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We study the non-Abelian statistics of quasiparticles in the Ising-type quantum Hall states which
are likely candidates to explain the observed Hall conductivity plateaus in the second Landau level,
most notably the one at filling fraction ν = 5/2. We complete the program started in Nucl. Phys. B
506, 685 (1997) and show that the degenerate four-quasihole and six-quasihole wavefunctions of the
Moore-Read Pfaffian state are orthogonal with equal constant norms in the basis given by conformal
blocks in a c = 1 + 1

2
conformal field theory. As a consequence, this proves that the non-Abelian

statistics of the excitations in this state are given by the explicit analytic continuation of these
wavefunctions. Our proof is based on a plasma analogy derived from the Coulomb gas construction
of Ising model correlation functions involving both order and (at most two) disorder operators.
We show how this computation also determines the non-Abelian statistics of collections of more
than six quasiholes and give an explicit expression for the corresponding conformal block-derived
wavefunctions for an arbitrary number of quasiholes. Our method also applies to the anti-Pfaffian
wavefunction and to Bonderson-Slingerland hierarchy states constructed over the Moore-Read and
anti-Pfaffian states.

PACS numbers:

I. INTRODUCTION

Non-Abelian braiding statistics1–7 is currently the subject of intense study, partly because the experimental ob-
servation of a non-Abelian anyon would be a remarkable milestone in fundamental science and partly because of its
potential application to topologically fault-tolerant quantum information processing8–16. At present, the state which
is the best candidate to support quasiparticles with non-Abelian braiding statistics is the experimentally-observed
ν = 5/2 fractional quantum Hall state17–21. Efforts to observe non-Abelian anyons in this state22–29 and harness
them for quantum computation23,30–33 are predicated entirely on two assumptions: (1) the observed state is in the
same universality class as either the Moore-Read (MR) Pfaffian state34 or the anti-Pfaffian state35,36, an assumption
which is supported by numerical studies37–40. (There is another non-Abelian candidate, the so-called SU(2)2 NAF
state41, for this plateau, but it is not supported by numerics.) (2) Quasiparticle excitations above these ground
states are non-Abelian anyons. In order for this assumption to hold, it is necessary for there to be a degenerate
set of n-quasiparticle states and for quasiparticle braiding to transform these states into each other in such a way
that different braiding transformations do not commute. Moore and Read34 conjectured that the MR Pfaffian state
is non-Abelian while Greiter, Wen, and Wilczek42 argued that it is Abelian. It was subsequently shown by Nayak
and Wilczek 43 and by Read and Rezayi44 that there is a 2⌊

n
2 ⌋−1-fold degenerate set of n quasiparticle states. To

show that assumption 2 is correct, it is further necessary to show that these degenerate states are transformed into
each other by non-commuting transformations enacted by quasiparticle braiding. Several different arguments43,45–54

strongly support this hypothesis, but a proof has been missing until now. By “proof,” we mean an argument that
relies on no unproven assumptions beyond the existence of an excitation gap and the existence of a screening phase for
single-component plasmas with uniform neutralizing background and plasma coupling Γ . 140 (which is very strongly
supported by numerical studies55) and, therefore, is at the same level of rigor as the Berry’s phase calculation for
quasiparticles in the ν = 1/3 Laughlin state56. In this paper, we supply such a proof by mapping matrix elements
of the MR Pfaffian state to the partition function of a classical multi-component 2D plasma, possibly with magnetic
charges. Our derivation extends and completes a partial result obtained in Ref. 45.

One approach to the calculation of the braiding statistics of quasiparticles in fractional quantum Hall states is based
on an idea due to Moore and Read34. These authors proposed to use the conformal blocks of conformal field theories
(CFTs) as trial wavefunctions for fractional quantum Hall effect states. The conformal blocks are the holomorphic
parts of correlation functions. Unlike correlation functions, conformal blocks are not single-valued. The conformal
blocks which are used as trial wavefunctions for fractional quantum Hall effect states are single-valued in electron
coordinates but are not single-valued in the coordinates of the quasiparticles, and it was conjectured that the properties
of the conformal blocks under analytic continuation of the quasiparticle coordinates define their non-Abelian statistics.

However, as emphasized by Blok and Wen57, the analytic continuation properties of wavefunctions are only part
of the story. An additional contribution to the statistics is given by the Berry’s matrix56–60. Wavefunction analytic
continuation only gives the quasiparticle statistics correctly if the conformal blocks, as electron wavefunctions, have
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matrix elements which are independent of the quasiparticle coordinates (when they are well-separated). This includes,
but is not limited to, the diagonal matrix elements, which are the wavefunctions’ norms. When this condition is
satisfied, the Berry’s matrix is trivial, apart from a term which accounts for the Aharonov-Bohm phase due to the
(charged) quasiparticles’ motion in the magnetic field. This is because the wavefunctions are holomorphic in the
quasihole coordinates, except for the Gaussian factors (which give rise to the resulting Aharonov-Bohm terms).

The effective field theory of a fractional quantum Hall state is expected to be a Chern-Simons theory. Chern-
Simons theories are related to conformal field theories61: the Hilbert space of a Chern-Simons theory with fixed
non-dynamical charges at points η1, η2, . . . , ηn is equal to the vector space of conformal blocks in an associated CFT
with primary fields at η1, η2, . . . , ηn. Thus, if the multi-quasiparticle wavefunctions of a fractional quantum Hall state
can be identified with the conformal blocks of a CFT, it is very natural to conclude that this fractional quantum Hall
state is in the universality class of the associated Chern-Simons theory. In fact, one can hardly imagine any other
possibility. But this identification is only correct if the braiding properties of the multi-quasiparticle wavefunctions
are equal to those of the Chern-Simons theory. This, in turn, requires the Berry matrix (in the basis given by the
conformal blocks) to be trivial.

Thus, the logic may be summarized as follows43,52. Let us suppose that the quasiparticles of some quantum Hall
state have the special property that when n quasiparticles are present at arbitrary fixed positions η1, . . . , ηn, there is
a q-dimensional space Vn of degenerate states of the system. Now let us suppose that Ψα(ηµ; zi), α = 0, 1, . . . , q − 1
are the q conformal blocks of a correlation function in a CFT, where the zis are coordinates of the N electrons.
(We choose the CFT and the operators in the conformal block so that they are single-valued in the zis, but possibly
multi-valued in the ηµs.) If the Ψα(ηµ; zi)s form a basis for Vn, then we wish to show that the overlap integrals

Gα,β(ηµ, η̄µ) ≡
∫ N
∏

k=1

d2zk Ψ̄α(η̄µ; z̄i)Ψβ(ηµ; zi). (1)

are diagonal and independent of the quasiparticle positions ηµ, in the limit where the ηµs are far apart. If we can
show this, then the braiding properties of the n quasiparticles are determined by the analytic continuation properties
of the Ψα(ηµ; zi)s.

There is significant previous literature which addresses this problem by analytic or numerical methods43,45,48,51–54.
In Section XII, we will discuss these previous results and clarify their relation to the result of this paper.

In this paper, we prove that, for up to six quasiholes in the MR Pfaffian state, the overlap integrals of Eq. (1) are
diagonal and independent of the quasiparticle positions ηµ, in the limit in which the ηµs are far apart. Specifically,
we show that

Gα,β(ηµ, η̄µ) = Cδαβ +O
(

e−|ηµ−ην |/ℓ
)

, (2)

which allows us to define orthonormal states |Ψα (ηµ)〉 by dividing by the common normalization constant

〈zi|Ψα (ηµ)〉 ≡ G−1/2
α,α (ηµ, η̄µ)Ψα(ηµ; zi). (3)

We obtain Eq. (2) by expressing the desired matrix elements in the form of the partition function of a classical plasma
and relying on the screening property of a plasma, thereby extending Laughlin’s plasma analogy62 arguments to these
non-Abelian states. Our derivation completes the program started in Ref. 45, where such a plasma representation
was used to prove that the diagonal sum of norms in Eq. (1),

∑

αGα,α is a constant independent of the quasiparticle
positions (so long as they are well-separated). The methods used there did not, however, allow one to prove that their
norms are independently constant and equal, nor that off-diagonal matrix elements Gα,β are zero. We accomplish
this by extending and elaborating on the methods proposed in Ref. 45. One of the important steps in our approach
is the explicit construction, via the Coulomb gas formalism63–65, of Ising model correlation functions including both
order and disorder operators, shown in Eq. (132). To our knowledge, this expression has not previously appeared in
the literature and is interesting in its own right.

Although we can directly calculate the Berry’s matrix only for the two-, four-, and six-quasiparticle wavefunctions
in this way, our results determine the braiding properties of arbitrary numbers of quasiparticles. We show that the
enumeration of multi-quasihole states43 (which can be done without computing the integrals in Eq. (1)) allows us to
compute the braiding statistics of an arbitrary number of quasiparticles, given a mild assumption of locality. This
derivation uses special properties of the MR Pfaffian state and works in a particular basis (the “qubit basis”), but
does not need any further assumptions beyond the existence of a gap in the energy spectrum.

We can also utilize similar locality assumptions in the form of the more refined formalism of anyon models, which
describes a topological phase with a braided tensor category. For this, the topological structure is specified by the
number of topologically-distinct quasiparticle species, their fusion algebra, the F -symbols (which encode associativity
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of fusion), and the R-symbols (which encode braiding). As we discuss, the F - and R-symbols can be determined
merely from the two- and four-quasihole wavefunctions. Thus, the underlying structure of a topological phase allows
us to bootstrap from the four-quasiparticle case to an arbitrary number of quasiparticles. In contrast to the previous
derivation in the qubit basis, this derivation economizes on the necessary input, i.e. not requiring six-quasiparticle
wavefunctions, because it allows (in fact incorporates) changes of basis, in the form of the F -symbol transformations.

The results of our paper also apply to the anti-Pfaffian wavefunction, constructed as the particle-hole conjugate of
the MR Pfaffian state35,36. They similarly apply to the Bonderson-Slingerland (BS) hierarchical states66 constructed
over these, which provide candidates for all the (other) observed quantum Hall plateaus in the second Landau level.
In particular, this includes BS candidate states for ν = 12/5, for which there is also some numerical evidence67.

The methods we develop here should also be generalizable to other quantum Hall states, most importantly to the
Read-Rezayi (RR) series of parafermion states68. Doing this in practice requires a careful development of the Coulomb
gas construction for these states, which has not yet been accomplished, and overcoming additional obstacles that do
not exist for the Ising-type states analyzed in this paper. This will remain the subject of future work.

This paper is organized as follows. In Section II, we review the derivation of the Berry’s matrix for adiabatic
processes involving degenerate states. In Section III, we discuss adiabatic transport of quasiparticles in the MR state,
and describe the problem to be solved. In Section IV, we discuss Laughlin’s plasma analogy arguments. In Section V,
we review the Coulomb gas construction of the Ising CFT, following Ref. 64. In Section VII, we reproduce the result
of Ref. 45 on the sum of the norms of multi-quasiparticle wavefunctions. In Section VIII, we extend this Coulomb gas
representation to arbitrary matrix elements of the four-quasihole and six-quasihole wavefunctions, thus proving that
they are orthogonal with equal norms. In Section IX, we show how these results determine the non-Abelian statistics
for an arbitrary number of quasiparticles. In Section X, we use the plasma analogy to show that two wavefunctions
(with quasiparticles) are orthogonal if they do not have matching types of quasiparticles at the same coordinates.
Finally, in Section XI, we use the previous results to determine the statistics of quasiparticles in the anti-Pfaffian
state and BS states. In Section XII, we discuss previous works that have made progress towards establishing the
braiding statistics of the MR state. In Appendix A, we specify the normalization conventions that we use for free
bosons. In Appendix B, we review Mathur’s procedure65 for relating products of contour integrals to 2D integrals
in the Coulomb gas representation of CFTs. This relation plays a crucial role in our analysis. In Appendix C, we
use the Coulomb gas representation to compute the (multi-valued) correlation function of two order and two disorder
operators in the Ising model. In Appendix D, we discuss the behavior of electric and magnetic operators in the
plasma phase of a two-component Coulomb gas. In Appendix E, we review and generalize the Debye-Hückel theory
for application to the plasmas that arise in this paper. In Appendix F, we compute the 2

n
2 −1 conformal blocks of

n σ fields (where n is even) and an arbitrary number N of ψ fields in the Ising model; this gives a preferred basis
for the q = 2

n
2 −1 degenerate states of n quasiholes in the MR Pfaffian state. The Berry’s matrix is trivial in this

basis and braiding properties are given explicitly by the analytic continuation properties of these wavefunctions. In
Appendix G, we give an incomplete argument that would allow one to compute the braiding statistics for an arbitrary
number of quasiparticles directly from the wavefunctions with arbitrary numbers of quasiparticles. Although, as we
show in Section IX, this is not necessary, it would nevertheless be a particularly simple and elegant route to deriving
quasiparticle statistics.

II. BERRY’S MATRIX

In this section, we review the derivation of Berry’s matrix58–60 for an adiabatic process when there are energy
degeneracies. We consider the Hamiltonian Ĥ (R1(t), . . . , Rn(t)), which depends on a set of parameters Rµ(t) that
are varied in time t. All states evolve according to the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ (t) |Ψ(t)〉 . (4)

One can define orthonormal energy eigenstates |α(R1, . . . , Rn)〉 for the Hamiltonian at particular values of the pa-
rameters Rµ, such that

Ĥ (Rµ) |α(Rµ)〉 = Eα (Rµ) |α(Rµ)〉 (5)

and 〈α(Rµ)| β(Rµ)〉 = δαβ . When the parameters Rµ are varied with t, we will leave the Rµ dependence of quantities

implicit, e.g. writing Ĥ (t) and |α(t)〉. We consider a Hamiltonian such that the Hilbert space splits into subspaces
of degenerate energies H(t) =

∑

E(t) HE(t). We now focus on one of these subspaces HE0(t) (e.g. the subspace of

ground-states), and assume that the energy gap between it and the other subspaces does not close during the adiabatic
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process. The adiabatic theorem tells us that if we start at t = 0 with a basis state |ψα(0)〉 = |α(0))〉 ∈ HE0(0), then
the time evolved state |ψα(t)〉 will be in the HE0(t) subspace, and can thus be written in the form

|ψα(t)〉 = e−
i
~

R t
0
E0(t

′)dt′U0(t) |α(t)〉 (6)

where U0 is the Berry’s matrix, which is a generalization of Berry’s phase. It is a unitary transformation in the E0

subspace, i.e. U0(t) : HE0(t) → HE0(t), such that U0(0) = 11, and the dynamical phase exp
[

− i
~

∫ t

0 E0(t
′)dt′

]

has been

separated from the Berry’s matrix term. Since it is a matrix, the Berry’s matrix can potentially exhibit non-Abelian
behavior. Taking the time-derivative of Eq. 6 and taking an inner product with another time-evolved state in HE0(t),
we have:

i~ 〈ψα(t)| d
dt

|ψβ(t)〉 = E0(t) 〈α(t)| β(t)〉 + i~ 〈α(t)|U−1
0 (t)

dU0(t)

dt
|β(t)〉 + i~ 〈α(t)| d

dt
|β(t)〉 (7)

Re-writing the left-hand-side by using Eq. (4), one finds

i~ 〈ψα(t)| d
dt

|ψβ(t)〉 = 〈ψα(t)| Ĥ (t) |ψβ(t)〉 = E0(t) 〈α(t)| β(t)〉 . (8)

Combining Eqs. (7) and (8), we obtain

〈α(t)|U−1
0 (t)

dU0(t)

dt
|β(t)〉 = −〈α(t)| d

dt
|β(t)〉 . (9)

Solving this expression for U0, one finds

U0(t) = P exp

[

i

∫ t

0

A(t′)dt′
]

= 11 +

∞
∑

n=1

in
∫ t

0

dtn

∫ tn

0

dtn−1 . . .

∫ t2

0

dt1A(t1) . . .A(tn) (10)

where P stands for path-ordering (putting operators to the right of those with smaller t and to the left of those with
larger t), and we have defined the Berry’s connection for the HE0(t) subspace

Aα,β(t) ≡ i 〈α(t)| d
dt

|β(t)〉 =

n
∑

µ=1

ARµ

α,β(t)
dRµ(t)

dt
(11)

ARµ

α,β(t) ≡ i 〈α (R1, . . . , Rn)|
∂

∂Rµ
|β (R1, . . . , Rn)〉 . (12)

Defined this way, A is Hermitian.
The term U0(t) only has a gauge-invariant meaning if the Hilbert space is the same as the original one. For this, one

must make a circuit in configuration space. Let us consider an adiabatic process with t running from 0 to tf (where tf
is large enough compared to the inverse of the energy gap that the process is adiabatic), where HE0(tf ) = HE0(0) and
the path in configuration space is a closed loop, which includes processes that exchange identical (quasi-)particles.
Even though HE0(tf ) = HE0(0), it is possible to have |α(tf )〉 6= |α(0)〉, e.g. if we have defined |α (R1, . . . , Rn)〉 which is
multi-valued as a function of the Ri. However, they must be related through a transformation B : HE0(0) → HE0(0),
defined by

Bα,β ≡ 〈α(0)| β(tf )〉 (13)

so that |α(tf )〉 = B |α(0)〉. For such an adiabatic process, we can now write the time-evolved state at t = tf in terms
of operators acting on the initial state |ψα(0)〉 = |α(0)〉 ∈ HE0(0)

|ψα(tf )〉 = e−
i
~

R tf
0 E0(t

′)dt′P exp

[

i

∫ tf

0

A(t′)dt′
]

B |ψα(0)〉 , (14)

and thus, it may be applied to an arbitrary initial state |Ψ(0)〉 =
∑

α cα |ψα(0)〉 =
∑

α cα |α(0)〉 in the subspace HE0(0)

|Ψ(t = tf )〉 = e−
i
~

R tf
0 E0(t′)dt′P exp

[

i

∫ tf

0

A(t′)dt′
]

B |Ψ(0)〉 . (15)

If we never consider states outside the HE0(t) subspace, we can obviously ignore the common dynamical phase. Thus,
we see that the evolution of the initial state in the HE0(0) subspace under an adiabatic process is (apart from the
common dynamical phase) composed of the Berry’s matrix and the wavefunction transformation B.
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III. QUASIHOLE WAVEFUNCTIONS AND NON-ABELIAN STATISTICS

In this paper, we will be discussing a set of wavefunctions and their braiding properties, i.e. the evolution under
adiabatic exchange of quasiparticles in two-dimensional systems. We will make little reference to the Hamiltonian of
the system, other than to assume that the Hamiltonian has a gap above its ground state(s). The wavefunctions which
we discuss can be regarded as trial wavefunctions for the Hamiltonian of electrons in a magnetic field interacting
through the Coulomb interaction. Alternatively, they can be viewed as exact eigenstates of electrons in the lowest
Landau level at filling fraction ν = 1/M interacting through a special model Hamiltonian with three-body interactions,

H = HM
3 . (16)

For the case of bosons at ν = 1, the Hamiltonian has the form

H1
3 = λ

∑

ijk

δ2(zi − zj)δ
2(zi − zk). (17)

where λ > 0. For the case of fermions at ν = 1/2, Fermi statistics dictates a more complicated form38,42:

H2
3 = λ

∑

i,j,k

Sijk{∂4
i ∂

2
j }δ2(zi − zj)δ

2(zj − zk). (18)

where Sijk is a symmetrizer. Our focus in this paper will be wavefunctions with an even number n of quasiholes. For
the model Hamiltonians in Eq. (16), the n quasihole wavefunctions which we will discuss are zero-energy eigenstates.
(This is typical for such ultra-local Hamiltonians; quasiparticles cost finite energy, so there is a finite energy cost for
a quasiparticle-quasihole pair.) As we will see, when we fix the positions η1, η2, . . . , ηn of these quasiholes, we will
still have a 2

n
2 −1-fold degenerate space of states spanned by Ψα, α = 0, 1, . . . , 2

n
2 −1 − 1. For the sake of precision, let

us momentarily assume that the system is on a sphere of fixed area and that the number electrons is fixed (and that
the magnetic field is tuned to accommodate n quasiparticles). Then the only assumption that we will need about the
spectrum of the Hamiltonian of Eq. (16) is that all other states with quasiholes at η1, . . ., ηn will be separated from
span(Ψα) by a finite energy gap.

When we consider states with quasiholes, we will need to augment this Hamiltonian with a potential which pins
the quasiholes at fixed positions:

H = HM
3 +HPinning. (19)

This is necessary to guarantee that there is a gap in the multi-quasihole case; otherwise, it would cost no energy to
move the quasiholes to other positions. An elegant choice of pinning potentials is constructed in Ref. 54. However, the
Berry’s matrix is computed solely from a set of wavefunctions, with no explicit reference to the Hamiltonian, apart
from the assumption that it provides a gap. Thus, the pinning potential, though important as a matter of principle,
is not, as a practical matter, important in its details for our calculation.

The MR Pfaffian ground state wavefunction for an even number N of particles is given by34:

Ψ (z1, . . . , zN) = Pf

(

1

zi − zj

) N
∏

i<j

(zi − zj)
M
e
− 1

4

N
P

i=1

|zi|2
. (20)

M is a positive integer, taking odd values if the particles are bosons (which may occur, e.g. for neutral bosons in a
rapidly rotating trap69) and even values if they are fermions (e.g. electrons in the quantum Hall effect). Throughout

most of the paper, we set the magnetic length ℓB =
√

~c/eB to 1, as we have done in Eq. (20), and will only
reconstitute it when it provides necessary clarification. The symbol Pf stands for Pfaffian:

Pf (Ai,j) ≡
1

N !!

∑

σ∈SN

sgn(σ)

N/2
∏

k=1

Aσ(2k−1),σ(2k) (21)

where A is an antisymmetric N ×N matrix (where N is even). The square of the Pfaffian of an antisymmetric matrix

is equivalent to the determinant, i.e. [Pf (Ai,j)]
2

= det (Ai,j). This wavefunction has the same form as the BCS
wavefunction in real-space34,42 multiplied by a Laughlin-Jastrow factor.

The wavefunction in Eq. (20) is the unique exact ground state of the Hamiltonian in Eq. (16). The M = 2 case is
an approximate ground state for electrons with Coulomb interactions at ν = 5/2 (assuming that the lowest Landau
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level of both spins is filled and the wavefunction in Eq. (20) is transposed from the lowest Landau level to the second
Landau level)37–39. The M = 1 case is an approximate ground state for neutral ultra-cold bosons in a rotating trap70.

The wavefunction in Eq. (20) can be written as a conformal block in a conformal field theory, as was first proposed
in Ref. 34. The relevant conformal field theory is a (restricted) product of two theories, one at central charge c = 1/2
describing the Pfaffian part of the wavefunction, and the other at c = 1 describing the Jastrow factor

∏

i<j(zi− zj)
M

of the wavefunction, as well as the Gaussian factor. Specifically, one writes

Ψ (z1, . . . , zN ) = 〈ψ(z1) . . . ψ(zN )〉 ×
〈

ei
√

M
2 ϕ(z1) . . . ei

√
M
2 ϕ(zN )e

−i 1

2π
√

2M

R

d2z ϕ(z)
〉

= Pf

(

1

zi − zj

)

×
N
∏

i<j

(zi − zj)
M
e
− 1

4

N
P

i=1

|zi|2
. (22)

Here ψ represents the holomorphic free Majorana fermion (the conformal dimension hψ = 1/2 operator) of the c = 1/2
Ising CFT, and ϕ is the free boson of a U(1) CFT. Various conventions can be used to describe the free boson. We
adopt the one presented in the Appendix A, with Eq. (A13) and g = 1/4.

For future reference, let us note that the c = 1 correlator is charge neutral, that is, it is invariant under the change
ϕ → ϕ+const. Indeed, under such a change, the exponential factor acquires a term N

√

M/2 − A/(2π
√

2M), where
A is the total area. However, M = A/2πN is the inverse filling fraction of the quantum Hall state, since A/2π is the

total number of available states in a Landau level which we fill with N particles, and so N
√

M/2−A/(2π
√

2M) = 0.
An excited state wavefunction depends on the positions zi of the electrons as well as the positions ηµ of the

quasiparticles. It is important to recognize that the quasiparticles’ coordinates are simply parameters of the electrons’
wavefunction (and underlying Hamiltonian), not to be treated on the same footing as the electrons’ coordinates. These
wavefunctions were constructed as eigenstates of Eq. (16) in Refs. 43,44. Given that the ground state can be expressed
as a conformal block in the c = 1

2 + 1 CFT, it is natural to try to construct wavefunctions with n (fundamental)

quasiholes in the same CFT. The natural guess34 is that they are given by:

Ψα (η1, . . . , ηn; z1, . . . , zN) = 〈σ(η1) . . . σ(ηn)ψ(z1) . . . ψ(zN )〉α
×
〈

e
i 1

2
√

2M
ϕ(η1) . . . e

i 1

2
√

2M
ϕ(ηn)

ei
√

M
2 ϕ(z1) . . . ei

√
M
2 ϕ(zN)e

−i 1

2π
√

2M

R

d2z ϕ(z)
〉

. (23)

Here σ are the holomorphic spin operators of the Ising CFT, with conformal dimension hσ = 1/16. The bosonic part
of the correlation function is chosen in such a way that the wavefunction is a polynomial function of the zi.

Notice the index α in Eq. (23). The holomorphic spin operators of the Ising CFT have many conformal blocks,
which we label by the index α. In fact, it is well-known that the total number of conformal blocks is 2

n
2 −1, thus

α = 0, 1, . . . , 2
n
2 −1 − 1. (24)

The wavefunctions Ψα represent the set of degenerate wavefunctions at fixed positions of the quasiholes and form the
basis for their non-Abelian statistics.

To find the wavefunctions of Eq. (23) explicitly, we need to evaluate the appropriate conformal blocks of the CFT.
For n = 2, there is only a single conformal block for Eq. (23); evaluating it for N even, we obtain the two-quasihole
wavefunction:

Ψ(η1, η2; z1, . . . , zN) = (η1 − η2)
1

4M − 1
8 Pf

(

(η1 − zi) (η2 − zj) + (i↔ j)

zi − zj

) N
∏

i<j

(zi − zj)
Me

− 1
8M (|η1|2+|η2|2)− 1

4

N
P

i=1

|zi|2
.

