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We describe the influence of hard wall confinement and lateral dimension on the low 

temperature transport properties of long diffusive channels and ballistic crosses 

fabricated in an InSb/In1-xAlxSb heterostructure. Partially diffuse boundary scattering is 

found to play a crucial role in the electron dynamics of ballistic crosses and 

substantially enhance the negative bend resistance. Experimental observations are 

supported by simulations using a classical billiard ball model for which good agreement 

is found when diffuse boundary scattering is included.  
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I. INTRODUCTION 

 

The InSb two dimensional electron gas (2DEG) is attractive for room 

temperature (RT) applications such as high speed logic devices1 and high spatial 

resolution magnetic field sensors2 where carrier mobility plays an important role. 

Recent improvements in the growth of InSb/In1-xAlxSb quantum wells (QWs) on GaAs 

substrates have lead to RT electron mobility values in excess of μ = 6 m2/Vs 

approaching the phonon limited value of 7 m2/Vs.3 For applications requiring high 

spatial resolution, device miniaturization inevitably leads to the relevant lateral 

dimensions of the conducting channel becoming comparable to the elastic mean free 

path (λ0,) where transport is ballistic. In this regime the bulk properties of the 2DEG are 

no longer preserved. Therefore, it is essential to understand how the InSb 2DEG 

properties are altered when fabricated at the nanoscale. For example, in long InAs/AlSb 

2DEG channels fabricated using reactive ion etching (RIE) the mobility is degraded 

from that in the bulk due to top surface damage caused by energetic ions, but the RIE-

induced sidewall roughness degrades the mobility further as the width of the channel 

(w) is reduced below λ0 owing to electron-boundary scattering.4 Degradation of μ is 

detrimental to the performance of transistors, conventional Hall, and extraordinary 

magnetoresistor (EMR) sensors based on diffusive transport, but it is not clear how 

properties are further effected in the mesoscopic regime. Here we present a 

comprehensive study on the effect that fabricating high mobility InSb/InAlSb structures 

with critical dimensions less than the mean free path has on the transport properties. 

When the length of the channel (l) is reduced below the mean free path (l < λ0), 

electrons can traverse the device without scattering internally. Ballistic transport in 
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GaAs/AlxGa1-xAs microjunctions (where. l,w < λ0) has been widely studied at low 

temperatures and using the Landauer-Büttiker (L-B) formalism5 a good understanding 

of the phenomena is established.6, 7 In particular, a variety of distinct departures from 

classical behaviour appear in the low field magnetotransport of simple cross junctions, 

such as a negative resistance in zero magnetic field referred to as “bend resistance”,8, 9 

and a quenched or negative Hall resistance at low fields.10 The above mentioned 

anomalies, at least when the number of transverse modes, N, is much larger than one (N 

>>1), can be adequately described by combining the L-B formalism and a classical 

approach, whereby electrons are treated as classical particles which, in analogy to ray 

optics, reflect from the boundaries with predicable trajectories.11  

Lateral depletion of conducting channels, or sidewall depletion, is also relevant 

as devices are miniaturized. With the exception of the InAs system that exhibits very 

little sidewall depletion,12 Fermi level pinning at the surface of mesa etched III-V 

devices can lead to substantial sidewall depletion, which is often not straightforward to 

deduce. Knowledge of the depletion width (wdep) is essential in order to determine the 

true effective electrical width (weff) of narrow channel devices e.g. sub-micron Hall 

sensors13 and quasi-1D wires14 

The mesoscopic properties of InSb and its heterostructures is still relatively 

unexplored.15 Negative bend resistance (NBR) was reported in InSb/In1-xAlxSb sub-

micron structures up to T ≤ 205 K.16 It was proposed that parallel conduction in the 

heterostructure masks the ballistic component from the 2DEG. Indeed, a recent study of 

transport in similar InSb/In1-xAlxSb samples showed that at elevated temperatures 

intrinsic conduction in the ternary buffer layer contributes up to ≈5% of the total 

conduction.17 The significance of such parallel conduction is accentuated in shallow 

etched sub-micron structures where the volume of remaining buffer layer is large. This 
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technological problem may be overcome by improved heterostructure design. 

Therefore, two regimes are identified in InSb/In1-xAlxSb sub-micron structures (a) low 

temperatures (< 100 K), where ballistic transport in the 2DEG is dominant and (b) high 

temperatures (>150 K) where as yet, in all reported structures, parasitic intrinsic 

conduction in the buffer layer occurs.  

We emphasise that the interaction of charge carriers with the device boundaries 

plays a central role in determining the characteristics of sub-micron devices and a 

proper investigation in the InSb 2DEG system has not been made; in particular, ballistic 

anomalies are acutely sensitive to the device dimension, geometry,18 and the specularity 

of the boundary scattering.19, 20 Accordingly, we report here a detailed study of the 

influence of device size, sidewall depletion, and boundary scattering on the 

magnetotransport properties of InSb/In1-xAlxSb mesoscopic structures with hard wall 

confinement. For the purpose of this article, we present data from long channels (l > λ0) 

and sub-micron crosses with lateral dimensions down to w ≈ 170 nm, and we restrict 

ourselves to low temperatures where intrinsic conduction is negligible. A detailed 

analysis of the ballistic transport anomalies and the agreement with theory is presented 

with the aid of a classical billiard ball model.  

