
mR,nh)

2κG
mR,n

+
sin(2κG

mI,nh)

2κG
mI,n

)

R

(

βG
n

ǫm

)

+
Z0

2k0

{

sinh(2κG
iR,ng)

κG
iR,n

(1 + |ηn|2) +
sin(2κG

iI,ng)

κG
iI,n

(1 − |ηn|2)

+ 2R

[

ηn

cosh(2κG
iR,ng) − 1

2κG
iR,n

− iηn

cos(2κG
iI,ng) − 1

2κG
iI,n

]}

R

(

βG
n

ǫg

)

+
Z0

2k0

∣

∣

∣

∣

∣

A2
n

cosh2(κG
m,nh)

∣

∣

∣

∣

∣

(

sinh(2κG
mR,nh)

2κG
mR,n

+
sin(2κG

mI,nh)

2κG
mI,n

)

R

(

βG
n

ǫm

)

(B7)

Appendix C: Numerical verification of mode orthogonality and completeness

1. Mode orthogonality

Once the modal propagation constants and the field-profiles have been determined and the total number, N , of
modes is fixed, it is straightforward to test the set for orthogonality. We simply calculate the overlap integrals
〈ES

x,m|HS
y,n〉 and 〈EG

x,m|HG
y,n〉 for 1 6 m, n 6 N and verify that the integrals are numerically significant only for

m = n in which case they equal ΩS(m) (for single-interface waveguide) or ΩG(n) (for MIM waveguide).
Figure 10 pictorially shows the magnitude of the integrals. The bright diagonal represents high value of the integral

for m = n. For m 6= n the values of the overlap integrals are over 15 orders of magnitude lesser than those on the
main diagonal, thereby providing a numerical confirmation of the mode orthogonality.

2. Single-interface waveguide mode completeness

We hypothesize that if the set of modes corresponding to roots depicted in Fig. 3 is complete, then any arbitrary
field should be expressible as a linear combination of the set of these modes. In particular, the Ex and the Hy fields
of the bound modes on either sides must be expressible as a linear combination of modes of the other side. The
coefficients for this expansion are readily expressed in terms of the overlap integrals CGS and DSG already worked out
in section II C 3.
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FIG. 10. Numerical verification of mode orthogonality. Logarithm (to base 10) of overlap integrals (a) 〈ES
x,m|HS

y,n〉 and (b)

〈EG
x,m|HG

y,n〉 for 1 6 m, n 6 510.

First we try to express the EG
x and HG

y fields of the bound gap-plasmon (n = 1) mode of the MIM waveguide in

terms of the fields ES
x and HS

y of the single-interface waveguide fields. We begin by expressing the gap plasmon fields
in terms of the single-interface waveguide fields.

HG
y,1 =

N
∑

m=1

amHS
y,m (C1)

EG
x,1 =

N
∑

m=1

bmES
x,m (C2)

Premultiplication of Eq. (C1) with ES
x,k and postmultiplication of Eq. (C2) with HS

x,k followed by integration over
all x leads to

ak =
DSG(k, 1)

ΩS(k)
(C3)

bk =
CGS(1, k)

ΩS(k)
(C4)

Figure 11(a) and (b) show the electric and the magnetic fields of the MIM gap plasmon reconstructed in terms
of the single-interface waveguide modes. 200 T1 and 309 T2 modes were used in this reconstruction in addition to
the bound plasmon mode. The reconstructed magnetic field is practically indistinguishable from the true field profile
[Eq. (5) and (6)] on the scale of our graph. The electric field has a discontinuities at x = 0 and x = g and show
the familiar Gibbs phenomenon. We were able to obtain a better reconstruction of the electric field if we increased
the number of modes to N = 800. This proved, however, to be computationally intensive. As Fig. 6 shows only
about 50 modes are required to obtain convergence of the transmission/reflection coefficients. Nevertheless, improved
convergence of the reconstructed fields to the true fields with increasing number of modes is a numerical confirmation
of the completeness of the obtained modes of the single-interface waveguide. Using the same procedure, we were able
to reconstruct any higher-order MIM mode as a linear combination of the single-interface waveguide mode.

3. MIM waveguide mode completeness

We can perform analogous operations to expand the fields of the single-interface plasmon in terms of the MIM
waveguide modes. As before, we begin by expressing the single-interface plasmon fields in terms of those of the MIM
modes:

HS
y,1 =

N
∑

m=1

umHG
y,m (C5)

ES
x,1 =

N
∑

m=1

vmEG
x,m (C6)
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FIG. 11. Real part of the (a) Electric and (b) magnetic fields of the 10 nm gap plasmon reconstructed using 510 modes of the
single-interface waveguide. The reconstruction included the bound single-interface plasmon, 200 T1 modes and 309 T2 modes.
Real part of the (c) Electric and (d) magnetic fields of the single-interface plasmon reconstructed using 660 modes of the MIM
waveguide. The reconstruction included the bound gap plasmon, 200 T1 modes and 459 T2 modes.The solid orange lines are
the analytical fields plotted using Eq. (5)and (6). The reconstructed fields are plotted using solid black lines.

Premultiplication of Eq. (C5) with EG
x,k and postmultiplication of Eq. (C6) with HG

x,k followed by integration over
all x leads to

uk =
CGS(k, 1)

ΩG(k)
(C7)

vk =
DSG(1, k)

ΩG(k)
(C8)

Reconstructed electric and magnetic fields of the single-interface plasmon are shown in Fig. 11(c) and (d) and show
features similar to Fig. 11 (a) and (b). The reconstructed magnetic field is indistinguishable on the scale of the plot,
the electric field displays noticeable Gibbs phenomenon. As with the single-interface case, the field reconstruction
becomes better with increasing number of modes, N .

Subsections C 2 and C 3 provided a numerical verification of completeness of the set of the obtained modes on
both sides of the junction. As seen in Fig. 3 the roots of the governing transcendental equations are spaced very
closely that could, in some instances, cause the numerical root-finding routines to miss some of them. A missing
root can be visualized directly in field reconstruction where its absence shows up as an oscillatory deviation from the
true field profile. This deviation cannot be reduced by increasing the number of modes. We end this subsection by
reemphasizing the importance of ensuring the numerical completeness of the modes as shown above, before proceeding
to enforcing field continuity at the junction and calculation of scattering coefficients.
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