(25)
This wavefunction is, indeed, a zero-energy eigenstate of the Hamiltonian in Eq. (16) (see Refs. 43,44 for details). Since
there is only a single generator for the two-particle braid group, a counterclockwise exchange of the two particles, non-
Abelian effects cannot be seen – they require at least two different braids which do not commute with each other. The
effect of braiding can, therefore, only be a phase which is acquired by the wavefunction in Eq. (25). This wavefunction
is single-valued in electron coordinates, as it must be, but is multi-valued in the quasihole coordinates. Taking the
analytic continuation of this wavefunction at face value, we would conclude that the effect of a counterclockwise
exchange of two quasiholes in this state is a phase exp

[

iπ
(

1
4M − 1

8

)]

. However, this conclusion is premature, because
we must also take into account the Berry’s matrix (which, in this case, is simply a phase).

Before discussing the Berry’s matrix, let us consider the four-quasihole wavefunctions and, briefly, the general n
quasihole wavefunctions (with n even). In the four-quasihole case, we are faced with evaluating Eq. (23) for n = 4.
This calculation is more difficult, but was accomplished in Ref. 43. For N even, it results in the following two
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wavefunctions

Ψ0 (η1, η2, η3, η4; z1, . . . , zN) =

4
∏

µ<ν

η
1

4M − 1
8

µν
(η13η24)

1
4

√

1 +
√

1 − x

(

Ψ(13)(24) +
√

1 − xΨ(14)(23)

)

e
− 1

8M

4
P

µ=1
|ηµ|2

,

Ψ1 (η1, η2, η3, η4; z1, . . . , zN) =

4
∏

µ<ν

η
1

4M − 1
8

µν
(η13η24)

1
4

√

1 −
√

1 − x

(

Ψ(13)(24) −
√

1 − xΨ(14)(23)

)

e
− 1

8M

4
P

µ=1
|ηµ|2

(26)

where the so-called anharmonic ratio x, well-known in CFT, is given by

x =
η12η34
η13η24

≡ (η1 − η2) (η3 − η4)

(η1 − η3) (η2 − η4)
. (27)

Here, we have introduced the notation ηµν ≡ ηµ − ην , and the shorthand Ψ(ab)(cd) for

Ψ(ab)(cd) = Pf

(

(ηa − zi)(ηb − zi)(ηc − zj)(ηd − zj) + (i↔ j)

zi − zj

)

∏

i<j

(zi − zj)
M e

− 1
4

N
P

i=1

|zi|2
(28)

The wavefunctions Ψ(13)(24) and Ψ(14)(23) are zero-energy eigenstates of Eq. (16) and they form a basis of the two-

dimensional space of states with four quasiholes at fixed positions43. The state Ψ(12)(34) is not linearly-independent

of these two because of the identity43:

Ψ(12)(34) − Ψ(13)(24) = (1 − x)
(

Ψ(12)(34) − Ψ(14)(23)

)

. (29)

Even though Ψ(13)(24) and Ψ(14)(23) form a basis of the four quasihole Hilbert space, they do not provide an orthonormal
basis. In this paper, we demonstrate that the linear combinations Ψ0 and Ψ1 defined in Eq. (26) are, in fact, an
orthogonal basis. Moreover, we show that Ψ0 and Ψ1 have the same norms (though we do not compute the precise
value of their overall normalization constant), and thus can provide an orthonormal basis by dividing by a common
normalization constant.

It has been argued since Ref. 34 that using the wavefunctions in Eq. (26) allows us to read off the non-Abelian
statistics of the quasiparticles in a straightforward manner. Indeed, if the quasihole at η1 is exchanged with the
quasihole at η2 in a counterclockwise fashion (or, equivalently, if the quasiholes at η3 and η4 undergo counterclockwise
exchange), a straightforward analytic continuation of the wavefunctions leads to the transformation rules:

η1 ⇆ η2 or η3 ⇆ η4 : Ψ0 7→ eiπ(
1

4M − 1
8 )Ψ0, Ψ1 7→ eiπ(

1
4M − 1

8 )iΨ1. (30)

To see this, we note that 1 − x = η14η23/η13η24 7→ 1
1−x and Ψ(13)(24) ↔ Ψ(14)(23) under this exchange. We see that

the phase exp
[

iπ
(

1
4M − 1

8

)]

acquired by Ψ0 is the same as that acquired from counterclockwise exchange of the two
quasiholes in the n = 2, N even case.

On the other hand, if the quasiparticles at η2 and η3 undergo counterclockwise exchange (or if the ones at η1 and
η4 are exchanged), then we get

η2 ⇆ η3 or η1 ⇆ η4 : Ψ0 7→ eiπ(
1

4M + 1
8 ) Ψ0 − iΨ1√

2
, Ψ1 7→ eiπ(

1
4M + 1

8 )−iΨ0 + Ψ1√
2

. (31)

Finally, if the quasiparticles at η1 and η3 undergo counterclockwise exchange (or if the ones at η2 and η4 are exchanged),
then we get

η1 ⇆ η3 or η2 ⇆ η4 : Ψ0 7→ eiπ(
1

4M + 1
8 )Ψ0 + Ψ1√

2
, Ψ1 7→ eiπ(

1
4M + 1

8 )−Ψ0 + Ψ1√
2

. (32)

These exchange transformations are more difficult to show, but can be checked using algebraic manipulations as in
Ref. 43. These three exchange operations Eqs. (30), (31), and (32) constitute the building blocks of the non-Abelian
statistics of states with four quasiholes.

The explicit form of the conformal block wavefunctions for n > 4 was not previously calculated. In Appendix F,
we show that they have the following form:

Ψ(p1,p2,...,pn/2
) =







∏

i<j

η2i−1,2j−1 η2i,2j
∏

i,j

η2i−1,2j







1
8 





∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l







−1/2

×







∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l Ψ(1+r1,3+r2,...)(2−r1,4−r2,...)







∏

µ<ν

η
1

4M
µν e

− 1
8M

P

µ
|ηµ|2

(33)
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The indices take the values pi = 0, 1, with the constraint that
∑n/2

i=1 pi is even, so there are 2
n
2 −1 such wavefunctions.

(If we were to consider the case where the number of electrons N was odd instead of even, then we would instead

require
∑n/2

i=1 pi to be odd.) Here, xk,l ≡ η2k−1,2l η2l−1,2k

η2k−1,2l−1 η2k,2l
and Ψ(1+r1,3+r2,...)(2−r1,4−r2,...) is a generalization of the

notation in Eq. (28) which was introduced in Ref. 43 and is explained in Appendix F. As discussed there, the
wavefunctions of Eq. (33) form a basis of the 2

n
2 −1-dimensional space of zero-energy n quasihole eigenstates of the

Hamiltonian in Eq. (16). For the special case n = 4, Eq. (33) is identical to Eq. (26). The analytic continuation
properties of wavefunctions with an arbitrary number of quasiholes can be read off from Eq. (33).

However, calculating the explicit analytic continuation of the wavefunctions is not, in principle, sufficient to establish
the statistics of quasiholes. One also needs to calculate the Berry’s connection. It is defined as

Aα,β(t) =

n
∑

µ=1

(

Aηµ

α,β

dηµ
dt

+ Aη̄µ

α,β

dη̄µ
dt

)

(34)

Aηµ

α,β = i

∫ N
∏

k=1

d2zk
Ψ̄α

G
1/2
α,α

∂

∂ηµ

(

Ψβ

G
1/2
β,β

)

(35)

Aη̄µ

α,β = i

∫ N
∏

k=1

d2zk
Ψ̄α

G
1/2
α,α

∂

∂η̄µ

(

Ψβ

G
1/2
β,β

)

, (36)

where the overlap matrix is defined by:

Gα,β(ηµ, η̄µ) ≡
∫ N
∏

k=1

d2zk Ψ̄α(η̄µ; z̄i)Ψβ(ηµ; zi). (37)

We have allowed for the wavefunctions in Eqs. (35) and (36) to be un-normalized, since we will not determine the overall
normalization constant of the wavefunctions we work with in this paper. When the quasiparticles are adiabatically
transported along the coordinate paths ηµ(t), forming a closed circuit in parameter space as t goes from 0 to tf , an
arbitrary state Ψ in the (2

n
2 −1-dimensional) degenerate ground-state space is transformed under the following unitary

evolution, combining the explicit transformation of the wavefunctions resulting from analytic continuation with the
Berry’s matrix transformation resulting from the Berry’s connection (see Section II for more details)

|Ψ(ηµ(t = tf ))〉 = P exp

[

i

∫ tf

0

A(t)dt

]

B |Ψ(ηµ(t = 0))〉 , (38)

where P stands for path-ordering, and B is the unitary transformation describing the analytic continuation of or-
thonormal states

|Ψα(ηµ(t = tf ))〉 =
∑

β

Bβ,α |Ψβ(ηµ(t = 0))〉 . (39)

(We have dropped the overall dynamical phase, since it is the same for all states in the ground-state space.) For
example, the analytic continuation matrices corresponding to the exchanges in Eqs. (30), (31), and (32) (assuming
the wavefunctions have equal norms) are, respectively, given by

B(1⇆2) = eiπ(
1

4M − 1
8 )
[

1 0
0 i

]

, B(2⇆3) = eiπ(
1

4M + 1
8 ) 1√

2

[

1 −i
−i 1

]

, B(1⇆3) = eiπ(
1

4M + 1
8 ) 1√

2

[

1 −1
1 1

]

. (40)

We will show that the wavefunctions in Eq. (26) are orthogonal for large separations |ηµ − ην | → ∞, such that

Gα,β = Cα δαβ + O
(

e−|ηµ−ην |/ℓ), (41)

where Cα and ℓ are η-independent constants. This implies that the Berry’s connection is zero, up to (trivial) terms
that give the Abelian Aharonov-Bohm phase, as may be seen from the following calculation:

Aηµ

α,β = i

∫ N
∏

k=1

d2zk
Ψ̄α

G
1/2
α,α

∂

∂ηµ

(

Ψβ

G
1/2
β,β

)

= i
∂

∂ηµ

(

∫ N
∏

k=1

d2zk
Ψ̄α

G
1/2
α,α

Ψβ

G
1/2
β,β

)

− i

∫ N
∏

k=1

d2zk
∂

∂ηµ

(

Ψ̄α

G
1/2
α,α

)

Ψβ

G
1/2
β,β
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= i
∂

∂ηµ

(

G−1/2
α,α G

−1/2
β,β Gα,β

)

− iG−1/2
α,α G

−1/2
β,β

∫ N
∏

k=1

d2zk

(−η̄µ
8M

)

Ψ̄αΨβ + O
(

e−|ηµ−ην |/ℓ)

= i
η̄µ
8M

δαβ + O
(

e−|ηµ−ην |/ℓ) (42)

We have integrated by parts to go from the first line to the second. Similarly, we have:

Aη̄µ

α,β = i

∫ N
∏

k=1

d2zk
Ψ̄α

G
1/2
α,α

∂

∂η̄µ

(

Ψβ

G
1/2
β,β

)

= iG−1/2
α,α G

−1/2
β,β

∫ N
∏

k=1

d2zk

(−ηµ
8M

)

Ψ̄αΨβ + O
(

e−|ηµ−ην |/ℓ)

= −i ηµ
8M

δαβ + O
(

e−|ηµ−ην |/ℓ) (43)

In Eqs. 42 and 43, we have used the fact that the dependence of Ψ̄α on ηµ and Ψα on η̄µ comes only through

the Gaussian factor exp(− 1
8M |ηµ|2) (ηµ and η̄µ are considered independent of each other for these purposes). The

resulting Berry’s connection is diagonal in the space of wavefunctions, giving rise to the Berry’s matrix

P exp

[

i

∫ tf

0

dtA(t)

]

= exp

[

− 1

8M

n
∑

µ=1

∫ tf

0

dt

(

η̄µ
dηµ
dt

− ηµ
dη̄µ
dt

)

]

11 + O
(

e−|ηµ−ην |/ℓ), (44)

which is the same for all wavefunctions in the degenerate subspace. When the quasiparticle coordinates are taken
around a closed loop (or the exchange paths of identical quasiparticles form a closed loop), this term is equal to the
phase exp

(

−i A2M
)

, which is proportional to the total enclosed area A encircled by the quasiparticles in the counter-
clockwise sense (area encircled in the clockwise sense contributes negatively to A). This is unlike particle braiding
statistics which depends only on the enclosed particles and not on the area. By reconstituting the the magnetic length
ℓB =

√

~c/eB (which we set equal to 1) in this expression, we see that this phase is simply the Aharonov-Bohm phase

exp

[

− 1

8Mℓ2B

n
∑

µ=1

∫ tf

0

dt

(

η̄µ
dηµ
dt

− ηµ
dη̄µ
dt

)

]

= exp

(

−i A

2Mℓ2B

)

= exp

(

−i e

2M

BA

~c

)

= exp

(

i
qΦ

~c

)

(45)

acquired by a charge q = e/2M particle encircling a total flux Φ = −BA due to the background magnetic field−→
B = −Bẑ. (We use the convention where zj = xj+iyj, which corresponds to holomorphic wavefunctions for electrons

of charge −e in a background magnetic field
−→
B = −Bẑ.) This reconfirms the interpretation of the given wavefunctions

as corresponding to charge e/2M quasiholes. As long as Eq. (41) is fulfilled, however, no other contributions arise in
the Berry’s matrix. In particular, it does not affect the non-Abelian statistics, which comes from the explicit analytic
continuation of quasiparticle coordinates in the wavefunctions.

There are other length scales one should be aware of when considering non-Abelian quasiparticles. In general,
topologically non-trivial excitations can tunnel between non-Abelian quasiparticles, which has the effect of splitting
the degeneracy of their states71. Such tunneling is exponentially suppressed with separation distance, and thus
introduces correlation length scales associated with the tunneling of topological excitations and determined by the
(non-universal) microscopic physics of the system. As long as the quasiparticles are farther apart than these correlation
lengths, the topological degeneracies are preserved (up to exponentially suppressed corrections), but otherwise the
notion of the non-Abelian state space and braiding statistics transformations upon it breaks down. For σ non-Abelian
quasiparticles in Ising-type topologically ordered systems, the relevant correlation length is ξψ , which corresponds
to tunneling of the ψ excitation, i.e. a Majorana fermion. For p-wave superconductors, ξψ is identified as the
superconducting coherence length72. For the MR state, ξψ corresponds to tunneling of the neutral fermion (ψ0 in the
notation of Section IXB). Numerical studies53 provide an estimate of ξψ ≈ 2.3ℓB for the MR state.

The wavefunctions in Eq. (26) were derived as correlators of some CFT. There is no reason a priori to expect that
they will form an orthogonal basis obeying Eq. (41) with respect to the inner product of non-relativistic electrons in
a magnetic field. It is the goal of this paper to show that this is indeed so.

IV. LAUGHLIN’S PLASMA ARGUMENT

We proceed by first recalling an argument due to Laughlin which he used to deduce the normalization of the
Laughlin wavefunction with N electrons and n quasiholes in the ν = 1/M quantum Hall effect. Such a wavefunction
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has the form

Ψ 1
M

(η1, . . . , ηn; z1, . . . , zN) =

n
∏

µ<ν

(ηµ − ην)
1

M

n
∏

µ=1

N
∏

i=1

(ηµ − zi)

N
∏

i<j

(zi − zj)
Me

− 1
4M

n
P

µ=1
|ηµ|2− 1

4

N
P

i=1

|zi|2
. (46)

Note that the prefactor
∏

µ<ν(ηµ − ην)
1

M depends only on the quasihole coordinates ηµ and is independent of the
electron coordinates zis. Therefore, it can be regarded as part of the normalization of the wavefunction. By including
it explicitly in the definition of the wavefunction, we are anticipating that it will result in a norm of the wavefunction
that is independent of the quasihole positions. Laughlin proved that

∥

∥

∥Ψ 1
M

(ηµ; zi)
∥

∥

∥

2

≡
∫ N
∏

k=1

d2zk Ψ̄ 1
M

Ψ 1
M

= C1 + O
(

e−|ηµ−ην |/ℓ1), (47)

where C1 and ℓ1 are constants independent of ηµ. (We use the subscript 1 here to indicate quantities that correspond
to the one-component plasma and to differentiate them from similar quantities occurring elsewhere in the paper.)
The proof proceeds as follows. One observes that the normalization integral Eq. (47) can be rewritten as

∥

∥

∥Ψ 1
M

∥

∥

∥

2

=

∫ N
∏

k=1

d2zk Ψ̄ 1
M

Ψ 1
M

=

∫ N
∏

k=1

d2zk e
−Φ1/T = e−F/T (48)

Φ1 = −
n
∑

µ<ν

Q2

M2
log |ηµ − ην | −

n
∑

µ=1

N
∑

i=1

Q2

M
log |ηµ − zi| −

N
∑

i<j

Q2 log |zi − zj|

+
Q2

4M2

n
∑

µ=1

|ηµ|2 +
Q2

4M

N
∑

i=1

|zi|2 , (49)

where T = Q2/2M . We note that the two-dimensional Coulomb interaction between two charges q1 and q2 separated
by a distance R is −q1q2 logR. Thus, Φ1 can be interpreted as the two-dimensional Coulomb-interaction potential
energy for N charge Q particles at zi and n charge Q/M particles at ηµ, together with a uniform neutralizing

background of charge density ρ = − Q
2πMℓ2B

[which is the uniformly negatively charged disk, represented by the

Gaussian terms in Eq. (48)]. Consequently, F becomes the free energy of a classical two-dimensional one-component
plasma at temperature T of N charge Q particles in the presence of n additional test particles of charge Q/M at the
fixed positions ηµ and a uniform neutralizing background. Clearly, one can ascribe different charge values Q to the
plasma particles, as long as one similarly alters the test charges and temperature in a compensating manner. One
convenient choice is to take T = g and Q =

√
2Mg. (Another typical choice is T = M/2 and Q = M , which gives

the test particles unit charge.) In any case, the coupling constant Γ = Q2/T = 2M remains invariant under such
redefinitions, and it is known from Monte Carlo simulations55 that the freezing point of such a classical 2D plasma is
at Γc1 ≈ 140 (i.e. Tc1 ≈ Q2/140). Hence, the plasma is a screening fluid for M . 70, whereas it freezes into a crystal
for M & 70.

It is important to distinguish this Mc1 ≈ 70 transition point between the fluid and crystal phases of the analogous
two-dimensional one-component plasma from the Mc ≈ 9 transition point between the quantum Hall fluid and
Wigner-crystal phases of the physical electron systems73. The later determines the physical range where quantum
Hall states exist, while the former indicates that plasma analogy indeed applies to the Laughlin wavefunctions for all
the physically relevant filling fractions.

When the plasma screens, the free energy F in Eq. (48) cannot depend on the positions ηµ of the Q/M test charges,
so long as |ηµ − ην | ≫ ℓ1, where ℓ1 is the Debye length of this plasma, since they are screened by the elementary

charges. The Debye length can be estimated using Debye-Hückel theory (see Appendix E) to be ℓ1 = ℓB/
√

2, where
ℓB = (eB)−1/2 is the magnetic length (which we have set to 1) of the quantum Hall system. Thus, the overlap integral
is indeed a constant, as long as the test charges are sufficiently far away from each other.

It follows that the Berry’s connection for adiabatically transporting Laughlin quasiholes using the wavefunction as
normalized in Eq. (46) is given by

Aηµ = i

∫ N
∏

k=1

d2zk
Ψ̄

‖Ψ‖
∂

∂ηµ

(

Ψ

‖Ψ‖

)

= i
∂

∂ηµ

(

‖Ψ‖−2
∫ N
∏

k=1

d2zk Ψ̄Ψ

)

− i

∫ N
∏

k=1

d2zk
∂

∂ηµ

(

Ψ̄

‖Ψ‖

)

Ψ

‖Ψ‖



11

= i
η̄µ
4M

+O
(

e−|ηµ−ην |/ℓ1), (50)

and

Aη̄µ = i

∫ N
∏

k=1

d2zk
Ψ̄

‖Ψ‖
∂

∂η̄µ

(

Ψ

‖Ψ‖

)

= −i ηµ
4M

+O
(

e−|ηµ−ην |/ℓ1). (51)

This gives a Berry’s phase of

P exp

[

i

∫ tf

0

dtA(t)

]

= exp

[

− 1

4M

n
∑

µ=1

∫ tf

0

dt

(

η̄µ
dηµ
dt

− ηµ
dη̄µ
dt

)

]

+ O
(

e−|ηµ−ην |/ℓ1)

= exp

(

−i e
M

BA

~c

)

+ O
(

e−|ηµ−ην |/ℓ1), (52)

where A is the area encircled by the quasiholes in the counter-clockwise sense. This contributes only the Aharonov-
Bohm phase exp(iqΦ/~c) acquired by charge q = e/M encircling an area A containing flux Φ = −BA from the

background magnetic field
−→
B = −Bẑ. The remaining contribution to the holonomy comes from explicit analytic

continuation of the wavefunction, which is thus the braiding statistics of the quasiparticles. This proves that the
Laughlin quasiholes are anyons that accumulate a statistical phase θ = π/M as the positions of two of them are

exchanged in a counterclockwise fashion, as can be explicitly seen from analytic continuation of the term (ηµ − ην)
1

M

in the wavefunction of Eq. (46).

V. THE COULOMB GAS CONSTRUCTION

A. Intuitive Approach

In the previous section, we saw that, although we could not explicitly evaluate the norm of the Laughlin wavefunc-
tion, we could make a strong statement about its dependence on quasihole coordinate by appealing to the screening
property of a Coulomb plasma. We would now like to construct such an argument to prove Eq. (41), but we must
first note that, taken at face value, the overlap integrals of Ψα, defined in Eq. (37), have little to do with the partition
function of a plasma. Indeed, the plasma argument seems to be custom tailored for wavefunctions which can be
written as products of differences, such as Eq. (46). The MR Pfaffian ground state wavefunction Eq. (20), or the
wavefunctions with quasihole excitations, such as Eqs. (23), (25), and (26), are in fact sums of products and cannot be
written as exponentials of logarithms. Nevertheless, there exists an approach, called the Coulomb gas construction,
which allows one to represent conformal blocks in terms of a plasma. Let us review this approach, in its particular
application for the c = 1/2 Ising CFT of interest here.

In the next subsection, we will follow the logic and notation of Feigin and Fuchs74, Dotsenko and Fateev63,75,
Felder64, and Mathur65, which is essentially an algebraic approach to the Coulomb gas construction of the minimal
models. However, there is another approach to the Coulomb gas construction which is more intuitive; we briefly
describe it here (see Refs. 76–78).

The basic question which we answer in this subsection is: why does the Ising model, which does not have a conserved
U(1) charge, have anything at all to do with a gas of electric and magnetic charges interacting logarithmically? One
way of answering this question lies in the following steps.

1. Write the Ising model partition function on the honeycomb lattice (we choose this lattice for convenience) in
the form

Z =
∑

{σi=±1}
e−βH =

∑

{σi=±1}

∏

i,j

coshβJ [1 + tanh (βJ)σiσj ] (53)

where the Ising Hamiltonian has the form H = −J∑<i,j> σiσj .

2. In any term in the expansion of the product in Eq. (53), each lattice bond can either receive a 1 or an xσiσj ,
where x = tanhβJ . Notice that any term in the expansion vanishes upon summation over {σi = ±1} unless
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every spin σi appears either zero times or twice. Consequently, the bonds which receive an xσiσj form closed
loops, and the partition function takes the form:

Z(x) =
∑

{α}
xb(α) (54)

where {α} is a configuration of loops on the honeycomb lattice and b(α) is the total length of all of the loops in

the configuration {α}. The critical point of the Ising model occurs at x = 1/
√

3.

3. Observe that this partition function can be obtained from the following local rules for the Boltzmann weights.
When a loop turns left, it acquires a factor xeiχ and when it turns right, it acquires a factor xe−iχ. Since the
number of left turns minus the number of right turns is ±6 for any closed loop, every such loop receives a factor
2xb cos 6χ after summing over both orientations of the loop, where b is the number of bonds in the loop. We
obtain the Ising model partition function (54) provided 2 cos 6χ = 1.

4. Write the critical partition function (as defined by these local weights) as a height model on the honeycomb
lattice. A height model is a model of a fluctuating interface which is specified by its local height z = φ(x, y). The
loops are interpreted as domain walls between regions with different heights (the heights live on the plaquettes
and the domain walls on the links). In the continuum limit, the energetic penalty for domain walls between
different heights becomes a gradient energy (∇φ)2 so that the partition function for the interface can be viewed
as a quantum field theory for a scalar field φ.

5. Write the height model as a free bosonic field φ (i.e. as a Coulomb gas) with stiffness g = 1 − 6χ
π = 4/3

together with a coupling (1 − g) = −1/3 to the curvature R. (Note that we had to take −π < 6χ < 0 in order
to obtain the critical point of the Ising model; taking 0 < 6χ < π would give us the low-temperature fixed
point.) The stiffness gives the correct energy penalty for a domain wall. The background charge is necessary
because the number of left turns minus the number of right turns will be different from ±6 around a point of
non-zero curvature. For the honeycomb lattice on the plane, this reduces to a background charge at infinity
2(1 − g) = −2/3.

6. In terms of the bosonic field, φ, the effective action of the height model has a marginal operator w e−2iφ which
enforces the fact that the heights take values that are integral multiples of π (which would otherwise be lost
in the passage to the continuum limit). In fact, the term which enforces the integrality of the heights is more
complicated. We have kept only the most relevant term in its Fourier expansion, which is marginal; the other
terms are irrelevant. Thus, the effective action takes the form:

S =
g

4π

∫

d2x (∇φ)2 +
i(1 − g)

4π

∫

d2xRφ + w

∫

d2x e−2iφ + . . . (55)

The . . . denotes other (irrelevant) terms in the Fourier expansion of the potential term which enforces integral
heights; we have kept only the marginal term. Rescaling the field φ→ 2

√
gφ, the effective action takes the form:

S =
1

16π

∫

d2x (∇φ)2 +
i(1 − g)

8π
√
g

∫

d2xRφ + w

∫

d2x e−iφ/
√
g + . . . (56)

7. When we compute an Ising correlation function with n spin fields in this model, only the term of order wn

is non-zero, i.e. this correlation function has n insertions of the marginal operator e−iφ
√

3/2 (here, we have
substituted g = 4/3), which we call a screening operator.

The preceding logic makes it seem natural for correlation functions in the Ising model (and, in fact, a large class
of models which have a height model representation) to have a Coulomb gas representation. It is, thus, helpful
for understanding our results intuitively. However, it is not the most convenient way to derive the Coulomb gas
representation for the conformal blocks which we need. For that, we use a more technical approach, described in
the next subsection. We note that, although the two approaches are very similar, there is not really a one-to-one
correspondence between them, although the results which we find in this paper strengthen the connection.