 

II. EXPERIMENTAL METHODS 

 

Devices were fabricated from a single modulation doped InSb/In1-xAlxSb QW 

heterostructure grown by molecular beam epitaxy onto a GaAs (001) substrate. In 

growth sequence, the sample consists of an AlSb (200 nm)/In0.9Al0.1Sb (3 μm) buffer 

layer, a 30 nm InSb QW and, a 50 nm In0.85Al0.15Sb cap in which a single Te δ-doping 

layer is located, 20 nm above the top of the QW. Fig. 1(d) shows the self consistent 
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Schrödinger-Poisson solution for the conduction band profile and the energy levels in 

the QW. The properties of the as-grown 2DEG were determined from a 40 μm wide 

Hall bridge (control sample) fabricated using conventional wet etching. At 2 K the 2D 

electron density (n) and mobility (μ) were n = 3.95x1015 m-2 and μ  = 19.5 m2/Vs, 

corresponding to a mean free path of ekF /0 μλ =  = 2.03 μm and a Fermi wavelength of 

40 nm [kF = (2πn)1/2 is the Fermi wavevector]. The bulk magnetotransport properties of 

this and similar samples were recently reported. At low temperatures relevant to this 

study, the mobility was found to be limited by remote ionised impurity scattering from 

the Te δ-layer.3, 17 Measurements were performed with the sample in the dark using a 

low-frequency lock-in technique (currents between 100 and 500 nA) and with B applied 

perpendicular to the plane of the 2DEG.  

Hall crosses and Hall bridges with varying w were patterned by electron beam 

lithography using negative tone resist as an etch mask. Pattern transfer was achieved 

using an inductively coupled plasma-RIE in a CH4/H2 gas mixture at a pressure of 10 

mTorr, forming shallow mesas of ≈135 nm depth that provide hard wall confinement. 

The process parameters yielded an etch rate of the ternary In0.85Al0.15Sb compound of 

≈10 nm/min. Ti/Au Ohmic contacts were made using standard optical lithography and a 

cold shallow contacting technique.21 A deep wet chemical etch was used to remove the 

entire 3 μm thick buffer layer surrounding the device and contacts; the volume of 

remaining buffer layer beyond the shallow boundaries of the structures was minimised 

by mask design and controlled lateral etching [see Fig. 1(a)]. Electron micrographs of a 

w = 171±10 nm cross and w = 550±10 nm Hall bridge are shown in Fig. 1(a) and (b) 

[the uncertainty in w is due to residual polymer deposit from the RIE at the mesa edge 

(fencing)]. The junction corners are nominally square, but a small unavoidable rounding 
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of the corners (< 50 nm radius) results from the large proximity effect in the e-beam 

lithography of InSb.  

 

III. CLASSICAL BILLIARD BALL MODEL  

 

To interpret our results presented in the following section, we simulate the bend 

and Hall resistance of the cross junction following the classical model of Beenakker and 

van Houten that treats electrons as classical particles (billiard balls) reflecting from the 

device boundaries.11 The resistance in the ballistic regime is expressed in terms of the 

transmission probabilities between the various leads by the L-B formula.5 We consider 

the four-terminal cross geometry with four-fold symmetry, in which case, respectively 

the Hall and bend resistances, RH and RB are given by: 
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where TF, TL and TR are the probabilities of an electron transmitted from the 

injection lead (arbitrary) to the forward, left and right hand leads respectively, and R0 = 

h/2e2N with N equal to the number of transverse modes at the Fermi energy. The 

geometry of the cross junction is shown in Fig. 1(c) and is defined by three parameters: 

the lead width w, lead length l’ and radius of curvature of the corners, r, with r2=x2+y2 

in the plane. For the purposes of our calculations, we use a hard wall confining potential 

(infinite potential barriers at the boundaries). This is a good approximation for wider 
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leads, greater than 200 nm in width, in which the potential is very flat in the centre of 

the channel and increases rapidly near the boundaries.22 In the semiclassical limit and 

for hard wall confinement, N is given by N = kFw/π. All calculations presented are for N 

>> 1, where the model is strictly valid.  

The transmission and reflection coefficients are calculated by injecting a large 

number of classical particles (5x104) from a specified injection lead uniformly across 

the lead with an angular distribution P(φ) = ½cos(φ) (φ being the angle with respect to 

the lead axis).11 The trajectories of the particles are determined via integration of the 

equations of motion using the Verlet technique until they exit the junction via one of the 

four leads. Particles are injected into the junction region at the Fermi velocity 

)(/ * Emkv FF =  with an effective mass )(* Em which takes into account the 

modifications due to band non-parabolicity within an analytical model for the 

dispersion, *22 2/)1( mkEE =+ α  where α is non-parabolicity parameter.23 For the 

InSb QW studied here we use a subband edge effective mass *
sbm =0.0162 and a non-

parabolicity parameter of α = 3.8 eV-1 which gives a fit to an 8 band k.p model of a 30 

nm QW with In0.85Al0.15Sb barriers to within a few meV over a 100 meV range.  

We incorporate diffuse boundary scattering into the model using the approach of 

Blaikie et al.20. Boundary scattering is captured using a single specularity parameter, p, 

that describes the probability of a particle scattering diffusively (1 - p) from a boundary. 

After a diffuse scattering event, particles are re-injected at the collision point with an 

angle -π/2 ≤ θ ≤ π/2 from the boundary normal chosen randomly from a uniform 

distribution. Within this model, the transmission coefficients are sensitive to the lead 

length l’ as this directly affects the number of interactions with the boundary. 

 

IV. RESULTS AND DISCUSSION 
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A. Diffuse properties in long channels 

 

Fluctuations in the electrostatic potential profile of a conducting channel can 

alter the transport properties via electron-boundary scattering, particularly in sub-

micron devices where the channel width w ≤ λ0 and electrons can travel ballistically 

between the channel boundaries.  

Electron-boundary scattering can be characterised by two parameters; the 

specularity parameter p and λB, the average distance an electron travels before the 

probability of it scattering diffusely is equal to one.19 In general p < 1 for both mesa 

etched and split-gate devices.19, 24 λB is proportional to w, so that as w is reduced the 

electron-boundary interactions manifest in the transport properties. The increased 

backscattering in narrow channels enhances the zero-field longitudinal resistance 

Rxx(0), resulting in an effective μ that is reduced from that in a wide sample. For 

partially diffuse scattering (p < 1), a distinctive low field peak appears in the Rxx(B) 

(discussed in Section IVC).7  

Measurements were performed on long channels in the Hall bridge geometry 

(Fig. 1(b) and inset to Fig. 2) with a longitudinal voltage lead separation of l = 8.4 μm 

(> λ0) ensuring that transport is diffusive along the channel. In Fig. 2 we show the 

longitudinal Rxx and transverse Rxy resistance as a function of magnetic field at 2 K for 

a 3 μm and 550 nm wide Hall bridge. Shubnikov de-Haas (SdH) oscillations in Rxx are 

observed in each device superposed onto an increasing background resistance related to 

parallel conduction in the upper barrier.17 The 2D electron density n is determined from 

the periodicity of SdH oscillations and the mobility μ from the zero field resistance, 

according to newl )0(R/ xx=μ . The experimental n, μ and the corresponding mean free 

paths for the w = 3 μm and 550 nm Hall bridges are given in Table I, together with the 



 - 10 - 

properties of the control sample (w = 40 μm). A monotonic decrease in n and μ is 

observed as w is reduced. The reduction in n is attributed to the lateral potential formed 

by a sidewall depletion region (discussed further in the section IVB) in addition to the 

lateral confinement imposed on narrow channels which raise the conduction band edge 

in the centre of the channel as w is reduced, hence depleting the 2DEG. The observed 

degradation of μ is consistent with the presence of boundary scattering which becomes 

increasingly important as w is reduced. Nevertheless, the mobility in the 550 nm wide 

channel is only degraded by ≈25 % with respect to the control sample, with a 

corresponding mean free path of λ0 = 1.5 μm. Ballistic transport is therefore expected in 

the sub-micron crosses (λ0>w) discussed in Section IVD. 

 

B. Determination of depletion width 

 

An important parameter of narrow channels is the electrical width weff. Due to 

the Fermi energy pinning in the band gap at the air-interface, sidewall depletion is 

frequently observed for narrow mesa-etched channels resulting in a weff that can be 

substantially smaller than the physical width, w.25,14 The difference is equal to the sum 

of the lateral depletion width at each boundary (wdep). Knowledge of wdep is essential for 

many applications but is not straightforward to gain. We found that devices with w ≤ 

134 nm were electrically depleted over the entire temperature range. This puts an initial 

estimate on the depletion width at wdep ≈ 67 nm. We determine weff from tracking the 

depopulation of quasi-1D magnetoelectric subbands in the low field Rxx data of narrow 

channels.26 Like 2D Landau levels, these hybrid subbands depopulate with increasing 

field, but do so at a slower rate as evidenced by a non-linear subband index (i) versus 
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1/B plot in the low field region. For a parabolic confining potential, the magnetic 

depopulation of subbands can be described analytically by26 
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where N1D is the 1D electron density, ω0 is the characteristic frequency defining the 

strength of the confinement and ( ) 2/12
0

2 ωωω += c  where */ meBc =ω is the cyclotron 

frequency. One can see that for small fields, the dependence of i on 1/B is non-linear 

and for large fields, ω → ωc and i is proportional to 1/B as in the usual 2D case. As 

noted in Ref. 26, a square well potential is more appropriate for wider channels, 

nevertheless, the model expressed in Eq. 2 provides valuable insight to the effective 

width of the channel. A subband depopulation diagram for the w = 550 nm Hall bridge 

is shown in Fig. 3. A pronounced departure from linear in 1/B behaviour (dashed line) is 

observed below 1 T. The solid line in Fig. 3 represents a least squares fit of Eq. 2 to the 

data using an effective mass at the Fermi energy of m*=0.022m0 (we found that the 

fitting results are relatively insensitive to small changes of ±10% in m*). From this fit 

we deduce a confinement energy ħω0 and N1D of 2.6 meV and 3x109 m-1, respectively. 