B. Algebraic Approach

The algebraic approach to the Coulomb gas takes, as its starting point, the action for a free boson with a background
charge α0 at infinity from step 4 of the previous subsection. This can be re-written as a total derivative term with
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imaginary coefficient iα0. This total derivative term changes the energy-momentum tensor, thus shifting the central
charge from its free boson value, c = 1, to c = 1− 24α2

0. Since the added term is imaginary, the theory is not unitary.
However, for certain values of α0, including the one relevant to the Ising model, the theory has a unitary subspace.

This approach was introduced by Feigin and Fuchs74, and developed for the minimal models by Dotsenko and
Fateev in Refs. 63,75. The method was subsequently refined by Felder64, who both elucidated its BRST cohomological
structure and extended the results to the torus. The advantage of Felder’s approach is that it holds at the operator
level, not merely at the level of correlation functions, allowing a more systematic description. This leads to a simple
prescription which can be applied in a uniform manner. Thus, we adopt Felder’s notation. The next few paragraphs
are a short review of the procedure, whose full details can be found in Ref. 64.

The approach consists of taking a holomorphic free boson field ϕ(z), whose two-point correlation function is given
by

〈ϕ(z1)ϕ(z2) 〉 = −2 log (z1 − z2) . (57)

This corresponds to Eq. (A5) with g = 1/4. This field can be used to construct the vertex operators of charge α,
eiαϕ(z). If the αjs satisfy charge neutrality,

∑

jαj = 0, then a collection of vertex operators has correlation function

〈

eiα1ϕ(z1)eiα2ϕ(z2) . . . eiαNϕ(zN)
〉

=
∏

i<j

(zi − zj)
2αiαj . (58)

If
∑

jαj 6= 0, then this correlation function vanishes. This matches up precisely with Laughlin’s plasma analogy,
where the vertex operators in the CFT Coulomb gas formalism correspond to the particles that comprise the plasma,
and charge neutrality must be obeyed. However, one can deviate from this simple Coulomb gas in two ways: (1) if a
set of vertex operators violates charge neutrality, one can place an additional compensating vertex operator of charge
2α0 = −∑jαj at ∞ to obtain a non-vanishing correlation function, and (2) one can introduce “screening charges”
which modify the vertex operators. As mentioned before, this will produce a unitary theory only for special values of
α0, αj , and screening charges.

In a c = 1/2 Ising CFT, there are 8 types of allowable vertex operators. Two of them are screening operators, and
their charges are given by

α− = −
√

3

2
, α+ =

2√
3
. (59)

The remaining six of them have charges constructed out of α−, α+, according to

αnm =
1

2
(1 − n)α− +

1

2
(1 −m)α+, n = 1, 2, 3, m = 1, 2. (60)

It is convenient to put them together into the “Kac table”:

2 − 1√
3
− 1

4
√

3
1

2
√

3

1 0
√

3
4

√
3

2

m/n 1 2 3

(61)

The columns of the table are labeled by the index n = 1, 2, 3, and the rows by m = 1, 2. The entries of the table
are the charges of the vertex operators. They represent the operators of the c = 1/2 Ising CFT according to the
identification

2 ψ σ I

1 I σ ψ

m/n 1 2 3

(62)

Here I is the unit operator, and just as in Eqs. (22) and (23), σ is the dimension 1/16 operator, and ψ is the dimension
1/2 operator of the c = 1/2 Ising CFT.

As we can see, each operator of the CFT is represented by two distinct vertex operators. The correlation functions
of the CFT are constructed, according to Ref. 64, as a Coulomb gas with screening charges. These are the objects
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FIG. 1: The integration contours in Eq. (63).

which consist of a vertex operator and a product of a number of screening operators, each integrated over a circular
contour as defined according to:

V rsnm(z) ≡
r
∏

k=1

∮

Ck

dwk

s
∏

l=1

∮

Sl

dul e
iαnmϕ(z) eiα−ϕ(wk) eiα+ϕ(ul). (63)

The integration contours in Eq. (63) are taken to be concentric circles of radius |z| centered at the origin (with the
α+ contours inside the α− contours), as shown in Fig. 1 according to the prescription of Ref. 64. These contour
integrals have divergences that must be regularized in some manner, i.e. either by an appropriate point-splitting at
z or through analytic continuation.

The full conformal block of the CFT operators is represented by the correlation function of a set of screened vertex
operators V rsnm(z), where the indices n, m are chosen to represent each given operator of the CFT, and the number
of screening operators r, s are chosen according to a set of rules specified in Ref. 64. Of these rules, one is the most
important: the sum of all the charges involved in a correlation function should be either 0 or 1/(2

√
3). The reason

for this rule is that both of these charges represent an identity operator, as follows from the tables above. (In the
latter case, there must be a canceling charge at ∞.) Additional rules specify how the screening operators must be
distributed among the vertex operators in the correlation function. The specifics of these rules are also described in
Ref. 64.

Thus the same conformal block can have several different but equivalent representations using the screened vertex
operators. For example, consider

〈ψ(z)ψ(0) 〉 =
1

z
. (64)

Since both V12 and V31 correspond to ψ, this correlation function can be represented in three different ways:

〈

V 00
31 (z)V 00

12 (0)
〉

=
1

z
, (65)

〈

V 01
12 (z)V 00

12 (0)
〉

=

∮

du
z

2
3

(z − u)
4
3u

4
3

, (66)

and

〈

V 20
31 (z)V 00

31 (0)
〉

=

∮

dw1

∮

dw2
z

3
2 (w1 − w2)

3
2

(z − w1)
3
2w

3
2
1 (z − w2)

3
2w

3
2
2

. (67)

It should be clear that all three methods give the same answer, 1/z, up to an overall unimportant constant (as may be

verified by making the change of variable, wk = zuk). The correlation function in Eq. (65) has total charge 1/(2
√

3)
while the other two correlation functions, Eqs. (66) and (67) have the total charge 0.
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Now we can use these techniques to represent the conformal block corresponding to the Pfaffian as

Pf

(

1

zi − zj

)

= 〈ψ(z1) . . . ψ(zN ) 〉 =
〈

V 20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

, (68)

(where N is even). This is not the only way to construct this conformal block, but it is the most convenient for
subsequent generalizations.

Now consider a conformal block with 4 σ operators (which correspond to 4 quasiholes). There are two such conformal
blocks (as we saw, for instance, in Eq. (26)), which we denote by:

Fα(ηµ; zi) = 〈σ(η1)σ(η2)σ(η3)σ(η4)ψ(z1) . . . ψ(zN )〉α (69)

where α = 0, 1 corresponds to the block in which the first two σ fields fuse to I or ψ, respectively. We can represent
F0(ηµ; zi) in the following way:

F0(ηµ; zi) =
〈

V 10
21 (η1)V

00
21 (η2)V

10
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

. (70)

This representation mirrors that of Eq. (68) in that it only uses vertex operators from the m = 1 row of the Kac table
in Eq. (61). The total charge of all the operators involved in Eq. (70) is equal to zero. Furthermore, the total charge
of the first two screened vertex operators is also zero, V 10

21 V
00
21 ∼ I, which is the reason for the identification of this

Coulomb gas correlation function with the c = 1/2 Ising conformal block F0(ηµ; zi). If we wish, instead, to compute
F1(ηµ; zi), then we need a Coulomb gas correlation function in which the first two screened vertex operators have

total charge
√

3/2 corresponding to the ψ field:

F1(ηµ; zi) =
〈

V 10
21 (η1)V

10
21 (η2)V

00
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

. (71)

Since the screening operators are attached to the first two vertex operators, rather than the first and third, the
construction Eq. (71) can be interpreted as simply a different choice of contour for one of the screening operators in
Eq. (70).

We note, for later use, that we can also represent F0 and F1 in an alternative way:

F0(ηµ; zi) =
〈

V 00
22 (η1)V

00
21 (η2)V

10
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

, (72)

F1(ηµ; zi) =
〈

V 00
22 (η1)V

10
21 (η2)V

00
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

. (73)

Unlike in Eqs. (70) and (71), the total charge of the vertex operators involved in Eqs. (72) and (73) is equal to 1/(2
√

3)
(which is another representation of the identity).

Finally, we can also construct conformal blocks with any even number n of σ fields (corresponding to wavefunctions
with n quasiholes), e.g.

F(0,0,...,0)(ηµ; zi) =
〈

V 10
21 (η1)V

00
21 (η2) . . . V

10
21 (ηn−1)V

00
21 (ηn)V 20

31 (z1)V
00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN)

〉

(74)

=
〈

V 00
22 (η1)V

00
21 (η2)V

10
21 (η3)V

00
21 (η4) . . . V

10
21 (ηn−1)V

00
21 (ηn)V 20

31 (z1)V
00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

(75)

The subscript (0, 0, . . . , 0) denotes that this is the conformal block in which the first and second σ fields fuse to I, the
third and fourth σ fields fuse to I, . . ., the (n− 1)th and nth σ fields fuse to I.

Similarly, the Coulomb gas construction gives the general conformal block

F(π1,π2,...,πn/2)(ηµ; zi) =

〈

n/2
∏

j=1

V
1−πj−1,0
21 (η2j−1)V

πj,0
21 (η2j)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

(76)

=

〈

V 00
22 (η1)V

π1,0
21 (η2)

n/2
∏

j=2

V
1−πj−1,0
21 (η2j−1)V

πj ,0
21 (η2j)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

, (77)

in which the 1st through 2jth σ fields collectively fuse to I if πj = 0 and to ψ if πj = 1, and where π0 = πn/2 = 0,
indicating the overall parity constraint that the σ fields must collectively fuse to I since there are an even number
N of ψ fields. This is presented in the “standard basis,” where fusion channels are specified by fusing in the anyons
one at a time from left to right121. For the Ising CFT, we can trivially transform between the standard basis and the
qubit basis

Fqubit
(p1,p2,...,pn/2)

= F standard
(π1,π2,...,πn/2)

(78)
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in which (2j − 1)th and 2jth σ fields fuse to I if pj = 0 and to ψ if pj = 1, by simply using the conversions

πj ≡
(

j
∑

k=1

pk

)

mod 2 (79)

pj ≡ (πj − πj−1)mod 2. (80)

Since this is a trivial change of basis (i.e. it is just a different way of presenting the subscript label), we can interchange
between the two freely. For the purposes of describing conformal blocks using the Coulomb gas formalism, the standard
basis is more natural. For describing the explicit evaluation of the conformal blocks using bosonization methods, the
qubit basis is more natural. Henceforth, we differentiate them through context.

A similar expression can also be used if the number N of electrons is odd. Specifically, for N odd, one would use

F(π1,π2,...,πn/2)(ηµ; zi) =

〈

n/2
∏

j=1

V
1−πj−1,0
21 (η2j−1)V

πj ,0
21 (η2j)V

00
31 (z1)V

20
31 (z2)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

(81)

=

〈

V 00
22 (η1)V

π1,0
21 (η2)

n/2
∏

i=2

V
1−πi−1,0
21 (η2i−1)V

πi,0
21 (η2i)V

00
31 (z1)V

20
31 (z2)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

(82)

with π0 = 0 and πn/2 = 1, which indicates that the n σs have overall fusion channel ψ. We note that the number of
screening charges in both Eqs. (76) and (81) is N + n

2 .
The explicit expressions for correlation functions such as Eq. (74) involve products of powers of differences of

coordinates, and integrals over some of them, as in the simple examples of Eqs. (66) or (67). This has a reasonably
similar structure to the Laughlin states, such as Eq. (46), so it brings us closer to the goal of constructing an effective
plasma describing Eq. (41).

VI. PLASMA REPRESENTATION FOR THE GROUND STATE WAVEFUNCTION

Using the above expressions for the conformal blocks to construct the overlap integrals Eq. (41), we see that they
do appear superficially similar to the plasma construction of Eq. (48). The difference is that the screening operators
need to be integrated over their holomorphic and antiholomorphic coordinates along some specially chosen contours.
As a result, Eq. (37) no longer takes the form of the partition function of a classical plasma. In what follows, we
construct the overlap integrals in a slightly different way which leads to an expression which does take the form of a
classical plasma’s partition function. For this, we crucially utilize the method invented by Mathur in Ref. 65 of relating
expressions involving products of holomorphic and antiholomorphic screening charge contour integrals to expressions
involving two-dimensional integrals over screening charge positions. (We review this method in Appendix B.)

We will begin by considering the case with no quasiholes, ie. the ground-state wavefunction. We will construct
a representation of the norm of the ground-state wavefunction which takes the form of the partition function for a
classical plasma. We begin by ignoring the charge part of the wavefunction and focusing on the Pfaffian:

∣

∣

∣

∣

Pf

(

1

zi − zj

)∣

∣

∣

∣

2

(83)

In order to represent this as a plasma, we take the conformal block represented by Eq. (68), and multiply it by its
complex conjugate. Then, instead of integrating the screening operators over the contours in the complex plane of
their respective holomorphic and antiholomorphic coordinates, we integrate the screening operators over the entire

two-dimensional plane.
To see why this procedure is valid, we first consider the expression

Pf

(

1

zi − zj

)

=
〈

V 20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

=

〈

∮

Cz1

dw1

∮

Cz1

dw2 e
iα31ϕ(z1)eiα−ϕ(w1)eiα−ϕ(w2)eiα31ϕ(z2) × . . .

. . .×
∮

CzN−1

dwN−1

∮

CzN−1

dwN e
iα31ϕ(zN−1)eiα−ϕ(wN−1)eiα−ϕ(wN )eiα31ϕ(zN )

〉

(84)
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where Cx is used to indicate a contour of radius |x| centered on the origin (with appropriate regularization, i.e. taking
contours at the same radius to be infinitesimally concentric and point-split at the zi coordinates). To obtain the norm
squared of this wavefunction, we multiply this expression by its complex conjugate:

Pf

(

1

z̄i − z̄j

)

=

〈

∮

Cz1

dw̄1

∮

Cz1

dw̄2 e
iα31ϕ(z̄1)eiα−ϕ(w̄1)eiα−ϕ(w̄2)eiα31ϕ(z̄2) × . . .

. . .×
∮

CzN−1

dw̄N−1

∮

CzN−1

dw̄N e
iα31ϕ(z̄N−1)eiα−ϕ(w̄N−1)eiα−ϕ(w̄N )eiα31ϕ(z̄N )

〉

. (85)

Evaluating the correlation functions of vertex operators, we obtain

∣

∣

∣

∣

Pf

(

1

zi − zj

)∣

∣

∣

∣

2

=

N/2
∏

k=1

∮

Cz2k−1

dw2k−1

∮

Cz2k−1

dw̄2k−1

∮

Cz2k−1

dw2k

∮

Cz2k−1

dw̄2k

N
∏

i<j

|wi − wj |3
N
∏

i,j

|wi − zj |−3
N
∏

i<j

|zi − zj|3 . (86)

It is important to emphasize that wi and w̄i are independent variables in this expression, so terms such as |wi − wj |3
should really be understood as shorthand for (wi − wj)

3/2 (w̄i − w̄j)
3/2. Retracing Mathur’s steps, as explained in

Appendix B, we rewrite the product of wi and w̄i contour integrals in Eq. (86) in terms of 2D integrals:

∫ N
∏

k

d2wk

N
∏

i<j

|wi − wj |3
N
∏

i,j

|wi − zj |−3
N
∏

i<j

|zi − zj |3 =

N/2
∏

k=1

∮

Cz2k−1

dw2k−1

∮

Cz2k−1

dw̄2k−1

∮

Cz2k−1

dw2k

∮

Cz2k−1

dw̄2k

N
∏

i<j

|wi − wj |3
N
∏

i,j

|wi − zj |−3
N
∏

i<j

|zi − zj|3 (87)

Therefore, we can write the square of the Pfaffian in the form:

∣

∣

∣

∣

Pf

(

1

zi − zj

)∣

∣

∣

∣

2

=

∫ N
∏

k

d2wk

N
∏

i<j

|wi − wj |3
N
∏

i,j

|wi − zj|−3
N
∏

i<j

|zi − zj |3 . (88)

Note that the right-hand-side of this equation is divergent as any wi approaches any zj . It can be made well-defined
by analytic continuation. In other words, we define this expression by evaluating the integral

∫

∏

k

d2wk
∏

i<j

|wi − wj |3α
∏

i,j

|wi − zj |−3α
∏

i<j

|zi − zj |3α . (89)

for α < 2/3, where the integral is convergent, and analytically continuing to α = 1. This analytic continuation gives
the right-hand-side of Eq. (88). As we will discuss, the associated plasma does not go through a phase transition as
α is varied from α < 2/3 to 1, so the right-hand-side of Eq. (88) is a useful representation of the left-hand-side.

If, instead, we modify the right-hand-side at short distances by, for instance, introducing a short-ranged repulsion
(e.g. a hard-core cutoff), then the right-hand side will be modified for zi → zj but will be unchanged at long-distances.
This will produce a wavefunction in the same universality class as the Pfaffian. However, rather than introduce a
cutoff and work with a modified wavefunction, we prefer to define Eq. (88) by analytic continuation, as described
above.

Now we can interpret the norm of the Pfaffian in terms of a two-component plasma. Specifically, we can write

∥

∥

∥

∥

Pf

(

1

zi − zj

)∥

∥

∥

∥

2

≡
∫ N
∏

k=1

d2zk

∣

∣

∣

∣

Pf

(

1

zi − zj

)∣

∣

∣

∣

2

=

∫ N
∏

k=1

d2zk d
2wk e

−Φ2/T = e−F/T (90)

Φ2 = −
N
∑

i<j

Q2 log |wi − wj | +
N
∑

i,j

Q2 log |wi − zj| −
N
∑

i<j

Q2 log |zi − zj | , (91)

where T = Q2/3. Now Φ2 is the two-dimensional Coulomb-interaction potential energy for N charge Q particles at zi
and N charge −Q particles at wi. Thus, F is the free energy of a classical two-dimensional two-component plasma of
charges ±Q at temperature T . (We use the subscript 2 to indicate the two-component plasma.) Again, we can let T
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take any value as long as Q is adjusted accordingly. One convenient choice is to take T = g and Q =
√

3g. It is known
that a two-component plasma with coupling constant Γ = Q2/T is a screening fluid for Γ < 4, i.e. the condensation
temperature is Tc2 = Q2/4, but that it needs a short-ranged repulsive interaction, such as a hard-core cutoff, in order
to be stable against collapse into neutral bound pairs for Γ > 2 (i.e. T < 2Tc2)

79–82. For Γ > 4 all particles are
bounded into neutral pairs, while for Γ < 2 all pairs are broken. The Pfaffian wavefunction’s corresponding plasma is
precisely in the range 2 < Γ < 4 where it is a screening fluid as long as a short-ranged repulsion is introduced. This fits
with the above discussion regarding the need for a short-distance repulsion or analytic continuation, and is intuitively

clear from the fact that Pf
(

1
zi−zj

)

diverges as zi → zj. We discuss the screening properties of this plasma in more

detail using field theoretic methods in Appendix D. Its Debye screening length can be estimated (see Appendix E)
to be ℓ2 = (12πnf)

−1/2, where nf is the electron density.
Adding the charge part of the MR ground-state, we have:

|Ψ(z1, . . . , zN )|2 =

∣

∣

∣

∣

Pf

(

1

zi − zj

)∣

∣

∣

∣

2 N
∏

i<j

|zi − zj |2M e
− 1

2

N
P

i=1

|zi|2

=

∫

∏

k

d2wk
∏

i<j

|wi − wj |3
∏

i,j

|wi − zj|−3
∏

i<j

|zi − zj |2M+3
e
− 1

2

P

i

|zi|2
. (92)

This expression is antisymmetric under exchange of zi with zj while holding z̄i and z̄j fixed. It is also of degree
M(N − 1) − 1 in any of the zis and degree M(N − 1) − 1 in any of the z̄is. Indeed, there is a unique polynomial
satisfying these properties, so it is clear that once the right-hand-side is computed by analytic continuation, it will
give the squared modulus of the MR Pfaffian ground-state wavefunction.

Now we can write the norm of the MR ground-state wavefunction in terms of a classical plasma by writing

‖Ψ(z1, . . . , zN)‖2 ≡
∫ N
∏

k=1

d2zk |Ψ(z1, . . . , zN )|2 =

∫ N
∏

k=1

d2zk d
2wk e

−(Φ1+Φ2)/T = e−F/T (93)

Φ1 = −
N
∑

i<j

Q2
1 log |zi − zj | +

Q2
1

4M

N
∑

i=1

|zi|2 (94)

Φ2 = −
N
∑

i<j

Q2
2 log |wi − wj | +

N
∑

i,j

Q2
2 log |wi − zj | −

N
∑

i<j

Q2
2 log |zi − zj| , (95)

where T = g, Φ1 corresponds to the two-dimensional Coulomb potential for N charge Q1 =
√

2Mg particles at zi
in a uniform neutralizing background of charge density ρ(1) = − Q1

2πMℓ2B
, and Φ2 corresponds to the two-dimensional

Coulomb potential for N charge Q2 =
√

3g particles at zi and N charge −Q2 = −√
3g particles at wi (and no neutral-

izing background charge density). Thus, F is the free energy of a classical two-dimensional plasma (at temperature T )
in which its particles can carry charges corresponding to two independent types of Coulomb interactions, differentiated
using the subscripts 1 and 2. In particular, the plasma described here consists of N particles at wi carrying charge
−Q2, N particles at zi carrying charge Q1 and Q2, and a uniform background of charge density ρ(1) = − Q1

2πMℓ2B
and

ρ(2) = 0 that neutralizes the charges of type 1. Since plasmas 1 and 2 are independently in the screening liquid phase
for these values of T , Q1, and Q2 (assuming M is not too large), the combined plasma should be in the screening
liquid phase. (For recent results on such plasmas in the context of vortices in multi-component superconductors,
which support the idea that our combined plasma is likely to be in the screening liquid phase, see Refs. 83–85.) We
estimate the Debye screening length of this plasma (see Appendix E) to be

ℓ =

(

M

M + 3 −
√
M2 + 9

)1/2

ℓB. (96)

We expect that the critical temperature Tc will be somewhere between that of plasma 1’s Tc1 ≈ gM/70 and plasma
2’s Tc2 = 3g/4.

VII. PLASMA REPRESENTATION FOR THE TRACE OF THE OVERLAP MATRIX

The situation gets more complicated when we turn to wavefunctions with multiple quasiholes. We would again like
to be able to treat quasiparticles as test charges in the analogous plasma. However, this is not as straightforward to do
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as for the Laughlin case. There are multiple degenerate wavefunctions (corresponding to multiple conformal blocks)
in such a case. These different conformal blocks are distinguished in the Coulomb gas formalism by the location of
the screening charge operators’ contours. Thus, if we exchange a pair of screening contour integrals, one holomorphic
and one antiholomorphic, for a 2D integral too naively, we would elide the distinction between the different conformal
blocks, which would clearly be incorrect.

Thus, we must proceed with greater caution. To do this, it is useful to recall that the c = 1/2 Ising CFT with its
conformal blocks is but a mathematical tool to construct the correlation functions of the Ising model at its critical
point86,87. These correlation functions are real, not complex, and they depend on the two-dimensional coordinates
of the operators of the Ising model, not just on the holomorphic part of these coordinates. In particular, consider a
correlation function of four Ising spins (order operators) σ, as well as N Ising energy operators ǫ:

〈σ(η1, η̄1)σ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N ) 〉 . (97)

Note that these are non-chiral operators. For instance, ǫ = ψ̄ψ, where ψ is the chiral Majorana fermion field introduced
earlier and ψ̄ is its antiholomorphic counterpart. This correlation function can be written in terms of the two conformal
blocks, F0 and F1. These conformal blocks are the chiral part(s) of the correlation function Eq. (97), which we denoted
in the previous section as:

Fα(ηµ; zi) ≡ 〈 σ(η1)σ(η2)σ(η3)σ(η4)ψ(z1) . . . ψ(zN ) 〉α (98)

Note that these are now chiral operators σ(η), ψ(z). The subscript α = 0, 1 denotes whether the first two σ fields fuse
to I or ψ, respectively. The explicit forms of F0 and F1 are:

F0,1 =

(

η13η24
η12η23η34η41

)
1
8 1
√

1 ±
√

1 − x

(

Ψ̃(13)(24) ±
√

1 − x Ψ̃(14)(23)

)

, (99)

where Ψ̃(13)(24), Ψ̃(14)(23) are defined in Eq. (F11). Note that F0 and F1 are clearly multi-valued functions; they
transform under the braiding of coordinates in exactly the same way as the functions Ψ0 and Ψ1 of Eq. (26), up to
an unimportant overall phase (which is due to the c = 1 CFT present in Eq. (26)). Indeed, Ψ0,1 were constructed by
multiplying F0,1 in Eq. (99) by a Laughlin wavefunction-like factor coming from the c = 1 CFT.

The antiholomorphic part of the correlation function is similarly given by F̄0 and F̄1. However, the non-chiral corre-
lation function 〈σ(η1, η̄1) . . . σ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N ) 〉 must combine holomorphic and antiholomorphic sectors
in such a way as to be single-valued. There is a unique way to do this, which is the trace:

〈σ(η1, η̄1)σ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N) 〉 = F0(ηµ; zi)F̄0(η̄µ; z̄i) + F1(ηµ; zi)F̄1(η̄µ; z̄i). (100)

Indeed, this is the only combination of the conformal blocks which is single valued as η1 and η̄1 = η∗1 are taken all over
the complex plane, and similarly for the other ηµs and η̄µs. This may be checked by using the analytic continuation
properties of F0 and F1, which are exactly the same as Eqs. (30), (31), and (32) for Ψ0 and Ψ1 (up to the overall
phase, which obviously cancels between holomorphic and antiholomorphic terms). This expression is also real, as
expected for a real correlation function of the Ising model.