The effective width is then estimated from26 
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Substituting the values of ω0 and N1D into Eq. 3 we determine weff  = 414 nm ± 5 nm. 

This implies a depletion width of wdep = (w-weff)/2 = 68 nm ± 6 nm which is in 
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remarkably good agreement with the estimate made directly from the observed 

electrical depletion of devices of w < 134 nm.  

Finally, we remark on a separate and consistent estimate of weff made from a 

classical size effect (with no assumption of confining potential). Electron backscattering 

in narrow channels that enhances Rxx(0) is suppressed by a perpendicular magnetic field 

due to the formation of localised edge states or classical skipping orbits at the 

boundaries. This leads to a negative MR peaked at B = 0, persisting until Bmin = 2B0, 

where effF ewk /B0 =  is the field when the cyclotron radius, eBkR Fc /= , equals weff, 

at which point a marked change in slope is expected.27 As seen in Fig. 2 (and more 

clearly in Fig. 4), this behaviour is observed in our data. A kink in the low field MR is 

observed at a field Bmin ≈ 0.5 T (indicated by an arrow), from which we estimate weff ≈ 

406 nm (i.e. wdep ≈ 72 nm). This estimate is consistent with the value obtained from the 

magnetodepopulation analysis, adding confidence to our estimate of wdep. 

 

C. Partially diffuse boundary scattering in narrow channels 

 

The specularity of the boundary scattering plays a crucial role in the transport of 

submicron devices. In particular, Blaikie et al.20 showed that resistance anomalies in 

ballistic devices can be substantially enhanced by partially diffuse boundary scattering. 

The specularity of boundary scattering can be studied from measurements on long 

narrow channels (w ≤ λ0) where electron-boundary interactions manifest in the 

resistance. It has been shown that partially diffusive boundary scattering leads to an 

anomalous peak in Rxx at small fields (0 < B < Bmin) with a position (Bmax) that scales 

inversely with w.19, 28, 29 As seen in Fig. 2 a pronounced peak is distinguished in the low 

field Rxx of the w = 550 nm Hall bridge at Bmax ≈ 180 mT (indicated by the arrow). We 
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note that a low field peak with entirely different origin was also predicted11 and 

experimentally observed30 in the MR of ballistic Hall bridges where l < λ0. In our case, l 

>> λ0 so that the measurement is in the diffusive regime and the observed peak is 

unambiguously attributed to partially diffuse boundary scattering.  

In Fig. 4 we show the low field MR of the w = 550 nm Hall bridge [Rxx(B)- 

Rxx(0)]/Rxx(0) plotted against the normalised field B/B0 (using weff = 414 nm) at various 

temperatures between 2 K and 80 K after subtraction of the high field quasi-linear 

background. The classical model for in-plane MR of thin metal films (where the film 

thickness t ≤ λ0 and p = 0) predicts that Bmax = 0.55B0 i.e. when Rc = weff/0.55. This has 

previously been considered as a method of estimating weff.28-30 We have found that the 

boundary scattering peak occurs at a somewhat larger value Bmax ≈ 0.7B0. It follows that 

estimating weff from the classical prediction28 weff = 0.55Rc yields a value significantly 

less than that obtained in the previous section. Given that the calculations of Bmax are 

sensitive to the details of the model30 and that predicted values have been reported in 

the range 0.55B0 ≤ Bmax ≤ B0,30, 31 we suggest that this method provides a less reliable 

estimate of weff. 

The decay of the peak at Bmax with temperature is associated with the reduction 

of λ0 in the bulk of the channel (taken from the control device where boundary 

scattering can be neglected) below λB.19 The boundary scattering length is estimated 

(rather arbitrarily) by assuming that λB ≈ λ0 (in the bulk of the channel) at the 

temperature (T’) when ΔRxx(Bmax)/Rxx(0) = 1.24 Taking T’ ≈ 40 K corresponds to λB ≈ 

1.75 μm. The specularity parameter p is then estimated from the empirical relationship 

1 - p ≈ weff/λB yielding p ≈ 0.71 for the w = 550 nm (weff = 414 nm) Hall bridge. The 

inset of Fig. 4 shows the amplitude of the peak at Bmax plotted against λ0 obtained from 

the control sample at each temperature. The amplitude was extracted with respect to a 
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straight line drawn between data at B/B0 = 0 and B/B0 = 2. Using this plot, λB may be 

interpreted as the value of λ0 when the peak amplitude decays to zero. Two 

dependences on λ0 are distinguished in the data, a rapid decay (solid line) labelled as A 

and a slower decay (dashed line) labelled as B. We broadly separate these into the 

regimes where remote ionized impurities and phonons dominate momentum scattering 

in the bulk of the channel, respectively. We consider regime B unsuitable for this 

analysis since large angle phonon scattering randomises the electrons’ momentum in 

addition to diffuse boundary scattering events which alter λB. Therefore, only at low 

temperatures (regime A) can information on λB be extracted with confidence. In regime 

A, we extrapolate a value of λB ≈ 1.85 μm, giving p ≈ 0.77 which is similar to the 

previous estimate. We conclude from our analysis that p ≈ 0.7 - 0.8. 

The value of p is expected to be a property of the boundaries themselves and 

therefore be the same for devices fabricated in the same way. Given the assumptions 

made to estimate p, emphasis should not be on the value of p itself but rather it should 

be sufficient that one observes the characteristic low field MR features shown in Figs. 2 

and 4, to conclude that partially diffuse boundary scattering is significant and p < 1.  

 

D. Ballistic transport in cross junctions 

 

We now turn to the experimental results in ballistic crosses formed from two 

intersecting channels of width w [see inset to Fig. 1(a)], where the relevant lateral 

dimensions L ≈ w are substantially less than the mean free path. We present the results 

from four crosses with physical widths (inferred from SEM inspection) of w = 924, 550, 

400, and 171 nm ± 10 nm. The inferred effective electrical widths weff = w - 2wdep are 

given in Table II where we have used the depletion width determined in Section IVB 
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(wdep = 68 nm). Note that the smallest cross (w = 171 nm) has an estimated electrical 

width of weff ≈ 35 nm which is among the narrowest conducting mesa-etched devices 

reported.12 

Figure 5 shows the results for the Hall resistance RH = V4,2/I1,3 [the lead 

arrangement is shown in Fig. 1(a)] as a function of B for the crosses. Here Vij and Imn 

indicate the voltage of terminal i measured with respect to j when current is passed 

from terminal m to n, respectively. Data for w = 924 nm, 550 nm, and 400 nm were 

taken at 2 K and the w = 171 nm at 40 K (the w = 171 nm junction became depleted for 

T < 30 K). Quantum Hall plateaus are resolved in the data from the largest three 

crosses. The electron densities are determined from fits of the classical 2D result RH(B) 

= -B/ne (indicated by the dashed lines in Fig. 5) to the high field linear portions of data. 

RH(B) for the w = 171 nm cross is strikingly different - no obvious quantisation of RH 

occurs over the entire field range and RH(B) is non-linear up to |B| ≈ 4 T making the 

determination of n less trivial. The extracted electron densities of the crosses are listed 

in Table II. The dependence of n on weff is presented in the bottom inset to Fig. 5 

including data from wider Hall bridges.  

At low fields |B| < 1 T, clear anomalies appear in RH for all crosses (top inset to 

Fig. 5) - the development of the anomalies with decreasing w is clear. No suppression of 

RH around B = 0 is observed in the largest three crosses (a very small reduction is found 

for the w = 400 nm cross). In the smallest cross (blue line) the effect is striking; RH is 

completely quenched and negative (positive in our configuration) up to |B| < 0.65 T. A 

small asymmetry in RH(B) is observed in all cases which is attributed to geometric 

asymmetries in the junction. The appearance of quenching is of interest with respect to 

the geometry of the junction. Baranger and Stone32 showed that generic quenching of 

RH occurs only in junctions with rounded corners; a consequence of a horn collimation 
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effect33 that results in a non-equilibrium momentum distribution that enhances the 

forward transmission (TF) at the expense of the transmission into the left (TL) and right 

(TR) leads [c.f. Eq. 1(a)]. Electron collimation was experimentally verified by 

Molenkamp et al.34 and is a key concept in describing ballistic anomalies as we 

demonstrate here. Likewise, the negative RH results from rebound trajectories (directing 

electrons into the ‘wrong’ lead for a given field direction) that are only effective in 

rounded junctions when the radius of curvature of the junction corner (r) is large 

compared to the lead width i.e. r/w > 1.35,18 The appearance of these features in the w = 

171 nm cross is therefore a clear signature of both significant rounding and collimation. 

Conversely, the lack of quenching in the largest three crosses implies that r/weff is small 

i.e. the junctions are approximately square as intended. In this respect the apparent 

rounding in the 171 nm cross is perhaps surprising; however, if we assume that r must 

be at least wdep, then the lower bound for r is ≈ 70 nm. In this case r/weff > 1 for the 

smallest cross and < 1 for the larger crosses, in agreement with our observations. Some 

small additional rounding is inevitable in the e-beam and etch process [< 50 nm radius 

from the inset to Fig. 1(a)], putting our experimental estimate of r at 120 nm > r > 70 

nm. 

Beyond the quenched region, RH rises above its classical value (dashed lines in 

Fig. 5) in all devices, marking the onset of the classical ‘last plateau’.10, 18 At larger 

fields still, RH(B) rejoins the classical Hall resistance (indicated by the arrows in Fig. 5). 

For the w = 171 nm cross the non-linearity persists up to |B| ≈ 4 T. The sharp rise in 

RH(B) above its classical value results from trajectories that guide electrons into a side 

lead with minimal boundary reflections thereby enhancing the asymmetry between TL 

and TR.11 When guiding is fully effective, electrons are no longer reflected back into the 

junction (skipping orbits along the junction perimeter) and TF,TR << TL ≈ 1. With 
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reference to Eq. 1(a), in this regime RH(B) is predicted to plateau at a value equal to the 

contact resistance of the lead R0 = h/2e2N. Classical behaviour is then recovered B ≥ 

2B0. Although a clear plateau region is not observed in our experimental data, features 

consistent with the predictions of the classical model are observed. For example, the 

estimated value 2B0 = 4.5 T for the w = 171 nm cross coincides approximately with the 

field at which the experimental data rejoin the classical Hall slope. Similar agreement is 

found for each cross indicating that our estimations of weff and kF are close to their true 

values (R0 and B0 for each cross are listed in Table II).  