Since the sum of the squares of the four-quasihole conformal blocks is single-valued, we can form a plasma repre-
sentation for the sum of overlap integrals:

∫ N
∏

k=1

d2zk
[

F0(ηµ; zi)F̄0(η̄µ; z̄i) + F1(ηµ; zi)F̄1(η̄µ; z̄i)
]

. (101)

We cannot do this for each of the individual terms in this sum. In order to express Eq. 101 in terms of a classical
plasma, we begin with the Coulomb gas representation for the conformal blocks of Eqs. (70) and (71) (we could
have equally well chosen the representations in Eqs. (72) and (73), but this choice is more suitable for subsequent
generalizations, as we will see later), and multiply them by their complex conjugates. The conformal block F0(ηµ; zi)
is precisely the expression which we defined in Eq. (70): the conformal block in which the first two σs fuse to I.
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Written explicitly in terms of the vertex operators, this is:

F0(ηµ; zi) =
〈

V 10
21 (η1)V

00
21 (η2)V

10
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

=

〈

∮

Cη1

dw1 e
iα21ϕ(η1)eiα−ϕ(w1)eiα21ϕ(η2)

∮

Cη3

dw2 e
iα21ϕ(η3)eiα−ϕ(w2)eiα21ϕ(η4)

×
∮

Cz1

dw3

∮

Cz1

dw4 e
iα31ϕ(z1)eiα−ϕ(w3)eiα−ϕ(w4)eiα31ϕ(z2) × . . .

. . .×
∮

CzN−1

dwN+1

∮

CzN−1

dwN+2 e
iα31ϕ(zN−1)eiα−ϕ(wN+1)eiα−ϕ(wN+2)eiα31ϕ(zN )

〉

. (102)

We multiply this expression by its complex conjugate

F̄0(η̄µ; z̄i) =

〈

∮

Cη̄1

dw̄1 e
iα21ϕ(η̄1)eiα−ϕ(w̄1)eiα21ϕ(η̄2)

∮

Cη̄3

dw̄2 e
iα21ϕ(η̄3)eiα−ϕ(w̄2)eiα21ϕ(η̄4)

×
∮

Cz̄1

dw̄3

∮

Cz̄1

dw̄4 e
iα31ϕ(z̄1)eiα−ϕ(w̄3)eiα−ϕ(w̄4)eiα31ϕ(z̄2) × . . .

. . .×
∮

Cz̄N−1

dw̄N+1

∮

Cz̄N−1

dw̄N+2 e
iα31ϕ(z̄N−1)eiα−ϕ(w̄N+1)eiα−ϕ(w̄N+2)eiα31ϕ(z̄N )

〉

. (103)

In Eqs. (102) and (103), there areN coordinates zi (electrons), four coordinates ηµ (quasiholes), and N+2 coordinates
wa (screening charges). The correlation functions of vertex operators in Eq. (102) and (103) can be evaluated using
Eq. (58):

F0(ηµ; zi)F̄0(η̄µ; z̄i) =
∏

c

∮

dwc

∮

dw̄c
∏

a<b

(wa − wb)
3
2

∏

a,µ

(wa − ηµ)
− 3

4

∏

a,i

(wa − zi)
− 3

2

∏

i<j

(zi − zj)
3
2

∏

µ,i

(ηµ − zi)
3
4

∏

µ<ν

(ηµ − ην)
3
8

×
∏

a<b

(w̄a − w̄b)
3
2

∏

a,µ

(w̄a − η̄µ)
− 3

4

∏

a,i

(w̄a − z̄i)
− 3

2

∏

i<j

(z̄i − z̄j)
3
2

∏

µ,i

(η̄µ − z̄i)
3
4

∏

µ<ν

(η̄µ − η̄ν)
3
8 . (104)

In these expressions, the appropriate choice of integration contours (which we left implicit here) tells us that we are
computing F0(ηµ; zi)F̄0(η̄µ; z̄i). However, by choosing a different contour for one of the screening charges in Eqs. (102)
and (103), as per Eq. (71) (specifically, if the contour C2 corresponding to w2 was a circle of radius |η2| rather than
radius |η3|), we would obtain F1(ηµ; zi)F̄1(η̄µ; z̄i) instead. To obtain the non-chiral correlation function, we should
add the right-hand-side of Eq. (104) to the corresponding expression for F1(ηµ; zi)F̄1(η̄µ; z̄i), with these different
integration contours.

Instead, following Mathur65 once again, we replace the integrations over pairs of contours by integrations over the
plane as described in Appendix B. This replacement gives us neither F0(ηµ; zi)F̄0(η̄µ; z̄i) nor F1(ηµ; zi)F̄1(η̄µ; z̄i) but,
rather, the combination F0(ηµ; zi)F̄0(η̄µ; z̄i) + F1(ηµ; zi)F̄1(η̄µ; z̄i). Thus, we obtain:

F0(ηµ; zi)F̄0(η̄µ; z̄i) + F1(ηµ; zi)F̄1(η̄µ; z̄i) =
∫

∏

c

d2wc
∏

a<b

|wa − wb|3
∏

a,µ

|wa − ηµ|−
3
2

∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj |3
∏

µ,i

|ηµ − zi|
3
2

∏

µ<ν

|ηµ − ην |
3
4 . (105)

The reason that the particular combination F0(ηµ; zi)F̄0(η̄µ; z̄i) +F1(ηµ; zi)F̄1(η̄µ; z̄i) appears on the right-hand-side
is, as shown by Mathur65, that when the contour integrals are replaced by 2D integrals, as described in Appendix B,
this has the effect of computing a sum of holomorphic and antiholomorphic conformal blocks, such that the entire
combination is single-valued as a function of all variables.

Now the integral of Eq. (105) over the zis is the partition function of a plasma, as can be established by inspection
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and comparison with Eq. (A4):

∫ N
∏

k=1

d2zk
[

F0(ηµ; zi)F̄0(η̄µ; z̄i) + F1(ηµ; zi)F̄1(η̄µ; z̄i)
]

=

∫

∏

k

d2zk
∏

c

d2wc
∏

a<b

|wa − wb|3
∏

a,µ

|wa − ηµ|−
3
2

∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj |3
∏

µ,i

|ηµ − zi|
3
2

∏

µ<ν

|ηµ − ην |
3
4 . (106)

This corresponds to a plasma at temperature T = g composed of N particles of charge Q =
√

3g at positions zi and
N +2 particles of charge −Q at positions wa, in the presence of four fixed test particles of charge Q/2 at positions ηµ.
The plasma obeys overall charge neutrality, as can be seen by adding up all the charges. As previously mentioned, it
is known that the two-dimensional two-component classical plasma comprised of particles of opposite charge ±Q is
in the screening fluid phase for this value of Γ = Q2/T , though a short-ranged repulsion (e.g. a hard-core cutoff) is
needed. (We discuss the screening properties of this plasma in more detail in Appendix D). Since this plasma screens,
the free energy F in Eq. (106) is independent of the positions ηµ, as long as they are farther apart than the screening
length ℓ2.

This proves that if we define

GF
α,β(ηµ; η̄µ) ≡

∫ N
∏

k=1

d2zkF̄α(η̄µ; z̄i)Fβ(ηµ; zi), (107)

then

TrGF = 2C2 + O(e−|ηµ−ην |/ℓ2), (108)

where C2 is a constant independent of ηµ. We call the overlap matrix GF to distinguish it from the closely related G
defined in Eq. (37), which is the overlap matrix of the MR wavefunctions Ψα, to which we now turn.

The wavefunctions Ψ0, Ψ1 differ from F0 and F1 by an additional c = 1 correlation function, as is clear from
Eqs. (26) and (23). This correlation function is straightforward to calculate (as before, use Eq. (A6) with g = 1/4)

〈

e
i 1
2
√

2M
ϕ(η1)e

i 1
2
√

2M
ϕ(η2)e

i 1
2
√

2M
ϕ(η3)e

i 1
2
√

2M
ϕ(η4)

ei
√

M
2 ϕ(z1) . . . ei

√
M
2 ϕ(zN )e

−i 1
2π

√
2M

R

d2z ϕ(z)
〉

=
∏

µ<ν

(ηµ − ην)
1

4M

∏

µ,i

(ηµ − zi)
1
2

∏

i<j

(zi − zj)
M
e
− 1

8M

P

µ
|ηµ|2− 1

4

P

i

|zi|2
. (109)

Consequently, the analog of Eq. (106) for these functions is given by

∫

∏

k

d2zk
[

Ψ0(ηµ; zi)Ψ̄0(η̄µ; z̄i) + Ψ1(ηµ; zi)Ψ̄1(η̄µ; z̄i)
]

=

∫

∏

k

d2zk

∫

∏

c

d2wc
∏

a<b

|wa − wb|3
∏

a,µ

|wa − ηµ|−
3
2

∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj |3
∏

µ,i

|ηµ − zi|
3
2

∏

µ<ν

|ηµ − ην |
3
4

×
∏

i<j

|zi − zj|2M
∏

µ,i

|ηµ − zi|
∏

µ<ν

|ηµ − ην |
1

2M e
− 1

4M

P

µ
|ηµ|2− 1

2

P

i

|zi|2
. (110)

We can interpret Eq. (110) as a plasma at temperature T = g in which there are two independent Coulomb interactions,
denoted 1 and 2. The plasma consists of N particles (corresponding to the electrons) at zi which carry charges
Q1 =

√
2Mg and Q2 =

√
3g, N + 2 particles (screening operators) at wa which carry charges −Q2, four fixed test

charges (quasiholes) at ηµ which carry charges Q1/2M =
√

g/2M and Q2/2, and a uniform neutralizing background

of charge density ρ(1) = − Q1

2πMℓ2B
(and ρ(2) = 0). As previously mentioned, since plasma 1 and 2 individually are in

a screening fluid phase for these parameters, the combined plasma should also be a screening fluid. Consequently,
this quantity will not depend on the positions of the test charges ηµ, as long as their separations are larger than the
screening length ℓ of the combined plasma.

Thus, we have proved that the trace of the overlap matrix G defined in Eq. (37) is an ηµ-independent constant for
large separations, or

TrG =
∑

α

∫ N
∏

k=1

d2zkΨα(ηµ; zi)Ψ̄α(η̄µ; z̄i) = 2C + O(e−|ηµ−ην |/ℓ). (111)
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Hence, we have established that both the trace of G, which includes the charge sector as in Eq. (110), as well as the
trace of GF , without the charge sector, as in Eq. (105), are constants. The claim that Tr GF = 2C2 is relevant to
chiral two-dimensional p-wave superconductors, whose real space wavefunction is the Pfaffian without the Laughlin
factor46 (up to short-range modifications). Thus, Eq. (108) presents another approach to computing the non-Abelian
statistics of this state, distinct from that of Refs. 46,47,49,50.

The preceding derivation can be generalized to an arbitrary even number n of quasiholes, for which the formula
analogous to Eq. (110) is

TrG =

∫

∏

k

d2zk

q−1
∑

α=0

Ψα(ηµ; zi) Ψ̄α(η̄µ; z̄i)

=

∫

∏

k

d2zk

∫

∏

c

d2wc
∏

a<b

|wa − wb|3
∏

a,µ

|wa − ηµ|−
3
2

∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj |3
∏

µ,i

|ηµ − zi|
3
2

∏

µ<ν

|ηµ − ην |
3
4

×
∏

i<j

|zi − zj|2M
∏

µ,i

|ηµ − zi|
∏

µ<ν

|ηµ − ην |
1

2M e
− 1

4M

P

µ
|ηµ|2− 1

2

P

i

|zi|2
, (112)

where q = 2
n
2 −1. The sum over α can be replaced by a sum over πj = 0, 1 or pj = 0, 1, for j = 1, . . . , n/2 with

the parity constraint πn/2 =
(

∑

j pj

)

mod 2 = 0 (for N even). Summing the diagonal product of holomorphic and

antiholomorphic conformal blocks over all conformal blocks, we obtain the single-valued expression on the right-hand-
side.

The arguments discussed thus far are a carefully worked-out version of the arguments presented in Ref. 45. Their
main drawback is that they do not prove Eq. (41). They only prove the weaker statement given in Eqs. (108) or (111),
which is necessary but not sufficient, with one exception, for the (nontrivial part of) Berry’s connections Eq. (34) to
vanish. In the next section we extend the proof to show that the stronger statement Eq. (41) is true.

The exception alluded to above is the case of two quasiholes. Since there is only a single conformal block in this
case, equal to either of the Coulomb gas expressions

F0(ηµ; zi) =
〈

V 10
21 (η1)V

00
21 (η2)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

=
〈

V 00
22 (η1)V

00
21 (η2)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

, (113)

the overlap matrix is a 1 × 1 matrix which is equal to its trace:

G (η1, η2; η̄1, η̄2) =

∫

∏

k

d2zkΨ0(η1, η2; zi) Ψ̄0(η̄1, η̄2; z̄i)

=

∫

∏

k

d2zk

∫

∏

c

d2wc
∏

a<b

|wa − wb|3
∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj|3
∏

a,µ

|wa − ηµ|−
3
2

∏

µ,i

|ηµ − zi|
3
2 |η1 − η2|

3
4

×
∏

i<j

|zi − zj|2M
∏

µ,i

|ηµ − zi| |η1 − η2|
1

2M e
− 1

4M (|η1|2+|η2|2)− 1
2

P

i

|zi|2
. (114)

Thus, as concluded in Ref. 45 by the same logic, when there are only two quasiholes, the effect of a counterclockwise
exchange is the accrual of a statistical phase exp

[

iπ
(

1
4M − 1

8

)]

and an Aharonov-Bohm phase exp
(

−i e
2M

BA
~c

)

. In
fact, we should be more precise: this is the phase that is accrued when there is an even number of electrons in the
system. When there is an odd number of electrons, one can repeat these steps using

F1(ηµ; zi) =
〈

V 10
21 (η1)V

10
21 (η2)V

00
31 (z1)V

20
31 (z2)V

00
31 (z3) . . . V

20
31 (zN−1)V

00
31 (zN)

〉

=
〈

V 00
22 (η1)V

10
21 (η2)V

00
31 (z1)V

20
31 (z2)V

00
31 (z3) . . . V

20
31 (zN−1)V

00
31 (zN)

〉

, (115)

which has the two quasiholes fusing into the ψ channel. The overlap matrix is again a 1× 1 matrix which is equal to
its trace:
∫

∏

k

d2zkΨ1(η1, η2; zi) Ψ̄1(η̄1, η̄2; z̄i)

=

∫

∏

k

d2zk

∫

∏

c

d2wc
∏

a<b

|wa − wb|3
∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj|3
∏

a,µ

|wa − ηµ|−
3
2

∏

µ,i

|ηµ − zi|
3
2 |η1 − η2|

3
4

×
∏

i<j

|zi − zj|2M
∏

µ,i

|ηµ − zi| |η1 − η2|
1

2M e
− 1

4M (|η1|2+|η2|2)− 1
2

P

i

|zi|2
. (116)
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(We note that the number of screening charge coordinates wa is N + 1 for both N even and odd.) Thus, when there
are only two quasiholes and an odd number of electrons, the effect of a counterclockwise exchange is the accrual of
a statistical phase exp

[

iπ
(

1
4M + 3

8

)]

and an Aharonov-Bohm phase exp
(

−i e
2M

BA
~c

)

. This difference in the resulting
phase is an indication of non-Abelian braiding statistics, specifically due to the fact that the two quasiholes must be
in different fusion channels I and ψ when N is even and odd, respectively. This is is discussed further in Section IX.

VIII. PLASMA REPRESENTATION OF THE OVERLAP MATRIX FOR FOUR QUASIHOLES

To represent all the entries of the overlap matrix as a plasma, we need to find Coulomb gas representations for
arbitrary products of conformal blocks. While it does not seem possible to find such a representation for an arbitrary
product F̄αFβ (see Appedix G for an incomplete approach), it turns out to be possible to do so for particular linear
combinations. These combinations, in turn, are nothing but the correlation functions of the order and disorder
operators in the Ising model. The disorder operator µ(η, η̄) in the Ising model has the same scaling properties as
the order operator σ(η, η̄), but it changes sign as it is taken around the order operator. The analog of Eq. (100) for
correlation functions of two disorder operators and two order operators is:

〈µ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N ) 〉 = F0(ηµ; zi)F̄0(η̄µ; z̄i) −F1(ηµ; zi)F̄1(η̄µ; z̄i), (117)

〈σ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)µ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N ) 〉 = F0(ηµ; zi)F̄1(η̄µ; z̄i) −F1(ηµ; zi)F̄0(η̄µ; z̄i), (118)

〈µ(η1, η̄1)σ(η2, η̄2)σ(η3, η̄3)µ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N ) 〉 = F0(ηµ; zi)F̄1(η̄µ; z̄i) + F1(ηµ; zi)F̄0(η̄µ; z̄i). (119)

The expressions for these correlation functions without the energy operators ǫ were given in Ref. 87. Since the
transformation laws of the conformal blocks Fα are the same as those of the wavefunctions Ψα (up to an irrelevant
phase), we can use Eqs. (30), (31), (32) to verify that the expressions in Eqs. (117), (118), and (119) indeed change
sign when an order operator is taken around a disorder operator. We can similarly verify that the right-hand-sides
of Eqs. (117), (118), and (119) remain invariant if an order operator is taken around the other order operator or a
disorder operator is taken around the other disorder operator.

If we can prove that the integrals
∫ ∏

kd
2zk of the three expressions in Eqs. (117), (118), and (119) are equal to

zero, then we will have proved that the overlap matrix GF defined in Eq. (107) is proportional to the identity matrix,
since we would know that

GF
00 −GF

11 = 0, GF
01 −GF

10 = 0, GF
01 +GF

10 = 0. (120)

Combined with the already proven identity,
∑

αG
F
α,α = 2C, this would prove that GF

α,β = Cδα,β .

To do this, let us construct the Coulomb gas representation for Eqs. (117), (118), and (119). To the best of
our knowledge, such a representation has not previously been constructed in the literature. It is straightforward to
construct it, however, using what we have learned so far. First, let us consider Eq. (117). We take Eq. (72) for the
holomorphic part of our representation (unlike Eq. (105) where we used the alternative Eq. (70)):

〈

V 00
22 (η1)V

00
21 (η2)V

10
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

. (121)

For the antiholomorphic part, we take Eq. (121) but with the first two operators exchanged, which symbolically looks
like (we specialize to four quasiholes)

〈

V 00
21 (η̄1)V

00
22 (η̄2)V

10
21 (η̄3)V

00
21 (η̄4)V

20
31 (z̄1)V

00
31 (z̄2) . . . V

20
31 (z̄N−1)V

00
31 (z̄N )

〉

. (122)

In other words, we use a representation for the Ising disorder operator in which we use

µ(η1, η̄1) = V 00
22 (η1)V

00
21 (η̄1) = e

−i 1
4
√

3
ϕ(η1)+i

√
3

4 ϕ̄(η̄1) (123)

for the first disorder operator (at the position η1, η̄1) and

µ(η2, η̄2) = V 00
21 (η2)V

00
22 (η̄2) = e

i
√

3
4 ϕ(η2)−i 1

4
√

3
ϕ̄(η̄2)

(124)

for the second disorder operator (at the position η2, η̄2). The two charges appearing in Eqs. (123) and (124) in the
holomorphic and antiholomorphic parts of the vertex operators are the two allowed charges which can represent the
Ising spin, as can be seen from the table in Eq. (61). Such objects (whose left and right charges are distinct from each
other) can be viewed as particles in the 2D plasma which carry not only electric charge, but also magnetic charge, in
the sense of Eq. (A4) in Appendix A.
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Meanwhile, the Ising order operators without their screening charges are represented by purely electric operators

σ(η3,4, η̄3,4) = V 00
21 (η3,4)V

00
21 (η̄3,4) = ei

√
3

4 ϕ(η3,4)+i
√

3
4 ϕ̄(η̄3,4) (125)

as are the Ising energy operators (without screening charges)

ǫ(zi, z̄i) = V 00
31 (zi)V

00
31 (z̄i) = ei

√
3

2 ϕ(zi)+i
√

3
2 ϕ̄(z̄i) (126)

and the screening operators

eiα−ϕ(w) eiα−ϕ̄(w̄) = e−i
√

3
2 ϕ(w)−i

√
3

2 ϕ(w̄). (127)

In this construction we exclusively use the α− = −
√

3/2 screening operators. The crucial part of the proposed
construction is that almost all of the operators used here are mutually local, i.e. are single-valued when any one is
taken around any other. The exception is when an order operator is taken around a disorder operator (or vice versa),
which results in a −1. This is easy to check if one uses

eiαrϕ(z)+iαlϕ(z̄) eiβrϕ(w)+iβlϕ(w̄) ∼ (z − w)2αrβr(z̄ − w̄)2αlβl . (128)

Thus, when one is taken around the other, a phase 4π(αrβr − αlβl) is acquired. For example, if a disorder operator

represented either by αr = − 1
4
√

3
, αl =

√
3

4 or by αr =
√

3
4 , αl = − 1

4
√

3
is taken around the order operator represented

by βr =
√

3
4 , βl =

√
3

4 , this phase is π. (Similarly, when a disorder operator is taken around an energy operator,

represented by βr =
√

3
2 , βl =

√
3

2 , it produces a phase of 2π.)
Of course, we would have obtained the same analytic continuation properties if we had switched the representations

of the first and second disorder operators, i.e. had taken:

µ(η1, η̄1) = V 00
21 (η1)V

00
22 (η̄1) = e

i
√

3
4 ϕ(η1)−i 1

4
√

3
ϕ̄(η̄1)

(129)

for the first disorder operator (at the position η1, η̄1) and

µ(η2, η̄2) = V 00
22 (η2)V

00
21 (η̄2) = e

−i 1
4
√

3
ϕ(η2)+i

√
3

4 ϕ̄(η̄2) (130)

In fact, since this correlation function must be the same if we exchange the two disorder operators (or exchange the
two order operators), we must take an equal linear combination of both representations for the disorder operators.
Thus, we conclude that we obtain the correct analytic continuation properties when operators are taken around or
identical operators are exchanged if we write

F0(ηµ; zi)F̄0(η̄µ; z̄i) −F1(ηµ; zi)F̄1(η̄µ; z̄i) = 〈µ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N) 〉
=
〈

V 00
22 (η1)V

00
21 (η2)V

10
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

×
〈

V 00
21 (η̄1)V

00
22 (η̄2)V

10
21 (η̄3)V

00
21 (η̄4)V

20
31 (z̄1)V

00
31 (z̄2) . . . V

20
31 (z̄N−1)V

00
31 (z̄N )

〉

+
〈

V 00
21 (η1)V

00
22 (η2)V

10
21 (η3)V

00
21 (η4)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN)

〉

×
〈

V 00
22 (η̄1)V

00
21 (η̄2)V

10
21 (η̄3)V

00
21 (η̄4)V

20
31 (z̄1)V

00
31 (z̄2) . . . V

20
31 (z̄N−1)V

00
31 (z̄N )

〉

(131)

If we again pursue Mathur’s strategy and replace the integrations over pairs of contours, such as
∮

dwc
∮

dw̄c, by
integrations over the plane

∫

d2wc, we obtain the following expression for Eq. (131).

F0(ηµ; zi)F̄0(η̄µ; z̄i) −F1(ηµ; zi)F̄1(η̄µ; z̄i) = 〈µ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) ǫ(z1, z̄1) . . . ǫ(zN , z̄N ) 〉

=

∫

∏

c

d2wc |η1 − η2|−
1
4

4
∏

µ=3

[

(η1 − ηµ)
− 1

8 (η̄1 − η̄µ)
3
8 (η2 − ηµ)

3
8 (η̄2 − η̄µ)

− 1
8

]

|η3 − η4|
3
4

×
∏

a

[

(η1 − wa)
1
4 (η̄1 − w̄a)

− 3
4 (η2 − wa)

− 3
4 (η̄2 − w̄a)

1
4 |η3 − wa|−

3
2 |η4 − wa|−

3
2

]

×
∏

i

[

(η1 − zi)
− 1

4 (η̄1 − z̄i)
3
4 (η2 − zi)

3
4 (η2 − zi)

− 1
4 |η3 − zi|

3
2 |η4 − zi|

3
2

]

×
∏

a<b

|wa − wb|3
∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj |3 + c.c. (132)
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We notice that Mathur’s procedure can be applied to this case because the screening charges have trivial monodromy
with the disorder operators’ corresponding vertex operators. Eq. (132) is one of the main results of this work. It
is the correlation function of two order and two disorder operators in the Ising model obtained via the Coulomb
gas approach. In order to understand why this expression is correct, it is helpful to observe, first of all, that the
holomorphic and the antiholomorphic parts of Eq. (132) indeed reduce to the second and third lines of Eq. (131) while
the holomorphic and the antiholomorphic parts of the complex conjugate (the ‘c.c.’ at the end of Eq. (132)) reduce
to the fourth and fifth lines of Eq. (131). (The complex conjugate is also necessary to make the correlation function
symmetric.) More importantly, one should note that the expression inside the integral in Eq. (133) is single valued
if any of wa, w̄a is taken around any other variable, or if any zi, z̄i is taken around any other variable, so that the
integrals over these variables are well-defined. But it changes sign if η1, η̄1 is taken around η3, η̄3, as well as if η1, η̄1
is taken around η4, η̄4, η2, η̄2 is taken around η3, η̄3, and finally if η2, η̄2 is taken around η4, η̄4. This is exactly as we
would expect for the correlation function of Eq. (117). Thus, when the d2wc integrals are decomposed into sums of
products of conformal blocks, following Ref. 65 as outlined in Appendix B and the discussion following it, the analytic
continuation properties automatically select the correct combination of conformal blocks.

Similarly, the two correlation functions in Eqs. (118) and (119) can be obtained by a simple permutation of the
variables ηµ, η̄µ. Thus, all three correlation functions from Eqs. (117), (118), and (119) can be constructed in this
way.

In fact, the analytic continuation properties noted above are sufficient to conclude that if Eq. (132) is nonzero,
it is equal to the correlation function we need to compute. Thus, if one were simply handed Eq. (132), one could
verify it without the arguments of Ref. 65 (although, of course, one would probably not discover this equation without
Ref. 65) by appealing to these analytic continuation properties and showing that the expression Eq. (132) is non-zero.
In Appendix C we explicitly evaluate Eq. (132) in the absence of the energy operators. In this case, there is only one
screening operator involved, and only one integral over w, which we calculate. The result of the evaluation, given in
Eq. (C19), explicitly produces the correct combination of blocks as given in Eq. (132).

It further follows that when the energy operators are included, the representation Eq. (132) cannot simply vanish.
Indeed, we can always take the four Ising order and disorder operators far away from the energy operators, and
the correlation function factorizes. It is clearly non-zero in this limit; by analyticity it will remain nonzero at finite
separation between them.