In Fig. 6(a) we show low field results obtained in the bend resistance 

configuration RB = V4,3/I1,2 for the crosses (again, data for the w = 171 nm cross was 

obtained at 40 K). A substantial NBR peak centred about B = 0 is observed in all 

devices that increases as w is reduced. Asymmetries in the field dependence are also 

observed in this configuration and are particularly evident in the data for w = 400 nm 

cross [solid black line in Fig. 6(a)]. To ascertain the origin of the asymmetries, 

measurements were repeated with the current and voltage leads interchanged. 

Representative data for the w = 400 nm cross is shown by the dashed black line in Fig. 

6(a). One can see that the reciprocity relation Rmn,ij(B) = Rij,mn(-B) is obeyed 

demonstrating that the field asymmetries indeed originate from asymmetries in the 

junction geometry.5 This is representative of each device measured.  

The origin of NBR is well established: it arises from ‘straight through’ 

trajectories which raise the potential at lead 3 with respect to lead 4 [see Fig. 1(a)], 

resulting in a negative resistance. This corresponds to TF >> TL, TR in the L-B formula 

[c.f. Eq. 1(b)]. In a small magnetic field the Lorentz force curves the trajectories into the 

‘correct’ lead 4 and the NBR decays to zero producing a characteristic negative peak  

(for B > 0 this corresponds to TR = TF = 0). In our case, a small diffuse background 
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resistance is present ranging from 20-30 Ω (discussed further in Section IVE). Before 

the background resistance is recovered, a small ‘overshoot’ of positive resistance is 

observed in each cross [indicated by the arrows in Fig. 6(a)] due to rebound trajectories, 

in rounded junctions, that briefly increase the transmission into the opposite lead. This 

coincides with the rise in RH to the last plateau.  

The case of NBR in zero magnetic field is useful because the solutions to the L-

B formulae are simplified, allowing information on the transmission probabilities and 

collimation to be extracted.34 At B = 0, TL = TR ≡ TS and Eq. 1(b) reduces to RB(0)/R0 = 

(1-TF/TS)/[4(TS+TF)]. For symmetric hard walled junctions with a fixed geometry (i.e. 

fixed r/w), the classical model33 predicts a universal scaling of resistance curves when 

normalised by R0 and B0. In other words, the transmission coefficients (and hence 

collimation) are approximately equal for geometrically equivalent junctions, and RB(0) 

scales inversely with the number of channels N = kFweff/π (see Table II). For the purpose 

of analysis, we define an NBR amplitude ΔRB = RB’(0) - RB(0) as the difference 

between the interpolated background resistance at B = 0 and RB(0) (RB’(0) = 0 in the 

billiard model) [see inset to Fig. 6(b)]. Figure 6(b) shows the variation of ΔRB with 1/N 

on a log-log plot. ΔRB scales approximately, but not exactly, with 1/N (indicated by the 

dashed line). Equally, the scaling predicts that the normalised resistance RB(0)/R0 is 

independent of weff and kF. Accordingly, in Fig. 7(a) we show ΔRB/R0 plotted against 

weff for our devices. Remarkably we find that ΔRB/R0 is almost identical for the largest 

two crosses: The geometries in these crosses must be equivalent which is consistent 

with the assertion that these junctions are approximately square (i.e. r/weff is small). 

Scaling of these data is also found for B > 0 when RB/R0 is plotted against B/B0 (not 

shown). This is not true for the two smaller crosses as evidenced by a monotonic 

increase of ΔRB/R0 with decreasing weff, consistent with the presence of a small but 
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approximately constant rounding that becomes increasingly significant as weff is 

reduced. These observations provide valuable insight into the geometry of the junctions 

which is used in the billiard model calculations presented in section IVE.  

 

E. Simulation results 

 

To explore further the electron dynamics within the cross junctions, calculations of the 

bend resistance were performed using the classical model described in Section III. 

Classical and quantum mechanical calculations of ballistic anomalies in microjunction 

have previously been performed by various authors6, 11, 30, 36 and as discussed in these 

works, the geometry of the junction determines the magnitude and character of the 

resistance anomalies. The parameters in the calculations are w, r, l’, vF, and p (a 

schematic of the cross geometry is repeated in Fig. 7(a) inset for clarity). vF is set by the 

experimentally determined kF, and w ≡ weff  in the model (see Section III). We start by 

considering the magnitude of the experimental NBR and its implications on the 

collimation in the crosses, and then compare our results for RB(B) with experimental 

data.  

Simulations of ΔRB(0)/R0 for a square (r/w = 0) and rounded junction (r/w = 2) 

with specular boundary scattering (p = 1) are shown by the solid lines in Fig. 7(a). 