Thus, we have the following expression for the overlap integral of the difference of the product of conformal blocks,
a generalization of Eq. (105),

GF
00 −GF

11 =

∫

∏

k

d2zk
[

F0(ηµ; zi)F̄0(η̄µ; z̄i) −F1(ηµ; zi)F̄1(η̄µ; z̄i)
]

=

∫

∏

k

d2zk
∏

c

d2wc |η1 − η2|−
1
4

4
∏

µ=3

[

(η1 − ηµ)
− 1

8 (η̄1 − η̄µ)
3
8 (η2 − ηµ)

3
8 (η̄2 − η̄µ)

− 1
8

]

∏

3≤µ<ν≤4

|ηµ − ην |
3
4

×
∏

a

[

(η1 − wa)
1
4 (η̄1 − w̄a)

− 3
4 (η2 − wa)

− 3
4 (η̄2 − w̄a)

1
4

4
∏

µ=3

|ηµ − wa|−
3
2

]

×
∏

i

[

(η1 − zi)
− 1

4 (η̄1 − z̄i)
3
4 (η2 − zi)

3
4 (η2 − zi)

− 1
4

4
∏

µ=3

|ηµ − zi|
3
2

]

×
∏

a<b

|wa − wb|3
∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj |3 + c.c. (133)

This particular expression gives us integral over d2zk of the correlation function in Eq. (117). The correlations
functions in Eqs. (118) and (119) can be obtained by the simple permutations of the ηµ and η̄µ coordinates.

Now we reinterpret Eq. (133) as a partition function of a plasma, by matching it against Eq. (A4). This plasma still
has N electric charges Q =

√
3g at positions zi, and N + 2 screening operators with electric charge −Q at positions

wk, w̄k. It has two normal quasihole test charges Q/2, at positions η3, η̄3 and η4, η̄4. Finally, it has two “special”
quasihole test particles which carry both electric and magnetic charges, at positions η1, η̄1 and η2, η̄2. These have
electric charge Q/6, and magnetic charges 1/

√
3g for one and −1/

√
3g for the other quasihole.

We observe that this plasma screens, just as the plasma in Eq. (105) screened, due to a large number of ±Q electric
charges (at T > Tc2) present in it. However, when there are magnetic, in addition to electric, test charges in the
plasma, the overlap integrals vanish at sufficiently large distances between the quasiholes due to the confinement of
magnetic charges, as explained in Appendix D and in Eq. (D10). As a result, the overlap integrals in Eq. (120) are
actually zero (up to corrections that vanish exponentially as separations between ηµ become larger than the screening
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length), just as we expected. Consequently, we can conclude that the overlap integrals satisfy

GF
α,β = C2δα,β + O(e−|ηµ−ην |/ℓ2). (134)

By a simple extension, we can now prove that the matrix of overlap integrals for the full wavefunctions are also
proportional to the identity. Indeed, all we need to do is to add the charge sector to Eq. (133). This leads to the
expression

∫

∏

k

d2zk
[

Ψ0(ηµ; zi)Ψ̄0(η̄µ; z̄i) − Ψ1(ηµ; zi)Ψ̄1(η̄µ; z̄i)
]

=

∫

∏

k

d2zk
∏

c

d2wc |η1 − η2|−
1
4

4
∏

µ=3

[

(η1 − ηµ)
− 1

8 (η̄1 − η̄µ)
3
8 (η2 − ηµ)

3
8 (η̄2 − η̄µ)

− 1
8

]

∏

3≤µ<ν≤4

|ηµ − ην |
3
4

×
∏

a

[

(η1 − wa)
1
4 (η̄1 − w̄a)

− 3
4 (η2 − wa)

− 3
4 (η̄2 − w̄a)

1
4

4
∏

µ=3

|ηµ − wa|−
3
2

]

×
∏

i

[

(η1 − zi)
− 1

4 (η̄1 − z̄i)
3
4 (η2 − zi)

3
4 (η2 − zi)

− 1
4

4
∏

µ=3

|ηµ − zi|
3
2

]

×
∏

a<b

|wa − wb|3
∏

a,i

|wa − zi|−3
∏

i<j

|zi − zj|3

×
∏

i<j

|zi − zj |2M
∏

µ,i

|ηµ − zi|
∏

µ<ν

|ηµ − ην |
1

2M e
− 1

4M

P

µ
|ηµ|2− 1

2

P

i

|zi|2
+ c.c. (135)

The charged sector, represented by the last line in Eq. (135), does not affect the screening properties of this plasma,
as discussed earlier after Eq. (110). Therefore, we have now proved that G00 −G11 = 0, as well as (by the suitable
permutation of ηµ, η̄µ) G01 +G10 = G01 −G10 = 0. Combined with the already proven relation G00 +G11 = C, we
have finally proven Eq. (41)

Gα,β = Cδα,β + O(e−|ηµ−ην |/ℓ). (136)

for the four-quasihole wavefunctions.

IX. n-QUASIPARTICLE FUSION AND BRAIDING

We would now like to go beyond the four quasihole case considered so far. At first glance, it might appear that
going beyond four quasiholes is easy. All we need is to consider correlation functions of a larger number of order and
disorder operators. Indeed, consider a wavefunction with N electrons and n quasiholes. As we know, there are 2

n
2 −1

such wavefunctions. Therefore, there are 2
n
2 −1 · 2

n
2 −1 = 2n−2 overlap integrals (the number of entries in the Gα,β

overlap matrix of Eq. (37)). On the other hand, we can imagine computing the correlation function of n Ising spins
(as well as N Ising energy operators), as well as correlations with n− 2 order and 2 disorder operators, n− 4 order
and 4 disorder operators and so on. If n/2 is odd, we should stop at n

2 − 1 disorder and n
2 + 1 order operators. If n/2

is even, then we should stop at n/2 disorder and n/2 order operators. The total number of such correlation functions
(which also depend on which operators are chosen to be order, and which are chosen to be disorder) are

( n
2 −1)/2
∑

k=0

n!

(n− 2k)!(2k)!
= 2n−2, (137)

if n/2 is odd and

( n
2 −2)/2
∑

k=0

n!

(n− 2k)!(2k)!
+

1

2
· n!
n
2 !n2 !

= 2n−2 (138)

if n/2 is even. Either way, the total number of combinations of conformal blocks one can get in this way (a generaliza-
tion of Eq. (117)-(119) to n σ-operators) is exactly equal to the number of entries in the Gα,β matrix, so computing
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the integrals over d2zk via the plasma construction would allow us to deduce what every entry of Gα,β is, for the
general case of n quasiholes.

Suppose we pursue the strategy of the previous sections to compute Gα,β for an arbitrary number of quasiholes.
Eq. (105) is easy to generalize to an arbitrary number n of quasiholes. We can replace the four quasihole operators
in that expression by an arbitrary number of these operators. This again automatically leads us to conclude that

TrG = qC + O(e−|ηµ−ην |/ℓ), (139)

as discussed in Ref. 45. Likewise, Eqs. (133), (135) can also be generalized to n quasiholes by extending the product
over 3 ≤ k < l ≤ 4 to 3 ≤ k < l ≤ n and the products from k = 3 to 4 to products from k = 3 to n. However,
this only corresponds to the case of n − 2 order and 2 disorder operators. There are

(

n
2

)

such correlation functions;
we can copute these by generalizations of Eqs. (133), (135). (We can compute one more correlation function, the
one with n order operators.) However, for 2 quasiholes, the correlation function with 2 order operators is equal to
the correlation function with 2 disorder operators by Kramers-Wannier duality. Similarly, Kramers-Wannier duality
reduces the number of distinct correlation functions with 2 order and 2 disorder operators from

(

4
2

)

= 6 to 3, as we
have seen in the previous section. For higher n, Kramers-Wannier duality relates distinct correlation functions and
therefore does not lead to any such reduction.

For n = 2, we have a plasma representation for the only non-trivial correlation function and Gα,β is a 1× 1 matrix,
so we can compute it. For n = 4, we have a plasma representation for the 4 non-trivial correlation functions and Gα,β
is a 2×2 matrix, so we can compute all of its entries. For n = 6, we have a plasma representation for the 1+

(

6
2

)

= 16
non-trivial correlation functions and Gα,β is a 4 × 4 matrix, so we can compute all of its entries. However, for n = 8,

we have a plasma representation for the 1 +
(

8
2

)

= 29 non-trivial correlation functions but Gα,β is an 8 × 8 matrix,

so we can compute fewer than half of its entries. The situation gets worse with increasing n since 2n−2 grows much
faster than 1 +

(

n
2

)

.
In order to compute all of the entries in Gα,β , we clearly need to be able to compute correlation functions in which

there are more than two order and more than two disorder operators. Unfortunately, we do not know how to generalize
Eq. (133) to more than two Ising disorder operators, so we cannot compute Gα,β by this strategy. The problem is
that we use operators with opposite magnetic charges, Eqs. (123) and (124), to represent two disorder operators. If
we have more than two disorder operators, then we need more than one operator of each type, Eq. (123) as well as
(124). However, Eq. (123) is not local with respect to itself, and neither is Eq. (124). This prevents us from using
Eq. (123) or (124) more than once in any correlation function.

Another approach is to separate the screening operators into ones that are applied to ψ vertex operators and ones
that are applied to σ vertex operators, and then attempt to apply a procedure like Mathur’s to change holomorphic-
antiholomorphic pairs of ψ screening operator contour integrals into two-dimensional integral over the complex plane.
If this could be done, then the result before performing the σ screening operator contour integrations would be a
plasma with test particles. Among these test particles are ones corresponding to the holomorphic and antiholomor-
phic σ screening operators, which, in addition to carrying electric charge −Q2/2, respectively carry magnetic charge
∓Q2/2g. Thus, if the holomorphic and antiholomorphic σ screening operators are not paired up properly, they will
give a vanishing result because of confinement of magnetic charge. This would give the sought after orthogonality
(exponential in the separation of quasiparticles) for arbitrary n-quasiparticle wavefunctions, since the different confor-
mal blocks (degenerate wavefunctions) correspond to assigning the screening operators to different σ vertex operators.
Unfortunately, there is a barrier in this approach to applying a Mathur-style argument, which is that there is a branch
cut which prevents the J-terms from canceling in a simple way, and we have not managed to push the argument past
this barrier. We provide more details on this incomplete approach in Appendix G.

Fortunately, neither of these approaches is really needed. From the basic underlying structure of a topological phase,
we know that, given a few basic assumptions (which rest on the assumption of an energy gap), we can deduce the
braiding statistics of arbitrary numbers of quasiparticles, given much less information about quasiparticle statistics.
This will be made precise in the following subsections.

A. Braiding in the “Qubit Basis”

In this section, we will use some features special to the MR Pfaffian state to deduce the braiding properties of an
arbitrary number of quasiholes, given the Berry’s matrices which can be computed from the 2-, 4-, and 6-quasihole
wavefunctions by the methods described above. We will assume that the system is governed by a 3-body Hamiltonian
with pinning potentials as in Eq. (19). The only assumption we make is that there is a gap between the degenerate set
of ground states with n quasiparticles at fixed positions (determined by the pinning potentials) and all higher excited
states. So long as the gap remains open, the braiding properties that we discuss cannot change if the Hamiltonian is
modified from Eq. (19) to something more realistic.
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From Ref. 43, we know that when there are n fundamental (charge e/2M) quasiholes at fixed positions, there is a
degenerate set of states, rather than a unique state, and the following is a basis of these states:

Ψ(1+r1,3+r2,...,n−1+rn
2

)(2−r1,4−r2,...,n−rn
2

) ≡

Pf

(

(η1+r
1
−zi)(η3+r

2
−zi)...(ηn−1+r n

2

−zi) (η2−r
1
−zj)(η4−r

2
−zj)...(ηn−r n

2

−zj)+(i↔j)

zi−zj

)

∏

i<j

(zi − zj)
M e

− 1
4

P

i
|zi|2

(140)

where rj = 0, 1. This double-counts the number of states, since these wavefunctions are invariant under the interchange

of indices: (1 + r1, 3 + r2, . . . , n− 1 + rn
2
) ↔ (2 − r1, 4 − r2, . . . , n− rn

2
). Thus, there are 2

n
2 −1 such states. One can

think of these states as each pair (1, 2), (3, 4), . . ., (n− 1, n) of quasiholes being a two-state system, i.e. a qubit, with
an overall parity constraint on the n/2 qubits. For the sake of concreteness, we will fix this parity constraint by taking
rn

2
= 0. Note that this is a special feature of this particular topological phase; in a generic non-Abelian topological

phase, the n-particle Hilbert space will not decompose into such a tensor product of two-state systems. Each of these
two-state systems can be measured in the following way when the corresponding pair of quasiparticles is far from all
of the others. Suppose you want to know if rj is 0 or 1. Take η2j−1 to ηn−1. If Ψ(1+r1,3+r2,...,n−1)(2−r1,4−r2,...,n) now
vanishes when any zi approaches η2j = ηn−1, then rj = 0. If, instead, it vanishes when any zi approaches η2j−1, then
rj = 1.

Consider, in this basis, the effect of a braid group generator τ2i−1, which executes a counterclockwise exchange
of quasiholes 2i − 1 and 2i. This can be done with all of the other particles far away. Since the state in each of
those other two-level systems can be measured while keeping those pairs far away (as described above), exchanging
quasiparticle 2i− 1 and 2i must, by locality (which follows from the assumption of a gap), act as the identity within
each of those two-dimensional vector spaces. Therefore, it must be of the form:

τ2i−1 = 112 ⊗ . . .⊗ 112 ⊗B2 ⊗ 112 ⊗ . . .⊗ 112 (141)

so that it only acts non-trivially on the ith pair. Thus, the computation of τ2i−1 reduces to the computation of B2.
As we discuss in the next subsection, the eigenvalues of B2 are the numbers Rσ1σ1

I2
and Rσ1σ1

ψ2
.

The braid group generator τ2i affects pairs (2i− 1, 2i) and (2i+ 1, 2i+ 2) and must, therefore, take the form

τ2i = 112 ⊗ . . .⊗ 112 ⊗B4 ⊗ 112 ⊗ . . .⊗ 112 (142)

so that it only acts non-trivially on the ith and (i+ 1)th pair. Once again, by locality, we can ignore all of the other
quasiparticle pairs.

Indeed, locality further guarantees that B2 and B4 cannot depend on the number of other quasiparticle pairs in
the system (since all of the other pairs can be taken far away), so long as there are enough so that there is, indeed,
a two-state system on which B2 can act and a four-state system on which B4 can act. If there is only a single pair
of quasiholes, then there is a unique state, so at least four quasiparticles are needed in order to compute B2. The
cognoscenti may object at this point by noting that there is a second state of two quasiholes, namely the state with
an odd number of electrons. However, these states do not lie within the same Hilbert space, since they require their
wavefunctions to have different electron number. In order to show that B2 can be computed from the combination
of a N even electron number computation and a N odd electron number computation, we need to use more powerful
consistency arguments, which are discussed within the next section. Put slightly differently, unless we know in advance
that MR Pfaffian state is a state of Ising-type anyons (i.e. unless we assume the answer), there is no reason to assert
that the two eigenvalues of B2 are given by the Berry’s matrices of two quasiholes with an even or odd number of
electrons. Fortunately, we do not need to make any such assumptions and can compute B2 from the four-quasihole
case (or the six-quasihole case, though this is overkill). Similarly, B4 can be computed in a system with six quasiholes,
for which there are the needed four degenerate states and which is the largest number of quasiholes for which our
order-disorder operator strategy allows us to compute the full Berry’s matrix.

Thus, the representation matrices for all of the braid group generators can be obtained from the wavefunctions with
four and six quasiholes and, therefore, the representation of the entire braid group can be obtained. (As alluded to
above, if we use consistency conditions more effectively, we can reduce this to two- and four-quasihole wavefunctions,
as discussed in the next section.)

In order to actually compute the desired matrices B2 and B4, we need to go into the qubit basis defined by the
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appropriate conformal blocks in the c = 1/2 + 1 theory, which are computed in Appendix F:

Ψ(p1,p2,...,pn/2
) =







∏

i<j

η2i−1,2j−1 η2i,2j
∏

i,j

η2i−1,2j







1
8 





∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l







−1/2

×







∑
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(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l Ψ(1+r1,3+r2,...)(2−r1,4−r2,...)







∏

µ<ν

η
1

4M
µν e

− 1
8M

P

µ
|ηµ|2
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On the left-hand-side of this expression, the indices take the values pi = 0, 1, respectively, and obey the overall parity
constraint that

∑

i pi be even. The arguments above hold for this basis as well, for which, given the plasma screening
arguments for the four- and six-quasiparticle wavefunctions, the braiding matrices can be computed from analytic
continuation to be:

B2 = eiπ(
1

4M − 1
8 )

[

1 0

0 i

]

and B4 =
eiπ(

1
4M + 1

8 )
√

2











1 0 0 −i
0 1 −i 0

0 −i 1 0

−i 0 0 1











. (144)

In the standard basis, one would similarly have (for N even)

τ1 = B2 ⊗ 112 ⊗ . . .⊗ 112 (145)

τ2i = 112 ⊗ . . .⊗ 112 ⊗B′
2 ⊗ 112 ⊗ . . .⊗ 112 (146)

τ2i−1 = 112 ⊗ . . .⊗ 112 ⊗B′
4 ⊗ 112 ⊗ . . .⊗ 112 for i 6= 1, n/2 (147)

τn−1 = 112 ⊗ . . .⊗ 112 ⊗B2 (148)

with

B2 = eiπ(
1

4M − 1
8 )

[

1 0

0 i

]

, B′
2 =

eiπ(
1

4M + 1
8 )

√
2

[

1 −i
−i 1

]

, and B′
4 = eiπ(

1
4M − 1

8 )











1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1











, (149)

where again we can use the four-quasiparticle wavefunctions to compute B2 and B′
2 (which are, respectively, B(1⇆2)

and B(2⇆3) of Eq. (40)), but must use the six-quasiparticle wavefunctions to compute B′
4.

Comparing the braiding generators in the qubit and standard bases, we see that τ2i−1 acts on a two-dimensional
subspace in the qubit basis, while τ2i (as well as τ1 and τn−1) acts on a two-dimensional subspace in the standard
basis. Thus, we can imagine that if we had a way of ensuring a priori that braiding operations are consistent through
changes of basis (which we can, in fact, show, but only after the six-quasiparticle computation of this subsection),
then we would only need to compute braiding transformations on two-dimensional subspaces, and hence could avoid
the need to compute anything using wavefunctions with more than four quasiparticles.

B. General Considerations

In this section, we use more powerful and general arguments to show that the braiding properties of anyons can
be deduced from the two- and four- quasiparticle wavefunctions, provided we can compute the corresponding Berry’s
matrices. Although these arguments are more general in the sense that they do not use any special properties of the
MR Pfaffian state, the assumed locality properties, which follow from the existence of an energy gap, are equivalent
to those used in the previous argument.

The long-distance, low-energy properties of quasiparticles (e.g. their braiding statistics) in a topological phase are
assumed to be completely specified by an “anyon model,” a.k.a. a unitary braided tensor category14,88–91. An anyon
model is characterized by:

1. A finite set C of “topological charges” a, b, c, . . ., which are conserved quantum numbers specifying the different
types of quasiparticle excitations.
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2. Fusion rules specifying how these topological charges may combine and split, as described by a commutative
and associative fusion algebra

a× b =
∑

c∈C
N c
abc, (150)

where the integer N c
ab indicates the distinct number of ways the charges a and b can combine to produce charge

c. For simplicity, we will restrict our attention to the case where there are no fusion multiplicities, i.e. N c
ab = 0, 1,

since this is all that is needed for this paper, but there are more general cases122. There is a vector space Vabc
with dimVabc = N c

ab assigned to each fusion product, and one can represent the basis states of these spaces
diagrammatically as

c

ba
= |a, b; c〉 ∈ Vabc . (151)

The anyonic states describing a collection of quasiparticles can be represented by fusion diagrams such as

a1 a2 an· · ·

· · ·
c2

cn
(152)

where the topological charge aj of the jth quasiparticle is assigned to the jth endpoint at the top of the diagram.

3. Associativity of fusion within the fusion state spaces, which is specified by unitary isomorphisms written dia-
grammatically as

a b c

e

d

=
∑

f

[

F abcd

]

ef

a b c

f

d

. (153)

The F -symbols are analogous to 6j-symbols, providing a change of basis between the basis in which topological
charges a and b are first fused and then their result is fused with c to the basis in which topological charges b
and c are first fused and then their result is fused with a.

4. Braiding of topological charges enacting unitary transformations on the state space, which are written diagram-
matically as

c

ab

= Rabc
c

ab
(154)

It is also worth mentioning that there is a unique “vacuum” charge, denoted 0 or I, for which fusion and braiding
is trivial. Furthermore, each topological charge a has a unique conjugate ā with which it is allowed to fuse to vacuum
(in a unique way), i.e. N0

ab = δāb.
In summary, C, N c

ab,
[

F abcd

]

ef
, and Rabc comprise the basic data which completely specifies an anyon model. Given

this basic data, one can describe the operation representing an arbitrary fusion and braiding process by using a series
of applications of associativity and braiding (F and R). Hence, once this basic data of a system’s anyon model is
obtained, they can be used to compute the complete fusion and braiding statistics of (arbitrary configurations and
exchanges of) its quasiparticles.

In order to provide a coherent description of the fusion and braiding, this basic data must satisfy certain consistency
relations known as the “polynomial equations” (i.e. the pentagon and hexagon equations)92, which ensure that any two
series of applications of F and R starting in the same state space and ending in the same state space are equivalent93.
These consistency relations put strong constraints on the basic data (up to gauge transformations of the trivalent
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basis states). Consequently, it is often possible to start with an incomplete subset of the basic data and derive the
rest using nothing more than these consistency relations.

There are several important gauge invariant quantities worth describing here. The first is the quantum dimension
of charge a, given by

da = dā =
∣

∣

[

F aāaa

]

00

∣

∣

−1
. (155)

Quantum dimensions can be shown to satisfy the relation

dadb =
∑

c∈C
N c
abdc. (156)

The second is the topological spin of charge a, given by

θa = θā =
∑

c

dc
da
Raac = da

[

F aāaa

]

00

(

Rāa0
)∗
. (157)

These two (gauge invariant) quantities are particularly important, because it is often the case that the fusion algebra,
together with the quantum dimensions and topological spins (or even a subset of them) can uniquely identify an anyon
model.

Once it is known that the braiding statistics of quasiparticles is given by analytic continuation of the wavefunctions
given by CFT conformal blocks, we do not need to explicitly perform analytic continuation directly on the wavefunc-
tions. Rather, one can instead obtain all the basic data directly from known properties of the CFT. For example,
the topological spin is simply given by θa = ei2πha , where ha is the (holomorphic) conformal scaling dimension of the
primary field corresponding to topological charge a, while the F - and R-symbols can be obtained from the operator
product expansions (the R-symbols can simply be read off). For a complementary discussion of how the structure of
topological phases can be decoded from wavefunctions – in particular, from their pattern of zeroes – see Refs. 94,95.

1. Ising

As an example of an application of this consistency, we consider starting with nothing more than the Ising fusion
algebra

I × I = I, I × ψ = ψ, I × σ = σ,

ψ × ψ = I, ψ × σ = σ, σ × σ = I + ψ.
(158)

This fusion algebra is believed to describe the ν = 1 bosonic MR state (i.e. M = 1, for which one has the identifications
ψ2 = I0 = I, σ1 = σ, and I2 = ψ0 = ψ) and also the closely related SU(2)2 Chern-Simons theory (equating I = 0,
σ = 1

2 , and ψ = 1). In the next subsection, we will show that this identification is correct. Given this fusion algebra,

one can solve the consistency conditions to find exactly 8 different anyon models (up to gauge transformations)90,91.
These 8 different anyon models are completely distinguished by their values of θσ = ei2π(2j+1)/16, where j = 0, . . . , 7
for the 8 different theories (e.g. Ising anyons have j = 0 and SU(2)2 has j = 1). Hence, knowing only the fusion
algebra one can use consistency to determine the theory up to this 8-fold degeneracy of theories.

Since we only need to supplement the Ising fusion algebra with the value of θσ in order to completely identify the
anyon model describing such a system, we should examine it more closely to determine what is left to compute. But
first we note that one can easily determine the quantum dimensions to be dI = dψ = 1 and dσ =

√
2 from Eq. (156).

Now we can write out the definition

θσ =
1√
2

(

RσσI +Rσσψ
)

=
√

2 [F σσσσ ]II (RσσI )
∗
. (159)

From this we see that all we need is RσσI and either Rσσψ or [F σσσσ ]II .

2. Putative Anyon Model for the Moore-Read Pfaffian State

One can similarly analyze the anyon model which is generally assumed to correspond to the MR Pfaffian state. In
the next subsection, we will compute the F and R matrices to show that this identification is correct. We define the
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topological charges through the corresponding CFT operators of the quasiparticles, which are the product of an Ising
sector operator with a U(1) bosonic charge sector vertex operator

Ij = e
i j√

2M
ϕ
, ψj = ψe

i j√
2M

ϕ
, σj = σe

i j√
2M

ϕ
, (160)

where j must be even for Ij and ψj , and odd for σj . Furthermore, the charge I0 corresponds to vacuum, while ψ2M

corresponds to the underlying particle of the system, e.g. the electron or atom. Consequently, when M is odd, we
identify the bosonic underlying particle with vacuum, i.e. ψ2M = I0. When M is even, the underlying particle (the
electron) is a fermion, so we cannot identify it with vacuum (though one can introduce a Z2 grading and put it in a
doublet with vacuum). Instead, for M even we identify a pair of electrons with vacuum, i.e. ψ2M ×ψ2M = I4M = I0.
Thus, we have the fusion rules

Ij × Ik = I[j+k], Ij × ψk = ψ[j+k], Ij × σk = σ[j+k],

ψj × ψk = I[j+k], ψj × σk = σ[j+k], σj × σk = I[j+k] + ψ[j+k].
(161)

where we have defined the short-hand [j] ≡ jmod4M . For M odd, one has the additional identifications Ij = ψ[j+2M ],
ψj = I[j+2M ], and σj = σ[j+2M ]. In this way, there are 6M distinct topological charge types for M even and
3M topological charge types for M odd. Given these fusion rules, the quantum dimensions can be found to be
dIj = dψj = 1 (for j even) and dσj =

√
2 (for j odd) from Eq. 156. The topological spins are

θIj = R
IjIj

I2j
=
[

F
IjI−jIj

Ij

]

I0I0

(

R
I−jIj

I0

)∗
(162)

θψj = R
ψjψj

I2j
=
[

F
ψjψ−jψj

ψj

]

I0I0

(

R
ψ−jψj

I0

)∗
(163)

θσj =
1√
2

(

R
σjσj

I2j
+R

σjσj

ψ2j

)

=
√

2
[

F σjσ−jσj
σj

]

I0I0

(

R
σ−jσj

I0

)∗
. (164)

As mentioned above, the 8 consistent anyon models permitted for the M = 1 MR fusion algebra can be uniquely
distinguished by their value of θσ1 . For M = 2 (corresponding to the ν = 1/2 fermionic MR state), it was found
in Refs. 91,96 that given the corresponding fusion algebra, there are 32 different possible anyon models that satisfy
the consistency conditions and that these 32 different anyon models can be uniquely identified by their topological
spins. In fact, closer inspection reveals that they can be uniquely identified merely by their values of θσ1 and θI2 .
Moreover, it can be shown96 that this is true for general M , i.e. that θσ1 and θI2 uniquely identifies the anyon models
corresponding to the MR fusion algebra.

C. Identifying the anyon model

Once the anyon model corresponding to a state is known, one can use it to compute the braiding statistics of an
arbitrary n-quasiparticle wavefunction. Thus, we now turn to the wavefunctions of the MR Pfaffian state, to extract
the quantities necessary to identify the corresponding anyon model.

We now give the charge e/2M quasiholes in this system the label σ1. At the moment, this labeling is completely
innocent, but we note that σ1 has the same quantum dimension as the similarly-named quasiparticle of the previous
subsection since dσ1 =

√
2 and, as discussed in Section IXA, there are (

√
2)n states for n even quasiparticles.

Now consider the wavefunctions Ψ0 and Ψ1 defined in Eq. 26. These wavefunctions are linear combinations of the
wavefunctions in Eq. 28. Suppose that, in Ψ0, we bring the σ1 quasiholes at η1 and η2 close together and take the
quasiholes at η3 and η4 far away. Then there is a localized excitation at η1 ≈ η2. Let us call this localized excitation
I2. Suppose we do the same thing with Ψ1; we call the resulting excitation ψ2. A priori, we do not know if I2 and
ψ2 are distinct excitations or are topologically-equivalent (or, perhaps, are different superpositions of excitations).
However, from the 4-particle braiding matrices computed in Section VIII through plasma analogy arguments, we
know that if the quasihole at η3 is taken around the excitation at η1 ≈ η2, the resulting phase in Ψ1 differs from that
in Ψ0 by −1. Thus, it is correct to assign two different labels to the corresponding excitations; the labels I2 and ψ2

are as good a choice as any.
We now compute the F -symbols and the fusion algebra. This can be done with four-quasihole wavefunctions.

The F -matrix is a unitary transformation between two different bases of the two-dimensional Hilbert space of four
quasiparticle states. One basis is given by Ψ0 and Ψ1, in which the σ1s at η1 and η2 fuse to I2 and ψ2, respectively.
From the computation of matrix elements in Section VIII, we see that these wavefunctions provide an orthonormal
basis:

〈Ψ0|Ψ0〉 = 〈Ψ1|Ψ1〉 = 1 , 〈Ψ0|Ψ1〉 = 〈Ψ1|Ψ0〉 = 0. (165)
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(Strictly speaking, we have shown that Ψ0 and Ψ1 are orthogonal and have the same norm, which is simply an
ηa-independent constant in the limit that the ηas are all far apart. Thus, to normalize them, we need to divide
both wavefunctions by their common norm.) The F -matrix is a change of basis from this orthonormal basis to an
orthonormal basis

∣

∣Ψ′
0,1

〉

in which the σ1 quasiparticles at η1 and η4 fuse to I2, ψ2. Since 1, 2, 3, and 4 are an arbitrary
labeling of the quasiparticles, the states in which 1 and 4 fuse to I2, ψ2 are given by changing the labels to obtain:

Ψ′
0,1 (η1, η2, η3, η4; z1, . . . , zN) =

∏

µ<ν

η
1

4M − 1
8

µν
(η13η24)

1
4

√

1 ±√
x

(

Ψ(13)(24) ±
√
xΨ(12)(34)

)

e
− 1

8M

4
P

µ=1
|ηµ|2

. (166)

Then, using the identity Eq. (29), we have:

Ψ′
0,1 =

∏

µ<ν

η
1
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8
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4
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Therefore,
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0 ± Ψ′
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∏
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2 Ψ0,1 (168)

Thus, from Eq. (168), we conclude that:

[

F σ1σ1σ1
σ3

]

ab
=

1√
2

[

1 1

1 −1

]

ab

(169)

where a, b = I2, ψ2. One can similarly compute all the F -symbols directly from wavefunctions with no more than four
quasiparticles.

We note that we computed the F -symbols directly from the wavefunctions, with no appeal to orthogonality or
the plasma analogy, so it might at first appear that orthogonality played no role here. However, it is important to
establish that the associativity encoded in the F -symbols is unitary, since we are describing quantum mechanical
systems. For this, the orthogonality result (obtained from the plasma analogy) is crucial, since it establishes that the
wavefunctions in question provide orthonormal bases that are related by this F -symbol, which can thus be interpreted
as a unitary change of basis transformation.

We now compute the R-symbols. With the definitions of I2 and ψ2 given above, we can read these off from the four-
quasihole wavefunctions Ψ0 and Ψ1, since our plasma analogy has shown that the braiding statistics is simply given by
analytic continuation of the wavefunctions. Thus, as found in Eq. (30) for the counter-clockwise exchange η1 ⇆ η2, we

have Rσ1σ1

I2
= eiπ(

1
4M − 1

8 ), Rσ1σ1

ψ2
= eiπ(

1
4M + 3

8 ). We note that these R-symbols can also be obtained from the analytic

continuation of the wavefunctions Ψ′
0 and Ψ′

1 in Eq. (167) corresponding thecounter-clockwise exchange η2 ⇆ η3.
However, once we know that the braiding statistics is given by explicit analytic continuation of the wavefunctions, we
can save ourselves the trouble of explicitly computing the R-symbols from wavefunctions, since we know the analytic
continuation of the wavefunctions is determined by the CFT through its operator product expansion.
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If we give the label σ2k+1 to a charge e/2M quasihole with k Laughlin quasiholes at the same point and similarly
define I2k, ψ2k, then these equations can be generalized to:

R
σjσk

Ij+k
= eiπ(

jk
4M − 1

8 ) (170)

R
σjσk

ψj+k
= eiπ(

jk
4M + 3

8 ) (171)

Similarly, one can compute the remaining R-symbols from analytic continuation by additionally introducing quasi-
particles carrying topological charge Ij and/or ψk into the wavefunction, since the screening properties can easily be
shown to still apply (as long as M is not too large). The results are

R
IjIk

Ij+k
= eiπ

jk
4M (172)

R
ψjψk

Ij+k
= −eiπ jk

4M (173)

R
Ijψk

ψj+k
= R

ψkIj

ψj+k
= eiπ

jk
4M (174)

RσjIk
σj+k

= RIkσj
σj+k

= eiπ
jk
4M (175)

Rσjψk
σj+k

= Rψkσj
σj+k

= eiπ(
jk
4M − 1

2 ). (176)

As previously mentioned, there is some ambiguity in these quantities, since they are not all gauge invariant. However,
we can use them to obtain

θIj = ei2π
j2

8M (177)

θψj = e
i2π

“

j2

8M + 1
2

”

(178)

θσj = e
i2π

“

j2

8M + 1
16

”

. (179)

This can be used to specify the corresponding anyon model. In fact, as previously mentioned, only a subset of
this information is absolutely necessary to uniquely identify the anyon model. Hence, the fusion and braiding of the
MR state can be completely determined through consistency using only the fusion algebra and the plasma argument
applied to the wavefunctions with at most four σ quasiparticles.

In fact, the two-quasiparticle wavefunctions are sufficient to compute the R-matrices, provided that we allow the
electron number to be either even or odd as needed. Consider the wavefunction obtained by taking the σ1 quasiholes
at η1 and η2 close together and keeping the quasiholes at η3 and η4 far away in the state Ψ0. We labeled the resulting
excitation at η1 ≈ η2 by I2. If we note that the same wavefunction (up to normalization) arises as the only possible
wavefunction of two σ1 quasiholes in a system with an even number of electrons, then we can conclude that two σ1

quasiholes must fuse to I2 if the number of electrons is even. Thus, Rσ1σ1

I2
is the Abelian braiding statistical phase

obtained for a two-quasihole state with an even number of electrons. Similarly, we note that the wavefunction obtained
by taking the σ1 quasiholes at η1 and η2 close together and keeping the quasiholes at η3 and η4 far away in the state
Ψ1 is the same wavefunction (up to normalization) as the only possible wavefunction of two σ1 quasiholes in a system
with an odd number of electrons. Thus, Rσ1σ1

ψ2
is the Abelian braiding statistical phase obtained for a two-quasihole

state with an even number of electrons.

X. ORTHOGONALITY FOR UNMATCHED QUASIPARTICLES

It is often assumed that the overlap between two wavefunctions that do not have the same types of quasiparticles
at (nearly) the same locations should vanish. For example, such an orthogonality postulate is used97 (sometimes
implicitly) in the determination of the braiding statistics and other properties of hierarchical states, such as the
Abelian Haldane-Halperin (HH) hierarchy states98,99 built on the ν = 1/m Laughlin states and the Bonderson-
Slingerland (BS) hierarchy states66, which can be built on arbitrary states, notably providing a non-Abelian hierarchy
over the ν = 1/2 MR and anti-Pfaffian states. In fact, this orthogonality is of paramount importance, since it is
necessary to establish the interpretation of the wavefunctions as describing anyonic quasiparticles. Without it, we
would be missing the notion of a specific, distinguishable localized conserved quantum number (topological charge)
associated with the quasiparticle coordinate, i.e. property 1 of anyon models in Section IXB, and thus the rest of
the properties (fusion, braiding, etc.) that we can derive would lack a proper interpretation beyond some algebraic
relations between certain special wavefunctions. In this section, we will prove this orthogonality using the plasma
analogy.
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First we consider the wavefunctions in term of their Coulomb gas CFT formalism. Next we recognize that, as
described in Appendices A and D, the chiral vertex operators can be expressed in terms of electric and magnetic
Coulomb charges. Specifically,

eiαϕ(z) = ei
α
2 φ(z,z̄)O α

2g
(z, z̄) (180)

corresponds to a particle carrying electric charge q = α/2 and magnetic charge m = α/2g. Similarly,

eiαϕ̄(z̄) = ei
α
2 φ(z,z̄)O− α

2g
(z, z̄) (181)

corresponds to a particle carrying electric charge q = α/2 and magnetic charge m = −α/2g. If the corre-
sponding holomorphic and antiholomorphic vertex operators have coinciding positions, they produce an operator
eiαϕ(z)eiαϕ̄(z̄) = eiαφ(z,z̄) corresponding to a particle carrying electric charge α and no magnetic charge. If quasiparti-
cle coordinates are not matched up appropriately between two wavefunctions, then, in the plasma analogy, they will
leave stray (uncanceled) magnetic charges in the plasma. Since magnetic charge is confined in screening plasmas, this
makes it clear that the overlap between wavefunctions described by a plasma analogy will vanish unless they have
matching quasiparticles at nearly coinciding positions. More specifically, the overlaps will be zero up to O

(

e−r/ℓ
)

corrections, where r is the largest separation between unmatched quasiparticles (i.e. between magnetic charges in the
plasma).

With this orthogonality established, one might wonder whether a stronger result can be established. Indeed, one can
attain stronger results for holes in the ν = 1 filled Landau level and for single Laughlin-type quasihole wavefunctions.
We explain this in more detail in Appendix H, but note the results here that

G
(

η̄µ, η
′
µ

)

= C1

∑

π∈Sn

(−1)π
n
∏

µ=1

e−
1
4 (|ηπ(µ)|2+|η′µ|2−2η̄π(µ)η

′
µ) = C1(2π)n

∑

π∈Sn

(−1)π
n
∏

µ=1

δ2LLL

(

ηπ(µ) − η′µ
)

(182)

for n holes in the ν = 1 filled Landau level, and

G (η̄, η′) = C1e
− 1

4M (|η|2+|η′|2−2η̄η′) = C1 (2πM) δ2LLLM
(η − η′) (183)

for a Laughlin-type quasihole in any ν = 1/M quantum Hall state with plasma analogy (for example, this holds for
the I2 excitation of the MR state).

Based on these examples, we conjecture that the overlap of wavefunctions that are not properly matched up in the
U(1) boson charge sector will actually vanish with Gaussian, rather than exponential, falloff. This is expected to result
from the neutralizing background that gives rise to the Gaussian terms in the wavefunctions. We also expect that
the overlaps will behave effectively as delta-functions, projected into the appropriate subspace, while keeping track
of the braiding statistics due to analytic continuation of the wavefunctions. This leads us to a general orthogonality
postulate for quantum Hall states of the form

Gα,β
(

η̄µa , η
′
µa

)

∼ Bα,β
(

η̄µa , η
′
µa

)

∑

a∈C

∑

π∈Sna

na
∏

µ=1

δ2
(

ηπ(µa) − η′µa

)

, (184)

where there are na quasiparticles of type (topological charge) a at coordinates ηµa in one wavefunction and at η′µa

in the other wavefunction (the delta-functions are only between quasiparticles of matching topological charge), and
Bα,β

(

η̄µa , η
′
µa

)

is a term that only keeps track of the braiding statistics due to exchange of the quasiparticles. For
example, Laughlin-type quasiholes would have

B
(

η̄µ, η
′
µ

)

=
∏

µ<ν

[

(η̄µ − η̄ν)
(

η′µ − η′ν
)

|ηµ − ην |
∣

∣η′µ − η′ν
∣

∣

]
1

M

. (185)

Eq. (184) clearly cannot be exact, since the right-hand side does not obey the necessary analytic properties mandated
by the wavefunctions one is taking overlaps between, but we expect the answer with the correct analytic properties
to have this effective form with respect to quasiparticle wavefunctions, up to exponentially suppressed corrections.

XI. BRAIDING IN THE ANTI-PFAFFIAN AND BONDERSON-SLINGERLAND HIERARCHY STATES

In Refs. 35,36, it was pointed out that the particle-hole conjugate of the MR Pfaffian state is a distinct state and
that, in the absence of Landau level mixing, it must be equal in energy to the MR state. Upon inclusion of Landau
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level mixing, the anti-Pfaffian state appears to be lower in energy100,101. A candidate wavefunction for this state can
be obtained by particle-hole conjugation102 of the MR wavefunction.

In Ref. 66, it was shown that one can construct hierarchical states over the MR and anti-Pfaffian ν = 1/2 states, and
that these Bonderson-Slingerland (BS) hierarchy states provide candidates for all the (remaining) observed second
Landau level plateaus. Moreover, it was numerically demonstrated67 that the BS candidate for ν = 12/5 is a
competitive state, along with the RR and HH candidates.

Here we will show that the wavefunction orthogonality results obtained in this paper for the MR wavefunctions
imply the same orthogonality for the anti-Pfaffian and BS hierarchy wavefunctions obtained from them. Hence, the
braiding statistics of these states are similarly obtained through analytic continuation of the wavefunctions.

We begin by demonstrating that orthogonality of any two wavefunctions implies the orthogonality of their particle-
hole conjugate wavefunction. For a general wavefunction Ψ(ηµ; zi) with quasiholes, one generates a particle-hole
conjugate wavefunction102 by filling one Landau level, introducing holes, and projecting the holes onto the wavefunc-
tions Ψ by multiplying by Ψ̄ and integrating over the holes’ coordinates:

Ψ(p-h)(η̄µ; zi) =

∫ N1
∏

c=1

d2ξc Ψ̄(η̄µ; ξ̄a) ×
∏

a<b

(ξa − ξb)
∏

a,i

(ξa − zi)
∏

i<j

(zi − zj) e
− 1

4

N1
P

a=1
|ξa|2

e
− 1

4

N
P

i=1

|zi|2
(186)

In this expression, one must obey the constraint

N =
(

ν−1 − 1
)

N1 − S + 1 +N
(qh)
φ (187)

where ν and S are respectively the filling fraction and shift of Ψ, while N
(qh)
φ is the number of fluxes associated with

the quasiholes of Ψ.
Consider the overlap for two arbitrary particle-hole conjugate wavefunctions:

G
(p-h)
α,β (ηµ, η̄µ) =

∫

∏

k

d2zk Ψ̄(p-h)
α (ηµ; z̄i)Ψ

(p-h)
β (η̄µ; zi) (188)

=

∫

∏

k

d2zk
∏

c

d2ξc d
2ξ′c Ψα(ηµ; ξa)Ψ̄β(η̄µ; ξ̄′a)

∏

a<b

(

ξ̄a − ξ̄b
)

(ξ′a − ξ′b)

×
∏

a,i

(

ξ̄a − z̄i
)

(ξ′a − zi)
∏

i<j

|zi − zj |2 e
− 1

4

P

a
|ξa|2

e
− 1

4

P

a
|ξ′a|2

e
− 1

2

P

i

|zi|2
. (189)

Now we use Eq. (182) to re-write this as

G
(p-h)
α,β (ηµ, η̄µ) =

∫

∏

c

d2ξc d
2ξ′c Ψα(ηµ; ξa)Ψ̄β(η̄µ; ξ̄

′
a)



C1 (2π)
N1

∑

π∈SN1

(−1)π
∏

a

δ2LLL

(

ξπ(a) − ξ′a
)





= C1 (2π)
N1

∫

∏

c

d2ξcΨα(ηµ; ξa)Ψ̄β(η̄µ; ξ̄a) = C1 (2π)
N1 Gβ,α(ηµ, η̄µ), (190)

where Gα,β(ηµ, η̄µ) is the overlap of the original two wavefunctions Ψα and Ψβ (with N1 electrons).
It is now trivial to apply Eq. (190) to the anti-Pfaffian state, using our previously obtained results for Gα,β of the

MR state. (For the MR state at ν = 1/2, one has S = 3 and N
(qh)
φ = n/2 for n fundamental non-Abelian quasiholes.)

A similar, but slightly more complicated, argument applies to hierarchical wavefunctions, such as those of the
Bonderson-Slingerland hierarchy states66 built on the MR Pfaffian state or the anti-Pfaffian state. In particular, the
wavefunctions for these states can be constructed by projecting Abelian quasiparticles of the MR or anti-Pfaffian state
into a Laughlin state, in a manner similar to the how holes of the filled Landau level were projected into the MR state
to create the anti-Pfaffian wavefunction. One can then similarly use the results from Section X on orthogonality of
wavefunctions with quasiparticles in different positions and the orthogonality postulate of Eq. (184).

For concreteness, let us examine the ν = 2/5 BS hierarchy state66 formed by condensing Laughlin-type quasiparticles
(i.e. I2 excitations) of the ν = 1/2 MR state. Wavefunctions of this state with non-Abelian quasiholes at positions
ηµ are given by

Ψ
BS2/5
α (ηµ; zi) =

∫ N1
∏

c=1

d2uc
∏

µ<ν

(η̄µ − η̄ν)
1/40

∏

µ,a

(η̄µ − ūa)
1/4
∏

a<b

(ūa − ūb)
5/2 e

− 1
40

P

µ
|ηµ|2

e
− 1

4

P

a
|ua|2

×
∏

a<b

(ua − ub)
1/2
∏

µ,a

(ηµ − ua)
1/4
∏

a,i

(ua − zi) e
− 1

8

P

a
|ua|2 × ΨMR

α (ηµ; zi) (191)
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where ua are the coordinates of the N1 = 1
2N +1 charge e/2 Laughlin quasiholes which are projected into a Laughlin-

type wavefunction

Φ (ηµ;ua) =
∏

µ<ν

(ηµ − ην)
1/40

∏

µ,a

(ηµ − ua)
1/4
∏

a<b

(ua − ub)
5/2

e
− 1

40

P

µ
|ηµ|2

e
− 1

4

P

a
|ua|2

(192)

with quasiholes at ηµ. We take the inner product and use Eq. (184) to obtain

G
(BS)
α,β (ηµ, η̄µ) =

∫
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d2zkΨ̄
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GMR
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d2ucΦ (ηµ;ua) Φ̄ (η̄µ; ūa)

= GMR
α,β (ηµ, η̄µ)G

Φ(ηµ, η̄µ), (193)

where GΦ is the overlap for the Laughlin-type state’s wavefunctions Φ. Hence, the inner product is equal, up to an
overall constant and exponentially suppressed corrections, to that of the MR state times that of the Laughlin-type
state (which is simply constant). From this, it follows that Berry’s connection is trivial (up to Aharonov-Bohm terms)
and the braiding statistics of the BS hierarchy states are similarly obtained from direct analytic continuation of the
wavefunction.

XII. DISCUSSION

In this paper, we have constructed a new representation for the matrix elements between different MR Pfaffian
four-quasihole and six-quasihole states. This representation allowed us to conclude that the Berry’s matrix is trivial
in a particular basis – the basis given by conformal blocks in a c = 1/2 + 1 CFT. This result implies that this CFT
encapsulates the topological properties of this quantum Hall state – in other words, that this CFT can be used to
compute braiding, fusion, etc. for quasiparticles in the MR Pfaffian state34,42,43 and, by a straightforward extension,
the anti-Pfaffian state35,36 and BS hierarchy states built on these66. This was, of course, the hope right from the
beginning34, but there was no proof, although there is strong evidence coming from a variety of arguments and
numerical calculations, as we review below. Our paper provides a proof.

We now consider the relation of our proof to previous results. In Ref. 43, a method was proposed to calculate the
desired matrix elements, in terms of correlation functions in a perturbed CFT. The basic idea is that the integrals
Eq. (1) can be written as the correlation functions of the operators corresponding to quasiholes if the operators which
correspond to electrons are put into the action of the CFT and treated as a perturbation. For instance, TrG, defined in
Eq. (111), is given by the product of the Ising model correlation function in Eq. (97) and the charge sector correlation
function in Eq. (109):

TrG =

∫

∏

k

d2zk

〈
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i 1
2
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2M
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√

M
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M
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2π
√
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R

d2z φ(z,z̄)
〉

(194)

Here, we have made the abbreviation φ(z, z̄) ≡ ϕ(z) + ϕ̄(z̄). This can be re-written in the form

TrG =

∫

∏

i

d2zi
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−i 1

2π
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2M

R

d2z φ(z,z̄)
〉

(195)

where

Oq(η, η̄) = σ(η, η̄)e
i 1
2
√

2M
φ(η,η̄)

and Oe(z, z̄) = ǫ(z, z̄)ei
√

M
2 φ(z,z̄) (196)

This can now be rewritten in the following form, Eq. 8.3 of Ref. 43:

TrG = lim
t→0

dN

dtN

〈

Oq(η1, η̄1)Oq(η2, η̄2)Oq(η3, η̄3)Oq(η4, η̄4) e
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〉
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= lim
t→0
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〉
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(197)

This equation implies that we should view t
∫

d2zOe(z, z̄) as a perturbation of the Lagrangian of the Ising model +
a non-chiral boson and compute the correlation function of four Oq operators in this perturbed theory. By taking
N derivatives of the correlation function with respect to the coupling constant t for this perturbation, a correlation
function with N electron operators is obtained and, therefore, matrix elements for N -electron wavefunctions. The
integrals in Eq. (1) are exponentially-decaying at long distances if the renormalization group (RG) flow of the perturbed
CFT is to a massive fixed point. Although this approach is highly suggestive, it is unclear how to show that the
perturbed theory indeed flows to a massive fixed point. In Ref. 43, it was suggested that the perturbation has
negative scaling dimension since correlation functions of Oe increase with distance as a result of the background
charge. However, it was pointed out in Ref. 52 that Oe should be viewed as an operator of positive scaling dimension
(which is, in fact, an irrelevant perturbation for M ≥ 2), with the background charge merely shifting the charge
neutrality condition. Thus, it is not clear how to show that the perturbation in Eq. (197) is relevant. This is even a
problem if this method is applied to the Laughlin states. Since all quantum Hall wavefunctions have a (Laughlin-like)
bosonic charge sector, they all suffer the same complication. Furthermore, a leading-order RG calculation can show
that the initial flow goes away from the conformal theory, but it is much harder to predict the fixed point at which
the flow ends; it is necessary for the infrared fixed point to be massive in order for this approach to succeed. For these
reasons, a Coulomb gas approach was initiated in Ref. 45; this approach has been brought to fruition here.

The method of Ref. 43 was recently discussed again by Read in an important paper52. It was shown there that
this method can be applied more straightforwardly to the case of a chiral p-wave superconductor, which is described
by the Ising CFT. This state has no charge sector and the perturbed Ising CFT is simply a free massive Majorana
fermion. This result is important because it allows one to directly compute RσσI and Rσσψ , the two possible phases

that result when two hc/2e vortices with fusion channel I and ψ, respectively, are exchanged in a counter-clockwise
fashion. This is a significant advance compared to approaches relying on the BCS wavefunction for this state46,47,49,50,
which have only derived the ratio RσσI /Rσσψ . Ref. 52 also presents an alternative calculation, based on a bosonization
procedure related to the one which we use in Appendix F. This calculation gives all of the needed matrix elements
for two, four, and six quasiholes for a chiral p-wave superconductor (i.e. pure Ising CFT with no charge sector).

A recent Monte Carlo evaluation53 of the matrix elements between MR Pfaffian two-quasihole states with even-
and odd-numbers of electrons is consistent with Rσ1σ1

I2
= 1 (which was already obtained in an earlier numerical

calculation48) and Rσ1σ1

ψ2
= i for relatively large system sizes N ∼ 150. Numerical diagonalization54 of the 3-body

Hamiltonian in the presence of pinning potentials for the quasiparticles is also consistent, for small systems (N ∼ 16),
with these R-matrices and also with the fusion rules of the c = 1/2+ 1 CFT. (The calculations of Refs. 53 and 54 are
very similar, in principle. The difference – aside from the difference in system sizes – is that wavefunction overlaps are
computed by Monte Carlo evaluation of overlap integrals in Ref. 53. In Ref. 54, different wavefunctions are computed
in an orbital basis by exact diagonalization of the Hamiltonian with pinning potentials; the overlaps are then obtained
from the inner products of the corresponding vectors in this basis.)

It should be straightforward to extend the numerical calculations of Refs. 48,53,54 to compute the F -matrices as
well and, thereby, fully determine the braiding properties of quasiholes using the logic of Section IXB. It should also
be possible to extend those numerical calculations to the six-quasihole case and, thereby, fully determine braiding
without making any assumptions beyond the gap.