Recall that no collimation occurs in the square junction, when p = 1, whereas 

collimation is induced in the rounded junction via the horn effect. The experimental 

ΔRB(0)/R0 of the two largest crosses (which we expect to be approximately square) 

exceeds the calculated values for a square junction by factor of ~4 and even a rounded 

junction by a factor of ~2. The anomalously large NBR implies additional collimation is 

present other than the horn effect which we attribute to the diffuse collimation effect20 
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that results from partially diffuse boundary scattering (p < 1) in our devices (as shown 

in Section IVC). The origin of diffuse collimation is the increased backscattering of 

electrons that enter the leads with large angles φ with respect the lead axis. Therefore, 

electrons injected with a ½cos(φ) distribution arrive at the junction region after 

traversing a lead of length l’ with a distribution more strongly peaked in the forward 

direction (hence increasing the ratio TF/TS). The resulting angular distribution differs 

from the horn effect result in that it is more sharply peaked in the forward direction.30 

Consequently, the NBR for p < 1 has a distinctively sharper and more triangular shape 

about B = 0 than in the p = 1 case. In support of this conjecture, the experimental data in 

Fig. 6(a) exhibit the characteristic sharp NBR associated with diffuse collimation.  

Billiard simulations with p < 1 were implemented using the approach of Ref. 20 

(see Section III for details). To illustrate the enhancement of the NBR from diffuse 

collimation Fig. 7(a) shows a calculation of ΔRB(0)/R0 for a square junction with p = 

0.7 and l’/w = 3, as indicated by the dashed line. Remarkably, even for a square 

junction, the NBR amplitude is increased by a factor of ~5 over the p = 1 case, using 

reasonable parameters. Diffuse collimation is sensitive to the ratio l’/w since this 

directly influences the number of boundary collisions. In our devices we define l’ as the 

length from the junction to the point at which the lead width flares out [e.g. see Fig. 

1(a)]. These values are listed in Table II. Therefore, we can simulate the whole RB(B) 

curve using experimentally determined parameters n, weff and l’ with only r and p as 

variables. We perform simulations of the three largest crosses where the classical model 

is applicable (N >> 1). r is estimated in the range 120 > r > 70 nm (see Section IVD). 

We note that for a given weff the position and amplitude of the overshoot in RB 

[indicated by the arrows in Fig. 6(a)] is quite sensitive to the value of r, and r was 

adjusted to best match the experimental feature. Using this method (with p = 1 and n, 
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weff and l’ listed in Table II), we found that r = 100 nm yielded reasonable agreement 

with the experimental data for each cross. This is consistent with the fact that the 

unintentional rounding results from the fabrication process and sidewall depletion that 

is approximately independent of w. The value of p was then used as the only fitting 

parameter to adjust RB(0) to equal the experimental RB(0). The results of these 

simulations (solid red lines) are compared to the experimental data (solid black lines) in 

Figs. 7(b), (c) and (d). The agreement with the experimental data is excellent 

considering the few adjustable parameters involved, validating our experimental 

determination of weff and n. Corresponding simulations for p = 1 are shown for 

comparison by the dashed red lines in Fig. 7(b) to (d), illustrating by contrast the 

rounded profile of the NBR obtained in the p = 1 case. The diffuse background 

resistance observed in the experimental data is likely to result from the finite 

momentum scattering time (τ) within the crosses, implying that not all of the electrons 

are fully ballistic as they are treated in the model (τ = ∞ in the current model). Given 

the agreement with the ballistic model, we speculate that any momentum scattering in 

the crosses does not perturb the electron trajectories considerably and therefore the 

extracted p parameters are meaningful. This is supported by recent work showing that at 

low temperatures the mobility in these InSb QWs is limited by small angle remote 

ionised impurity scattering i.e. not by phonon scattering that may result in additonal 

backscattering.17, 37  

The values of p used for the three crosses lie range from 0.69 to 0.8 which is in 

good agreement with the value p ≈ 0.7 - 0.8 estimated from the measurements on long 

narrow channels described in Section IVC. Moreover, the narrow range of p used in the 

simulations supports the claim that p is a property of the boundary and thus relatively 
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independent of w for devices fabricated under the same conditions. The incorporation of 

remote ionised impurity scattering into the billiard model is the subject of further work.  

The behaviour of the ballistic anomalies described here is transferable to any 

material system with p < 1 (particularly for square cross geometries). However, we 

emphasise that the partially diffuse boundary scattering reported here is inextricably 

linked to the particular hard wall confinement we have achieved in our devices that 

exposes the 2DEG to the etched surface. For example, quite different specularity (p = 1) 

from mesa etched InSb narrow channels has been reported elsewhere using a different 

etch chemistry (note that the analysis was limited to B = 0).14 In a quantum mechanical 

treatment of boundary scattering,31 the proportion of diffuse scattering is dependent on 

the details of the boundary roughness (e.g. the amplitude and correlation length) with 

respect to the Fermi wavelength, which are likely to vary with the etch chemistry and 

extent of sidewall depletion. Therefore, it is not surprising that different etch 

chemistries may yield different results. Our work shows that the ballistic transport 

properties of InSb mesa etched devices can be well accounted for within the classical 

model when the sidewall depletion and realistic partially diffuse boundary scattering are 

properly addressed. 

 

V. CONCLUSIONS 

 

In summary, we have investigated the variation of the low temperature transport 

properties in InSb/In1-xAlxSb mesa-etched mesoscopic devices with hard wall 

confinement when the lateral dimensions are reduced below the mean free path. 