Finally, quasiparticle braiding has recently been computed51 using coherent states in bases obtained from the
“thin-torus” quasi-one-dimensional limit of the ν = 1 bosonic version of the MR Pfaffian state. The key step in this
derivation is changing between the basis obtained from the limit in which the torus is thin in one direction to the
dual basis obtained from the limit in which it is thin in the other direction. The relation between these two bases
(which one might recognize as the modular S-duality) is constrained by their properties under magnetic translation.
The change of basis is not computed directed, but rather is determined by consistency. However, this only determines
the change of basis and subsequent braiding relations up to an 8-fold degeneracy. This is precisely the same 8-fold
degeneracy of anyon models that are consistent with the Ising fusion algebra (i.e. are solutions to the pentagon and
hexagon equations)123, as described in Section IXB. Thus, the results obtained by this method are equivalent to
assuming no more than the fusion algebra (or, equivalently, the modular S-matrix124) and locality.

It should be noted that an alternative approach to quasiparticle braiding in this state relies on a mapping between
the MR Pfaffian state and a chiral p-wave superconductor. Wavefunction analytic continuation has been computed in
the latter state directly from the BCS wavefunction46,47,49,50, and the Berry’s matrix has been computed50 up to an
overall phase (these studies find the ratio Rσσψ /RσσI = i but cannot determine RσσI itself; in this respect, our calculation

gives more information, as does the calculation of Ref. 52). However, the mapping between the MR Pfaffian state and
a chiral p-wave superconductor42 is not exact. While the approximate mapping between the two is highly suggestive,
the relationship between the two states is, strictly speaking, established by computing quasiparticle braiding in both
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and comparing the result (i.e. comparing universal quantities in both states). This is done by comparing the results of
this paper with the combined results of Refs. 46,47,49,50. Finally, the statistics of vortices in the non-Abelian phase
of Kitaev’s honeycomb lattice model90, which exhibits Ising topological order, has recently been computed through
an explicit numerical computation of the Berry’s matrix103.

The next step in extending our work would be an adaptation of our representation to the Read-Rezayi (parafermion)
states. To accomplish that, we need a Coulomb gas construction for parafermions. This construction, based on the
related Coulomb gas construction for the SU(N)k WZW models, is known rather well104–110, but it has not yet been
developed to a point at which an explicit representation of the desired wavefunctions, with excitations, can be written
as a partition function of a two-dimensional plasma. We suggest this as a subject for future work.
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Appendix A: The free boson and the Coulomb gas

This section sets the conventions and the normalizations for free bosons used throughout this paper.
Consider a free boson field (compact such that φ ≡ φ+ 2π) with the action

S =
g

4π

∫

d2z (∇φ)
2
. (A1)

The correlation function of φ is given by, up to an additive constant

〈φ(z, z̄)φ(w, w̄) 〉 = − ln |z − w|
g

. (A2)

The electric operators are given by eiqkφ(zk,z̄k). Their correlation function is
〈

∏

k

eiqkφ(zk,z̄k)

〉

= exp

(

1

g

∑

k<l

qkql ln |zk − zl|
)

, (A3)

where one must have charge neutrality
∑

k qk = 0. We can also consider magnetic operators. They can be thought
of as vortices in the field φ, such that φ changes by 2πm when going around a magnetic charge m. Let us denote
magnetic operators by Om. For electric operators located at positions zk and magnetic operators at positions wa, the
correlation function is111

〈

∏

k

eiqkφ(zk,z̄k)
∏

a

Oma(wa, w̄a)

〉

=

exp





1

g

∑

k<l

qkql ln |zk − zl| + g
∑

a<b

mamb ln |wa − wb| + i
∑

k,a

qkma arg (zk − wl)



 , (A4)

where
∑

k qk =
∑

ama = 0.
Throughout the paper, we also use the holomorphic field ϕ(z), such that

〈ϕ(z)ϕ(w)〉 = − ln(z − w)

2g
. (A5)

We can write φ(z, z̄) ≡ ϕ(z) + ϕ̄(z̄) and treat φ(z, z̄) as the sum of two independent fields ϕ(z) and ϕ̄(z̄). As a result,
〈

∏

k

eiαkϕ(zk)

〉

=
∏

k<l

(zk − zl)
αkαl
2g . (A6)
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We notice that, just as exp [iqφ(z, z̄)] = exp [iq (ϕ(z) + ϕ̄(z̄))], we also have Om(z, z̄) = exp [img (ϕ(z) − ϕ̄(z̄))]. Hence,
we can write

eiαϕ(z) = ei
α
2 φ(z,z̄)O α

2g
(z, z̄) (A7)

eiαϕ̄(z̄) = ei
α
2 φ(z,z̄)O− α

2g
(z, z̄) . (A8)

In other words, the holomorphic/antiholomorphic vertex operator with coefficient α corresponds to an operator
carrying electric charge q = α/2 and magnetic charge m = ±α/2g.

For further reference, we also show how to calculate the important correlation function

〈

∏

k

eiαkϕ(zk)e−iν
R

d2z ϕ(z)

〉

=
∏

k<l

(zk − zl)
αkαl
2g e

− 1
2g

P

k

αkν
R

d2z log(zk−z)
. (A9)

The integral over the logarithm can be calculated under the following assumptions. First of all, we take the domain
over which z is integrated to be a disk. This means the imaginary part of the logarithm integrates to zero for symmetry
reasons. As for its real part, we observe that

∇2 log |z| = 2πδ2(z, z̄), (A10)

where ∇2 is the Laplacian and δ2(z, z̄) is the two dimensional delta function. This allows us to calculate this integral
by solving the corresponding Laplace equation

∇2
w

∫

d2z log |w − z| = 2π, (A11)

which gives

∫

d2z log |w − z| =
π

2
|w|2 . (A12)

Taken together, this gives

〈

∏

k

eiαkϕ(zk)e−iν
R

d2z ϕ(z)

〉

=
∏

k<l

(zk − zl)
αkαl
2g e

− νπ
4g

P

k

αk|zk|2
. (A13)

The value of g is often not particularly important (for example, when considering electric charges only). In the
CFT Coulomb gas formalism convention that we follow, we set g = 1/4. In other cases, however, we keep g general.

Appendix B: Mathur’s Procedure for Relating Products of Contour Integrals to 2D Integrals

The purpose of this appendix is to review Mathur’s trick which expresses sums of products of conformal blocks in
terms of a 2D integral (i.e. as the classical Boltzmann weight for a plasma). Consider a 2D integral of the form

∫

D

d2w f̄α(w̄)Qαβfβ(w) (B1)

We will assume that f̄α(w̄)Qαβfβ(w) is single-valued in D so that this integral is well-defined. Let us suppose that
D is a simply-connected region with no singularities. Then, we can re-write the integral over the interior of D in the
form

∫

D

d2w f̄α(w̄)Qαβfβ(w) =

∫

D

d2w f̄α(w̄)Qαβ
∂

∂w

(∫ w

P

dw′fβ(w
′)

)

(B2)

where P is any point in the interior of D. Since there are no singularities in D, the integral from D to w is independent
of the path. Then, since f̄α(w̄) depends only on w̄ and not w,

∫

D

d2w f̄α(w̄)Qαβfβ(w) =

∫

D

d2w
∂

∂w

(∫ w

P

dw′f̄α(w̄)Qαβfβ(w
′)

)
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FIG. 2: The plane is divided into annuli, such as the annulus A2 shown here, bounded by C2, S2, −C2, −S
′

2, as described in
the text.

=
i

2

∮

∂D

dw̄

∫ w

P

dw′f̄α(w̄)Qαβfβ(w
′)

=
i

2

∮

∂D

dw̄ f̄α(w̄)Qαβ

(∫ w

P

dw′fβ(w
′)

)

(B3)

The penultimate step involves an integration by parts. Since x = (w + w̄)/2, y = (w − w̄)/2i, the complex derivative
is defined by ∂g = (∂xg − i∂yg)/2. Thus,

∫

D

d2w ∂g =

∫

D

dx dy (∂xg − i∂yg)/2 =
1

2

∫

dy g − i

2

∫

dx g =
i

2

∮

∂D

dw̄ g (B4)

We are interested in integrals of the form Eq. (B1) in which fα(w), f̄α(w̄) are conformal blocks. Thus, we expect
them to depend on the coordinates z1, z2, . . . , zm of all of the other fields besides the one at w, and it will be singular
when w approaches any zk. In the expressions that concern us, w is the coordinate of a screening charge and the
zk are the coordinates of the other screening charges, the electrons, and the quasiholes. In order to avoid these
singularities, we split the complex plane into annuli Ak with inner and outer radii |zk−1| and |zk|. We additional
define the points z0 = 0 and zm+1 = ∞, so that the annuli cover the entire complex plane. Each of these annuli
contains no singularities. However, they are not simply-connected. Therefore, we cut the annulus Ak open along a
line from zk−1 and zk, as shown in Fig. 2. We then have a simply-connected region bounded by the union of the
curves Ck, Sk, −Ck−1, −S′

k. The circular contour −Ck−1 runs from P 3
k to P 4

k , while Ck runs from P 1
k to P 2

k . Then
according to Eq. (B3),

∫

Ak

d2w f̄α(w̄)Qαβfβ(w) =
i

2

∮

∂Ak

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′)

=
i

2

∫

Ck

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) +

i

2

∫

Sk

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′)

+
i

2

∫

−Ck−1

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) +

i

2

∫

−S′
k

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) (B5)

Let us now define

JC ≡
∫ P ′

P

dw̄ f̄α(w̄)Qαβ

∫ w

P

dw′fβ(w
′) ; (IC)α ≡

∫ P ′

P

dw fα(w) (B6)

where C is a contour from P to P ′ Then, we can re-write the four terms on the right-hand side of the second equality
in Eq. (B5) in the form:

∫

Ck

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) = JCk
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∫

Sk

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) =

∫

Sk

dw̄ f̄α(w̄)Qαβ

(

∫ P 2
k

P 1
k

dw′fβ(w
′) +

∫ w

P 2
k

dw′fβ(w
′)

)

= (ĪSk
)αQαβ(ICk

)β + JSk
∫

−Ck−1

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) = −

∫

Ck−1

dw̄ f̄α(w̄)Qαβ

(

∫ P 4
k

P 1
k

dw′fβ(w
′) +

∫ w

P 4
k

dw′fβ(w
′)

)

= −(ĪCk−1
)αQαβ(IS′

k
)β − JCk−1

∫

−S′
k

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′) = −

∫

S′
k

dw̄ f̄α(w̄)Qαβ

∫ w

P 1
k

dw′fβ(w
′)

= −JS′
k

(B7)

Thus, we have:

∫

Ak

d2w f̄α(w̄)Qαβfβ(w) =
i

2

[

JCk
− JCk−1

]

+
i

2

[

JSk
− JS′

k

]

+
i

2

[

(ĪSk
)αQαβ(ICk

)β − (ĪCk−1
)αQαβ(IS′

k
)β

]

(B8)

When we sum over annuli, the JCk
− JCk−1

terms will cancel. Now consider the next two sets of square brackets
on the right-hand-side of Eq. (B8). If fα(w) is taken in a counterclockwise direction from a point w on S′

k to the
corresponding point on Sk, then it is transformed by the monodromy matrix M :

(fα(w))Sk
= Mαβ (fβ(w))S′

k
(B9)

Since f̄α(w̄)Qαβfβ(w) is single-valued, M satisfies

M †QM = Q (B10)

Consequently, JSk
= JS′

k
. This leaves only the terms in the third set of square brackets on the right-hand-side of

Eq. (B8).
Since there are no singularities in Ak,

(ICk
)α + (ISk

)α − (ICk−1
)α − (IS′

k
)α = 0 (B11)

Meanwhile,

(ISk
)α = Mαβ(IS′

k
)β (B12)

Combining these two equations, we have

IS′
k

= (1 −M)−1 (ICk
− ICk−1

)

ISk
= (M † − 1)−1 (ICk

− ICk−1
) (B13)

Here, we have used matrix notation and suppressed the indices. Substituting these expressions into the third set of
square brackets on the right-hand side of Eq. (B8), we find that the cross-terms cancel so that we are left with

∑

k

∫

Ak

d2w f̄α(w̄)Qαβfβ(w) =
i

2

∑

k

[

−ĪCk
Q(1 −Mk)

−1ICk
+ ĪCk−1

Q(1 −Mk)
−1ICk−1

]

(B14)

Here, we have added a subscript k to M to emphasize that this is the monodromy matrix which results from deforming
S′
k to Sk. By applying Eq. (B14) repeatedly to each screening charge integral, we obtain the desired sum of products

of contour integrals. We can re-group terms to bring it to the form:

∑

k

∫

Ak

d2w f̄α(w̄)Qαβfβ(w) =
i

2

∑

k

[

−ĪCk
Q(1 −Mk)

−1ICk
+ ĪCk

Q(1 −Mk+1)
−1ICk

]

(B15)

Note that, by construction, both the left- and right-hand sides are single-valued.
We now specialize to the case of the Ising model. Consider first the squared norm of the correlation function of

2 ψ fields (or, equivalently, the correlation function of 2 energy operators). The generalization to N ψ fields (where
N is even) gives the square of the Pfaffian, which is a factor in the square of the ground state wavefunction. The
basic structure is already apparent for just 2 ψ fields, however, so we will begin with this simple case. Let us put the
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two electron operators at 0, z. We will call the screening operator coordinates w1, w2. There is a single conformal
block so, with appropriate choice of normalization, we can simply take Q = 1. When a screening operator eiα−ϕ is
taken around an electron’s vertex operator eiα31ϕ = e−iα−ϕ or around another screening operator, it changes by −1.
Thus, the monodromy Mk is ±1, depending on whether an even or odd number of operators is contained within Ck.
Consider the left-hand side of Eq. (87) for 2 electrons

∫

d2w1 d
2w2

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)eiα−ϕ(w1) eiα−ϕ(w2)
〉∣

∣

∣

2

= N
∫

d2w1 d
2w2 |w1 − w2|3 |z|3

2
∏

i=1

|wi|−3 |wi − z|−3

(B16)
where N is a normalization constant. Let us show that it is equal to the right-hand side of Eq. (87) by applying
Eq. (B15). First, we use Eq. (B15) to reduce the w2 integral for fixed w1. There are two cases, |w1| < |z| and
|w1| > |z|. For |w1| < |z|, Eq. (B15) tells us that:

∫

d2w2

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)eiα−ϕ(w1) eiα−ϕ(w2)
〉∣

∣

∣

2

|w1|<|z|
=
i

2

[

(1 −Mz)
−1 − (1 −M1)

−1
]

ĪC1IC1+

i

2

[

(1 −M∞)−1 − (1 −Mz)
−1
]

ĪCzICz (B17)

Here, C1 is the circle |w| = |w1| − ǫ and Cz is the circle |w| = |z| − ǫ. M1 is the monodromy of the holomorphic
conformal block

〈

e−iα−ϕ(0) e−iα−ϕ(z)eiα−ϕ(w1) eiα−ϕ(w2)
〉

(B18)

when w2 encircles the origin with 0 < |w2| < |w1|. Since such circle encloses the electron at the origin, e−iα−ϕ(0),
M1 = −1. Mz is the monodromy when w2 encircles the origin with |w1| < |w2| < |z|. Since such a circle encloses both

the electron at the origin, e−iα−ϕ(0), and the screening operator eiα−ϕ(w1), this monodromy is Mz = 1. Finally, M∞
is the monodromy when w2 encircles the origin with |w2| > |z|; since such a circle encloses the electron operators,

e−iα−ϕ(0) and e−iα−ϕ(z), and the screening operator eiα−ϕ(w1), this monodromy is M∞ = 1. Hence, for |w1| < |z|, we
have
∫

d2w2

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z,)eiα−ϕ(w1) eiα−ϕ(w2)
〉∣

∣

∣

2

|w1|<|z|
=

i

2

[

(1 −Mz)
−1 − 1

2

]

∣

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)

∮

C1

dw eiα−ϕ(w)eiα−ϕ(w1)

〉∣

∣

∣

∣

2

+

i

2

[

1
2 − (1 −Mz)

−1
]

∣

∣

∣

∣

〈

e−iα−ϕ(0)

∮

Cz

dw eiα−ϕ(w) e−iα−ϕ(z) eiα−ϕ(w1)

〉∣

∣

∣

∣

2

(B19)

This expression is divergent since Mz = 1, but can be regulated this expression by letting Mz = 1 + δ. The δ → 0
divergences will cancel, so we will drop these divergent terms. For |w1| > |z|, we obtain a similar expression, but with
Mz = M∞ = −1 and M1 = 1:

∫

d2w2

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z,)eiα−ϕ(w1) eiα−ϕ(w2)
〉∣

∣

∣

2

|w1|>|z|
=

+

i

2

[

1
2 − (1 −M1)

−1
]

∣

∣

∣

∣

〈

e−iα−ϕ(0) eiα−ϕ(w1)

∮

Cz

dw eiα−ϕ(w) e−iα−ϕ(z)

〉∣

∣

∣

∣

2

+

i

2

[

(1 −M1)
−1 − 1

2

]

∣

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)

∮

C1

dw eiα−ϕ(w)eiα−ϕ(w1)

〉∣

∣

∣

∣

2

(B20)

We can now perform the w1 integral. For instance,

∫

|w1|<|z|
d2w1

∣

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)

∮

C1

dw eiα−ϕ(w)eiα−ϕ(w1)

〉∣

∣

∣

∣

2

=

i

2

[

(1 −M1)
−1 − 1

2

]

·
∣

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)

∮

Cz

dw eiα−ϕ(w)

∮

Cz

dw′ eiα−ϕ(w′)

〉∣

∣

∣

∣

2

(B21)
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Since w is always enclosed when w1 encircles the origin (by definition, C1 is the circle at radius |w1| − ǫ), the only
singularity which gives a contribution is the one at z. When w1 lies on the contour Cz , the contour C1 becomes the
same contour (but point split, so that it is at infinitesimally smaller radius.) Thus,

∫

|w1|<|z|
d2w1 d

2w2

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z,)eiα−ϕ(w1) eiα−ϕ(w2)
〉∣

∣

∣

2

=

1

2

[

(1 −Mz)
−1 − 1

2

]2 ·
∣

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)

∮

Cz

dw eiα−ϕ(w)

∮

Cz

dw′ eiα−ϕ(w′)

〉∣

∣

∣

∣

2

(B22)

Adding the similar contribution which results from |w1| < |z|, we have

∫

d2w1 d
2w2

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z,)eiα−ϕ(w1) eiα−ϕ(w2)
〉∣

∣

∣

2

=

1

8
·
∣

∣

∣

∣

〈

e−iα−ϕ(0) e−iα−ϕ(z)

∮

Cz

dw eiα−ϕ(w)

∮

Cz

dw′ eiα−ϕ(w′)

〉∣

∣

∣

∣

2

(B23)

This is precisely the two-ψ version of Eq. (87). From the preceding derivation, we can now see how the general N -ψ
case works. Since the monodromy for taking a screening operator around an ψ operator is −1, there will only be a non-
trivial contribution from the contour associated with every second ψ operator. Consequently, as in Eq. (B23), there
will be two screening operator contour integrals attached to every second ψ operator, precisely as on the right-hand
side of Eq. (87).

Turning to conformal blocks with σ fields, we consider first the combination that gives us the trace of the overlap
matrix, namely the correlation function of σ(η, η̄) operators andN energy operators. For this combination, Qαβ = δαβ .
The monodromy matrices are again diagonal: the monodromy for a screening charge to go around an electron operator
is −1; around a quasihole, it is ±i. In a similar manner to the steps that led to Eq. (B23), the diagonality of Q and
M simplifies matters and leads to Eq. (105). Correlation functions with both order and disorder operators, which
give us the off-diagonal elements and the difference between the diagonal elements of the overlap matrix, are a little
more complicated because Q is no longer diagonal. They are considered in detail in the next Appendix.

Appendix C: Correlation function of two order and two disorder operators in the Ising model

As explained in Section VIII we can take advantage of Eqs. (121), (122), (123), (124), (125), and (127) to represent
the correlation function of two order and two disorder operators in the Ising model in terms of the following Coulomb
gas correlator

〈µ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) 〉 = (C1)
∫

d2w

〈

e
− i

4
√

3
ϕ(η1)+i

√
3

4 ϕ̄(η̄1) e
i
√

3
4 ϕ(η2)− i

4
√

3
ϕ̄(η̄2) ei

√
3

4 ϕ(η3)+i
√

3
4 ϕ̄(η̄3) ei

√
3

4 ϕ(η4)+i
√

3
4 ϕ̄(η̄4) e−i

√
3

2 ϕ(w)−i
√

3
2 ϕ̄(w̄)

〉

+ c.c.

Evaluating the correlation function results in the following expression, a particular case of Eq. (132),

〈µ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) 〉 = (η13η14)
− 1

8 (η̄13η̄14)
3
8 (η23η24)

3
8 (η̄23η̄24)

− 1
8 |η1 − η2|−

1
4 |η3 − η4|

3
4

×
∫

d2w [(w − η1) (w̄ − η̄2)]
1
4 [(w − η2) (w̄ − η̄1)]

− 3
4 |w − η3|−

3
2 |w − η4|−

3
2 + c.c. (C2)

Our goal is to calculate the integral over w and show that the result of integration indeed coincides with this correlation
function, as given, for example, in Ref. 87.

The first step of the calculation, as standard in practical calculations of four point correlation functions, is to use
global conformal invariance to assign specific values to three of the variables:

η1 = x, η2 = 0, η3 = ∞, η4 = 1. (C3)

x remains arbitrary and is effectively the only free parameter the correlation function depends on. When taking the
limit η3 → ∞, we multiply the correlation function Eq. (C2) by (η3η̄3)

1
8 to ensure a finite result, since the conformal

dimension of the order and disorder operators is 1/16. Without loss of generality, we take x to be a real variable
(which can be analytically continued to the complex plane later if needed) satisfying

0 < x < 1. (C4)
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FIG. 3: The integration contours in Eq. (C11).

This results in the following expression for the correlation function (we ignore the overall phase and replace x − 1
with 1 − x to simplify further calculations)

〈µ(x, x̄)µ(0, 0)σ(∞,∞)σ(1, 1) 〉 = (1 − x)−
1
8 (1 − x̄)

3
8 |x|− 1

4

∫

d2w (w − x)
1
4 w− 3

4 (w̄ − x̄)
− 3

4 w̄
1
4 |w − 1|− 3

2

+ (1 − x̄)−
1
8 (1 − x)

3
8 |x|− 1

4

∫

d2w (w̄ − x̄)
1
4 w̄− 3

4 (w − x)
− 3

4 w
1
4 |w − 1|− 3

2 (C5)

We now introduce the following convenient notation

f1 = (1 − x)−
1
8x−

1
8 (w − x)

1
4w− 3

4 (w − 1)−
3
4 (C6)

f2 = (1 − x)
3
8 x−

1
8 (w − x)−

3
4w

1
4 (w − 1)−

3
4 , (C7)

as well as the following matrix

Q =

(

0 1

1 0

)

. (C8)

Then Eq. (C5) can be rewritten in the following compact way using matrix notation
∫

d2w f̄Qf. (C9)

We are now in a position to use the techniques developed by Mathur in Ref. 65 specifically to compute integrals of this
sort. In that paper, it was shown that an expression in the form of Eq. (C9) can be re-written in the form of Eq. (B15)
(these are, respectively, Eq. (2.4) and Eq. (2.19) of Ref. 65, where there is a slight typo in Mathur’s Eq. (2.19), in
that the index i− 1 there should actually be i+ 1). Hence, Eq. (C9) becomes

i

2

[

−Ī(1)Q(1 −M1)
−1I(1) + Ī(1)Q(1 −M2)

−1I(1) − Ī(2)Q (1 −M2)
−1
I(2) + Ī(2)Q (1 −M3)

−1
I(2)

]

. (C10)

Here I(1) and I(2) are contour integrals defined according to

I(1)
α =

∮

|w|=x
dw fα , I(2)

α =

∮

|w|=1

dw fα. (C11)

The contours of integration are shown on Fig. 3. M1, M2 and M3 are the analytic continuation matrices of the
functions f , defined in the following way. Take the function f just above the real axis, analytically continue it over w
along a big circle centered at zero to the values just below the real axis. The new value fC is then given by

fC = M1f, 0 < w < x; fC = M2f, x < w < 1; fC = M3f, x > 1. (C12)
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In our case, these matrices are diagonal and can be calculated in a straightforward fashion, to give

M1 =

(

i 0

0 i

)

, M2 =

(

−1 0

0 −1

)

, M3 =

(

−i 0

0 −i

)

. (C13)

All that remains is to compute the integrals Eq. C11 and substitute into Eq. C10 to find the answer. The appropriate
integrals are computed by deforming the contours from |w| = x to 0 < w < x, and from |w| = 1 to 1 < w <∞. The
resulting integrals are then standard and can be expressed in terms of hypergeometric functions63,112. We find,

I
(1)
1 = (1 − x)−

1
8x−

1
8

∮

|w|=x
dw (w − x)

1
4w− 3

4 (w − 1)−
3
4

= e−
πi
2 (1 − x)−

1
8x−

1
8

(

e−
3πi
2 − 1

)

∫ x

0

dw (x− w)
1
4w− 3

4 (1 − w)−
3
4

=
1 + i

((1 − x)x)
1
8

Γ(1
4 )Γ(5

4 )

Γ(3
2 )

x
1
2F

(

3

4
,
1

4
,
3

2
, x

)

=
1 + i

((1 − x)x)
1
8

Γ(1
4 )Γ(1

4 )

2Γ(1
2 )

√
2

√

1 −
√

1 − x ≡ F1, (C14)

I
(2)
1 = (1 − x)−

1
8x−

1
8

∮

|w|=1

dw (w − x)
1
4w− 3

4 (w − 1)−
3
4

= (1 − x)−
1
8x−

1
8

(

1 − e−
3πi
2

)

∫ ∞

1

dw (w − x)
1
4w− 3

4 (w − 1)−
3
4

=
1 − i

((1 − x)x)
1
8

Γ(1
4 )Γ(1

4 )

Γ(1
2 )

F

(

−1

4
,
1

4
,
1

2
, z

)

=
1 − i

((1 − x)x)
1
8

Γ(1
4 )Γ(1

4 )

Γ(1
2 )

1√
2

√

1 +
√

1 − x ≡ F0, (C15)

I
(1)
2 = (1 − x)

3
8x−

1
8

∮

|w|=x
dw (w − x)−

3
4w

1
4 (w − 1)−

3
4

= e−
3πi
2 (1 − x)

3
8x−

1
8

(

e
πi
2 − 1

)

∫ x

0

dw (x− w)−
3
4w

1
4 (1 − w)−

3
4

=
−1 − e−

3πi
2

((1 − x)−3x)
1
8

Γ(1
4 )Γ(5

4 )

Γ(3
2 )

x
1
2F

(

3

4
,
5

4
,
3

2
, x

)

=
−1 − i

((1 − x)x)
1
8

Γ(1
4 )Γ(5

4 )

Γ(3
2 )

x
1
2F

(

3

4
,
1

4
,
3

2
, x

)

= −I(1)
1 ≡ −F1, (C16)

I
(2)
2 = (1 − x)

3
8x−

1
8

∮

|w|=1

dw (w − x)−
3
4w

1
4 (w − 1)−

3
4

= (1 − x)
3
8x−

1
8

(

1 − e−
3πi
2

)

∫ ∞

1

dw (w − x)−
3
4w

1
4 (w − 1)−

3
4

=
1 − e−

3πi
2

((1 − x)−3x)
1
8

Γ(1
4 )Γ(1

4 )

Γ(1
2 )

F

(

3

4
,
1

4
,
1

2
, x

)

=
1 − i

((1 − x)x)
1
8

Γ(1
4 )Γ(1

4 )

Γ(1
2 )

F

(

−1

4
,
1

4
,
1

2
, x

)

= I
(2)
1 ≡ F0. (C17)

Employing vector notation, we can now write

I(1) =

(

F1

−F1

)

, I(2) =

(

F0

F0

)

. (C18)

Substuting I, M and Q into Eq. (C10) we finally find

〈µ(η1, η̄1)µ(η2, η̄2)σ(η3, η̄3)σ(η4, η̄4) 〉 =
1

2

[

F̄0F0 − F̄1F1

]

. (C19)
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This is indeed the right answer for this correlation function. Not only does it match the expected form in Eqs. (117),
(118), and (119), it also coincides with the explicit expression for this correlation function worked out in Ref. 87.