Measurements on long channels and Hall crosses fabricated from the same sample 

show that the lateral depletion width is approximately 70 nm and that boundary 
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scattering from the sidewall is partially diffuse, with a specularity parameter p ≈ 0.7 - 

0.8. Ballistic crosses show characteristic resistance anomalies in good agreement with 

the predictions of the classical model and in all cases exhibit a significantly enhanced 

NBR due to partially diffuse boundary scattering from the sidewalls. Our observations 

are supported by classical simulations of the electron trajectories in ballistic crosses 

which quantitatively accounts for both the magnitude and width of the negative bend 

resistance, using experimentally determined parameters, and a specularity parameter p 

in the range 0.69 - 0.8. Our work highlights the relative importance of diffuse 

collimation over horn collimation. In particular, the enhancement of the NBR 

observed in small crosses may be of practical interest for applications requiring large 

responsivity e.g. high spatial resolution magnetic field sensors. 
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FIG. 1. Electron micrographs of (a) a typical device structure showing the leads and 

contact arrangement for a cross, and (b) a 550 nm wide Hall bridge. Inset to (a): A 

w=171 nm cross. (c) A schematic of the Hall cross geometry. (d) A self-consistent 

Schrödinger-Poisson solution for the conduction band profile of the heterostructure 

showing the confined energy levels. 
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FIG. 2. Longitudinal Rxx (left axis) and transverse Rxy (right axis) magnetoresistance of 

w=550 nm (solid lines) and 3 μm (dashed lines) Hall bridges at 2 K (l = 8.4 μm). Inset: 

A schematic of the device structure and the relevant dimensions. The positions of Bmax 

and Bmin relate to features associated with boundary scattering (see text).  
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FIG. 3. Subband depopulation diagram for the w=550 nm Hall bridge at 2 K. The faint 

solid line shows the corresponding Rxx data (right hand axis) from which the subband 

indices (left hand axis) were assigned. The dashed and solid lines represent fits of Eq. 2 

to the high field linear portion of the data and the low field non-linear respectively.  
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FIG. 4. The magnetoresistance, ΔRxx(B)/Rxx(0), of the w = 550 nm Hall bridge 

plotted against the normalised field B/B0, at various temperatures after subtraction of a 

linear background. Inset: The peak amplitude plotted against the mean free path (λ0) in 

the control sample at each temperature.  
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FIG. 5. The Hall resistance RH in units of h/e2 as a function of B for a w = 171 nm (blue 

line), 400 nm (black line), 550 nm (red line), and 924 nm (green line) cross. The dashed 

lines represent the classical 2D result. Top inset: Low field data illustrating the 

anomalies in RH. Data for the w = 550 nm and 924 nm crosses are offset by 0.5 kΩ for 

clarity. Bottom inset: Dependence of n on the inferred effective width weff = w - 2wdep of 

the devices (crosses and bridges). 
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FIG. 6. (a) Bend resistance RB = V4,3/I1,2  as a function of magnetic field for a w = 171 

nm (blue line), 400 nm (black line), 550 nm (red line), and 924 nm (green line) cross. 

The w = 171 nm data is plotted on a difference scale for ease of comparison. The dotted 

curve is the reciprocal measurement RB’ = V1,2/I4,3 for the w = 400 nm cross illustrating 

that asymmetries in B originate from junction asymmetry. (b) Dependence of the 

experimental NBR amplitude ΔRB ( ) on 1/N = π/kFweff and weff. The results from 

billiard model simulations using the parameters given in Table II (x) and results for p = 

1 (+) are also shown. The dashed line is a guide to the eye illustrating a 1/N 

dependence. Inset: A schematic showing the definition of ΔRB. 
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FIG. 7. (a) Normalised NBR amplitude ΔRB/R0 of the crosses plotted against weff. 

Horizontal lines represent the results from the billiard model for square and rounded 

junctions with p = 1 (solid lines) along with a square junction with p = 0.7 and l’/w = 3 

(dashed line). (b) - (d) Comparisons between experimental RB (black lines) and billiard 

model simulations of RB (solid red lines) for three crosses (N >> 1) using parameters 

listed in Table II. Simulations with p = 1 are shown for comparison (dashed red lines). 

Inset: A schematic of the geometry used in the simulations. R0 = (h/2e2)(π/kFweff). 
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TABLE I. Properties of the InSb 2DEG obtained from Hall bridges with varying 

physical width, w at 2 K. Data for w=40 μm represents the control sample. †calculated 

using the effective electrical width determined in Section IVB. 

w (μm) 40 3 0.55 

n (1015 m-2) 3.95 3.9 3.77 

μ (m2/Vs) 19.5 17.95 14.8† 

λ0 (μm) 2.03 1.85 1.50† 
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TABLE II. Relevant parameters for the ballistic crosses and parameters used in 

the billiard calculations. Effective widths weff = w - 2wdep were calculated using wdep = 

68 nm determined in Section IVB. 

w (nm) weff (nm) 
n  

(1015 m-2) 
N R0 (Ω) B0 (T) r (nm) l’ (μm) p 

924 788 3.85 39 332 0.13 100 2.5 0.79 

550 414 3.77 20.3 638 0.25 100 1.5 0.8 

400 264 3.1 11.7 1104 0.35 100 1.2 0.69 

171 35 2.25 1.3 9775 2.24 - 0.8 - 

 

 