Appendix D: Screening in a two-dimensional two-component plasma

In this section, we examine the screening properties of a two-dimensional two-component plasma using field theo-
retical analysis (see, e.g. Ref. 113). The interaction energy of a number of electric charges qk located in 2D is given
by

E =
∑

k<l

qkql ln |zk − zl| . (D1)

Suppose we have a 2D plasma of a large but equal number of electric charges of magnitude q and −q at temperature
T . The partition function of this plasma can be written as

Z =

∫

∏

k

d2zk e
− 1

T

P

k<l

qkql ln|zk−zl|
, (D2)

where qk are either q or −q.
With the help of Eq. (A3), we observe that this same partition function can be rewritten as

Z =

∫

∏

k

d2zk

〈

∏

l

eiqlφ(zl,z̄l)

〉

(D3)

while making the identification

T = g. (D4)

This identification of T with g is not particularly necessary. We could have multiplied all the electric charges by an
arbitrary factor, and simultaneously multiplied the temperature by the square root of this factor. This would keep
the partition function in Eq. (D3) exactly the same. However, T = g is a convenient choice that we use in this paper.

The partition function of such a plasma is most easily computed in the grand canonical ensemble, using methods
developed originally in the context of the Kosterlitz-Thouless transition82. For completeness, we present the derivation
here. The partition function in the grand canonical ensemble looks like

Z =

∞
∑

n=1

∑

ql=±q

1

n!

∫ n
∏

k=1

d2zk

〈

exp

[

i

n
∑

l=1

qlφ(zl, z̄l)

]〉

λn. (D5)

Here λ is the fugacity, the parameter whose logarithm gives the chemical potential of the charges. We can now sum
over qk = ±q and over n to find114

Z =

∫

Dφ e− g
4π

R

d2z(∇φ)2+2λ
R

d2z cos(qφ)

∫

Dφ e− g
4π

R

d2z(∇φ)2
. (D6)

The behavior of this plasma depends crucially on whether λ is a relevant or irrelevant perturbation. Since the
correlation function

〈

eiqφ(z,z̄) e−iqφ(w,w̄)
〉

=
1

|z − w|
q2

g

, (D7)

the dimension of this perturbation is

∆λ = 2 − q2

2g
. (D8)

The perturbation is relevant if ∆λ > 0 or, equivalently, q <
√

4g. Otherwise, it is irrelevant.
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If the perturbation is irrelevant, then the plasma does not screen. If it is relevant, the plasma screens. In the latter
case, the correlation function of two electric operators is a constant if they are farther away from each other than the
correlation (screening) length ℓ2 of the plasma

∫

Dφ eiq1φ(z1,z̄1)eiq2φ(z2,z̄2) e−
g
4π

R

d2z(∇φ)2+2λ
R

d2z cos(qφ) ∼ C2 +O
(

e−|z1−z2|/ℓ2), (D9)

where C2 is a constant independent of z1 and z2. To see this, we simply observe that if λ is a relevant perturbation,
typical values of φ are restricted to the minima of the cosine, and so φ fluctuates very little about this value.

And indeed, upon identifying g with the temperature of the plasma, we see that it is at high temperature that
the plasma screens. At low temperature, we expect that charges of opposite magnitude get combined into neutral
particles and the plasma stops screening.

Even more interesting is the behavior of the magnetic operators in the screened phase. Their correlator goes to
zero at large distances

∫

DφOm1(z1, z̄1)Om2(z2, z̄2) e
− g

4π

R

d2z(∇φ)2+2λ
R

d2z cos(qφ) ∼ O
(

e−|z1−z2|/ℓ2
)

. (D10)

This corresponds to the well known fact that magnetic charges are confined in the electrically-screening phase. To
see why this is so, recall that the operator Om1(z1, z̄1) creates a vortex in the field φ, so that φ winds by 2π in
going around (z, z̄). Since, as was pointed out earlier, φ is restricted to the minima of the cosine in the screening
phase, two magnetic monopoles are necessarily connected by a string where φ has to rapidly change by 2π in the
direction perpendicular to it. The energy cost of such a configuration is proportional to the length of the string. The
confinement of magnetic charges is essentially a version of the Meissner effect

Appendix E: Debye Screening Length of General Plasmas

The considerations of the previous Appendix tell us whether or not a two-component plasma screens. When a
plasma does screen (either one or two component, or even more general plasmas with multiple types of Coulomb
interactions), we would like to know what its screening length is. Deep within the screening phase, we can use the
Debye-Hückel theory115 theory. We review this theory here, and generalize it to plasmas with multiple types of
Coulomb interactions. We consider the case where there are m different types of Coulomb interactions and S different

particle species. The jth species particles has density nj (−→r ) and carries the kth type of Coulomb charge q
(k)
j . We

start with the Poisson equation

∇2φ(k) (−→r ) = − 1

ǫ0
ρ(k) (−→r ) (E1)

for the kth electric potential φ(k) (−→r ) and charge density ρ(k) (−→r ). We take the convention in which the Coulomb
energy in D spatial dimensions between two point charges q1 and q2 at −→r 1 and −→r 2, respectively, takes the form

Φ =











−q1q2 log |−→r 1 −−→r 2| for D = 2

q1q2

|−→r 1−−→r 2|D−2 for D ≥ 3
, (E2)

which corresponds to

ǫ0 =











1
2π for D = 2

Γ( D−2
2 )

4πD/2 for D ≥ 3

. (E3)

Next, we assume that the system is in thermal equilibrium, so the particle densities are given by a Boltzmann
distribution with respect to the Coulomb energies

nj (−→r ) = n
(0)
j exp

[

− 1

T

m
∑

k=1

q
(k)
j φ(k) (−→r )

]

, (E4)
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where n
(0)
j is the homogeneous density of the jth species of particles (far away from test particles).

Charge neutrality for the kth type of Coulomb charge can be obtained either by balancing charge among the

different species of particles to sum to zero (i.e.
∑S

j=1 q
(k)
j n

(0)
j = 0) or through a uniform neutralizing background

charge density (i.e. ρ
(k)
neutralizing (−→r ) = −∑S

j=1 q
(k)
j n

(0)
j ). In either case, charge neutrality allows us to write

ρ(k) (−→r ) =

S
∑

j=1

q
(k)
j

[

nj (−→r ) − n
(0)
j

]

, (E5)

giving zero charge density where the potential vanishes.
Combining Eqs. (E1), (E4), and (E5), we obtain the generalized Poisson-Boltzmann equation

∇2φ(k) (−→r ) =
1

ǫ0

S
∑

j=1

q
(k)
j n

(0)
j

{

1 − exp

[

− 1

T

m
∑

l=1

q
(l)
j φ(l) (−→r )

]}

. (E6)

This differential equation for φ(k) is obviously non-linear, but is approximately linear when/where the plasma is weakly

coupled (i.e. the Coulomb energies are small compared to the temperature) so that
∑m
l=1 q

(l)
j φ(l) (−→r ) ≪ T . In this

regime, we can expand the exponential

exp

[

− 1

T

m
∑

l=1

q
(l)
j φ(l) (−→r )

]

≃ 1 − 1

T

m
∑

l=1

q
(l)
j φ(l) (−→r ) (E7)

to obtain the linear approximation of Eq. (E4)

∇2φ(k) (−→r ) ≃
m
∑

l=1

Λklφ
(l) (−→r ) (E8)

Λkl =
1

ǫ0T

S
∑

j=1

n
(0)
j q

(k)
j q

(l)
j , (E9)

which generalizes the Debye-Hückel equation. Λ is a symmetric, real, positive-definite matrix, so all of its eigenvalues
λa (where a = 1, . . . ,m) are positive. It is now straightforward to solve this differential equation by changing to a
basis in which Λ is diagonal, giving m independent diffusion equations

∇2φ̃(a) (−→r ) ≃ λaφ̃
(a) (−→r ) , (E10)

where φ̃(a) =
∑

k Sakφ
(k), for S the similarity transformation that diagonalizes Λ, i.e. SΛS−1 = diag[λ1, . . . , λm].

Requiring the potentials φ(k) to go to zero at infinity, we know the solutions must generally have an exponentially

decaying behavior, with decay lengths ℓa = λ
−1/2
a . We define the longest decay length to be the Debye screening

length of the plasma

ℓD ≡ max
a

{

λ−1/2
a

}

. (E11)

We now consider several examples relevant to this paper:

1. The One-Component Plasma

For a one-component plasma, there is one species of particles with charge Q and a neutralizing background, which
gives

Λ =
n(0)Q2

ǫ0T
. (E12)

For the ν = 1/M Laughlin states, the corresponding plasma is a two-dimensional one-component plasma with T = g
and Q =

√
2Mg. This gives

Λ =
2

ℓ2B
(E13)

where n(0) = ν/2πℓ2B is the electron density of the quantum Hall fluid. Thus, the Debye screening length for a

Laughlin state is ℓ1 = ℓB/
√

2.
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2. The Two-Component Plasma

For a two-component plasma, there are two species of particles with charge Q and −Q, respectively, which gives

Λ =
2n(0)Q2

ǫ0T
. (E14)

For the p-wave superconductor, the corresponding plasma is a two-dimensional two-component plasma with T = g
and Q =

√
3g. This gives

Λ = 12πn(0) (E15)

where n(0) is the fermion density. Thus, the Debye screening length is ℓ2 =
[

12πn(0)
]−1/2

.

3. The Moore-Read Pfaffian States’ Plasma

For the ν = 1/M MR Pfaffian states, the corresponding two-dimensional plasma has temperature T = g, two types
of Coulomb interactions, and two particle species: the first with charge Q(1) =

√
2Mg and Q(2) =

√
3g, the second

with charge −Q(2) = −√
3g. There is also a neutralizing background for Coulomb charge of type 1. This gives

Λ =
2πn(0)

T

[

(

Q(1)
)2

Q(1)Q(2)

Q(1)Q(2) 2
(

Q(2)
)2

]

=
1

ℓ2B

[

2
√

6/M
√

6/M 6/M

]

(E16)

where n(0) = ν/2πℓ2B is the electron density of the quantum Hall fluid, which must also be the density of the screening

charges. The two eigenvalues of this Λ are λ± =
(

M + 3 ±
√
M2 + 9

)

/Mℓ2B. Thus, the Debye screening length is

ℓD =

(

M

M + 3 −
√
M2 + 9

)1/2

ℓB. (E17)

For M = 2 this is ℓD ≈ 1.2 ℓB.

Appendix F: Conformal Blocks of n σ fields and N ψ fields: a basis of n quasihole wavefunctions in which

braiding properties are manifest

In this section, we compute the conformal blocks which correspond to n-quasihole (and N -electron) wavefunctions.
The 4-quasihole case was computed in Ref. 43; here we extend this result to arbitrary even n . From the discussion
above, it is clear that we only need these conformal blocks in the two-, four-, and six-quasihole cases. However, for
completeness, we compute them for arbitrary numbers of quasiholes. These wavefunctions have the nice property of
furnishing, through their explicit analytic continuation, representations of the n-quasihole braid groups.

The basic strategy is to use Refs. 116,117 to compute

〈σ1σ2 σ1σ2 . . . σ1σ2 ψ1ψ1 . . . ψ1〉 (F1)

Here, we have two chiral Majorana fermions ψ1, ψ2 with their two spin fields σ1, σ2. Since σ1 and σ2 are completely
independent, this is equal to the product of

〈σ1 σ1 . . . σ1 ψ1ψ1 . . . ψ1〉 (F2)

and

〈σ2 . . . σ2〉 (F3)

The bosonization formulas derived in Refs. 116,117 allow us to compute all of the conformal blocks of Eqs. (F1) and
(F3), thereby giving us the desired conformal blocks of Eq. (F2). According to Refs. 116,117, if we have two chiral
Majorana fermions, ψ1, ψ2, we can combine them into a single Dirac fermion which can be bosonized:

eiϕ = ψ1 + iψ2 (F4)
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so that ψ1 = cosϕ. Bosonizing chiral spin fields is trickier. The individual spin fields do not have a simple expression,
but the product of two factors of σ1σ2 can be written in the form:

σ1(η1)σ2(η1) σ1(η2)σ2(η2) = eiϕ(η1)/2 e−iϕ(η2)/2 ± e−iϕ(η1)/2 eiϕ(η2)/2 (F5)

In a conformal block in which a given set of fields σ1σ2 · σ1σ2 fuse to 1 · 1 we take the + sign; if they fuse to ψ1 · ψ2,
we take the − sign.

Thus, we can compute the square of a conformal block of n σ fields by computing:

〈σσ . . . σ〉2(p1,p2,...,pn/2
) =

∑

ri=0,1

(−1)r·p
〈

ei(−1)r1(ϕ1−ϕ2)/2 ei(−1)r2(ϕ3−ϕ4)/2 . . . ei(−1)
r

n/2(ϕn−1−ϕn)/2
〉

(F6)

We have employed the shorthand ϕµ ≡ ϕ(ηµ) and (−1)r·p ≡ (−1)
P

jrjpj . The subscript (p1, p2, . . . , pn/2) on the

left-hand-side is used to specify the conformal block of this correlation function which we are computing: pi = 0, 1
denotes that the (2i − 1)th and 2ith σ fields fuse to I or ψ, respectively. There is an overall parity constraint
∑

ipi ≡ 0(mod2) for Eq. (F6), since there are no additional ψ field insertions in this correlation function. The two
values ri = 0, 1 correspond to whether we have used the first or second term on the right-hand-side of Eq. (F5) in
the bosonic correlation function on the right-hand-side of Eq. (F6) (which is equivalent to the usage of ri = 0, 1 in
Section IX). Thus, we have

〈σσ . . . σ〉2(p1,p2,...,pn/2
) =







∏

i<j

η2i−1,2j−1 η2i,2j
∏

i,j

η2i−1,2j







1
4

×







∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l







(F7)

where

xk,l ≡
η2k−1,2l η2l−1,2k

η2k−1,2l−1 η2k,2l
(F8)

This generalizes the formulas for the four-σ conformal blocks in Ref. 87, which has only two terms in curly brackets.
Now consider the correlation function

〈σ1σ2 σ1σ2 . . . σ1σ2 ψ1ψ1 . . . ψ1〉 (F9)

with N Majorana fermion fields ψ1 = cosϕ. We will initially consider the even N electron number case and briefly
mention the odd N case at the end of this section. This can be computed in the same way as above by choosing half
of the fermions to be eiϕ, the other half to be e−iϕ, and then summing over all permutations, which gives the Pfaffian.
Hence, we obtain:

〈σ1σ2 σ1σ2 . . . σ1σ2 ψ1ψ1 . . . ψ1〉(p1,p2,...,pn/2
) =







∏

i<j

η2i−1,2j−1 η2i,2j
∏

i,j

η2i−1,2j







1
4

×







∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l Ψ̃(1+r1,3+r2,...)(2−r1,4−r2,...)







(F10)

where

Ψ̃(1+r1,3+r2,...)(2−r1,4−r2,...) ≡ Pf

{

1

zi − zj

(

η1 − zi
η2 − zi

η2 − zj
η1 − zj

)
1
2−r1 (η3 − zi

η4 − zi

η4 − zj
η3 − zj

)
1
2−r2

. . . + (i↔ j)

}

(F11)

Including the charge sector of the ν = 1/M MR Pfaffian wavefunctions and dividing by 〈σσ . . . σ〉(p1,p2,...,pn/2
), we

finally obtain:

Ψ(p1,p2,...,pn/2
) =







∏

i<j

η2i−1,2j−1 η2i,2j
∏

i,j

η2i−1,2j







1
8 





∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l







−1/2

×







∑

ri=0,1

(−1)r·p
∏

k<l

x
|rk−rl|/2
k,l Ψ(1+r1,3+r2,...)(2−r1,4−r2,...)







∏

µ<ν

η
1

4M
µν e

− 1
8M

P

µ
|ηµ|2

(F12)
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where

Ψ(1+r1,3+r2,...)(2−r1,4−r2,...) ≡ Ψ̃(1+r1,3+r2,...)(2−r1,4−r2,...) ×
∏

µ,i

(ηµ − zi)
1/2
∏

i<j

(zi − zj)
M
e
− 1

4

P

i

|zi|2

= Pf

(

(η1+r
1
−zi)(η3+r

2
−zi)...(ηn−1+r n

2

−zi) (η2−r
1
−zj)(η4−r

2
−zj)...(ηn−r n

2

−zj)+(i↔j)

zi−zj

)

∏

i<j

(zi − zj)
M e

− 1
4

P

i

|zi|2
(F13)

are electron wavefunctions with normalizations that do not explicitly contain the braiding statistics. This
equation expresses the 2

n
2 −1 basis vectors Ψ(p1,p2,...,pn/2

) with N even in terms of the 2
n
2 −1 basis vectors

Ψ(1+r1,3+r2,...)(2−r1,4−r2,...). The basis vectors Ψ(1+r1,3+r2,...)(2−r1,4−r2,...) are intuitive and easy to write down (and
were, therefore, written down in Ref. 43). However, they are not orthonormal and their braiding properties are com-
plicated. Meanwhile, according to the result shown in this paper that Berry’s matrices are trivial in the conformal
block basis, the basis vectors Ψ(p1,p2,...,pn/2

) have simple braiding properties given by the branch cuts in their definition

Eq. (F12).
In order to compute wavefunctions for an odd number N of electrons, we can compute the wavefunction for N − 1

electrons and n + 2 quasiholes as before, and then obtain the desired wavefunction by taking ηn+1 → ηn+2 ≡ z1,
dividing by the appropriate power of ηn+1 − ηn+2, and correcting the charge sector terms so that z1 corresponds to
an electron coordinate:

Ψ(p2,...,pn/2
)(η1, . . . , ηn; z1, . . . , zN) ≡

n
∏

µ=1

(ηµ − z1)
M−1
2M

N
∏

i=2

(z1 − zi)
M−1

e−
M−1
4M |z1|2

× lim
ǫ→0

ǫ−( 1
4M + 3

8 ) Ψ(p1,...,pn/2
,1)(η1, . . . , ηn, ηn+1 = z1 + ǫ, ηn+2 = z1; z2, . . . , zN) (F14)

The pis which index the odd N electron number wavefunction on the left-hand-side satisfy the parity constraint
∑n/2

i=1 pi ≡ 1(mod 2).
Note added: As we were completing this manuscript, we learned that the conformal blocks and associated electron

wavefunctions computed in this Appendix were obtained recently by a slightly different method by E. Ardonne and
G. Sierra118.

Appendix G: Incomplete Direct Approach to Plasma Analogy for n Quasiparticles

In this section, we present a more direct approach to constructing the plasma analogy for n quasiparticle wave-
functions. Unfortunately, the argument is incomplete, but presenting the argument serves to clarify the obstacle in
proceeding in this manner, and why we needed to use the methods involving disorder operators.

We consider the conformal blocks with n σ operators (which correspond to n fundamental quasiholes). There are
2

n
2 −1 such conformal blocks, which we denote by:

Fα(ηµ; zi) = 〈σ(η1)σ(η2) . . . σ(ηn−1)σ(ηn)ψ(z1) . . . ψ(zN )〉α (G1)

where α =
(

π1, . . . , πn/2
)

, for πj = 0, 1 with the overall constraint πn/2 = 0 for N even and πn/2 = 1 for N odd. We
can represent these in the following way (defining π0 = 0):

F(π1,...,πn/2)(ηµ; zi) =

〈

n/2
∏

j=1

V
1−πj−1,0
21 (η2j−1)V

πj,0
21 (η2j)V

20
31 (z1)V

00
31 (z2) . . . V

20
31 (zN−1)V

00
31 (zN )

〉

(G2)

=

n/2
∏

j=1

∮

Crj

dwj

∮

Cz1

du1

∮

Cz1

du2

∮

Cz3

du3

∮

Cz3

du4 . . .

∮

CzN−1

duN−1

∮

CzN−1

duN

〈

n/2
∏

j=1

V 00
21 (η2j−1)e

i(1−πj−1)α−φ(wj)V 00
21 (η2j)e

iπjα−φ(wj+1)

× V 00
31 (z1)e

iα−φ(u1)eiα−φ(u2)V 00
31 (z2) . . . V

00
31 (zN−1)e

iα−φ(uN−1)eiα−φ(uN )V 00
31 (zN)

〉

(G3)

=

n/2
∏

j=1

∮

Crj

dwj

∮

Cz1

du1

∮

Cz1

du2

∮

Cz3

du3

∮

Cz3

du4 . . .

∮

CzN−1

duN−1

∮

CzN−1

duNf(π1,...,πn/2) (wa;ui; ηµ; zi)(G4)
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where Cx is the contour at radius |x| centered on the origin, rj = η2j−1−πj−1 , and we have defined

f(π1,...,πn/2) =

〈

n/2
∏

j=1

V 00
21 (η2j−1)e

i(1−πj−1)α−φ(wj)V 00
21 (η2j)e

iπjα−φ(wj+1)

× V 00
31 (z1)e

iα−φ(u1)eiα−φ(u2)V 00
31 (z2) . . . V

00
31 (zN−1)e

iα−φ(uN−1)eiα−φ(uN )V 00
31 (zN )

〉

. (G5)

There are N screening operators with coordinate ui for the ψ fields and n/2 screening operators with coordinates wa
for the σ fields, and the conformal blocks are determined by the placement of the wa σ screening charge contours.
Specifically, πj = 0, 1 indicates that the contour for wj is at radius

∣

∣η2j−1−πj−1

∣

∣. Strictly speaking, fα does not encode
the fusion channel without the knowledge of these contours, but we will nonetheless use the subscript label to remind
us of the contour placements.

We want to compute the overlap

Gα,β
(

η̄µ, η
′
µ

)

=

∫ N
∏

k=1

d2zkF̄α(η̄µ; z̄i)Fβ(ηµ; zi)

=

∫ N
∏

k=1

d2zk

n/2
∏

j=1

∮

Crj

dw̄j

∮

Cr′
j

dw′
j

∮

Cz1

du′1

∮

Cz1

du′2

∮

Cz3

du′3

∮

Cz3

du′4 . . .

∮

CzN−1

du′N−1

∮

CzN−1

du′N

×
∮

Cz1

dū1

∮

Cz1

dū2

∮

Cz3

dū3

∮

Cz3

dū4 . . .

∮

CzN−1

dūN−1

∮

CzN−1

dūN f̄α (w̄a; ūi; η̄µ; z̄i) fβ (w′
a;u

′
i; ηµ; zi) (G6)

=

n/2
∏

j=1

∮

Crj

dw̄j

∮

Cr′
j

dw′
jΓα,β (w̄a, w

′
a; η̄µ, ηµ) (G7)

where r′j = η2j−1−π′
j−1

corresponds to β = (π′
1, . . . , π

′
n/2), and

Γα,β (w̄a, w
′
a; η̄µ, ηµ) =

∫ N
∏

k=1

d2zk

∮

Cz1

du′1

∮

Cz1

du′2

∮

Cz3

du′3

∮

Cz3

du′4 . . .

∮

CzN−1

du′N−1

∮

CzN−1

du′N

×
∮

Cz1

dū1

∮

Cz1

dū2

∮

Cz3

dū3

∮

Cz3

dū4 . . .

∮

CzN−1

dūN−1

∮

CzN−1

dūN f̄α (w̄a; ūi; η̄µ; z̄i) fβ (w′
a;u

′
i; ηµ; zi) . (G8)

Now let us see if we can convert the pairs of u′i, ūi contour integrals into d2ui integrals. If we can do so, then we
can deduce the properties of Γα,β and Gα,β via plasma analogy. We follow Mathur’s steps, starting from the integral

∫

d2u1 . . .

∫

d2uN f̄α (w̄j ; ūi; η̄µ; z̄i) fβ
(

w′
j ;ui; ηµ; zi

)

. (G9)

In this case, we are not considering screening operators of non-Abelian fields, and thus monodromies will not take one
to a different conformal block, so we do not need the bilinear form notation. Also, we are not restricting our attention
to diagonal components, so the plasma potential will not be monodromy invariant (i.e. not single-valued), but this is
not necessarily a problem as long as we keep track of monodromies. We will show that this expression decomposes
into

∫

d2u1 . . .

∫

d2uN f̄α (w̄a; ūi; η̄µ; z̄i) fβ (w′
a;ui; ηµ; zi)

= (contours all at radii |zi|) + (at least one contour at radius |ηµ|) + J-terms at branch cuts. (G10)

The terms with the contours all at the radii |zi| are equal to Γα,β (w′
a, w̄a; ηµ, η̄µ) (up to some constant). This is

because the contributions to this term from integrals with contours on the wrong zi will vanish, leaving only Γα,β.
This is known from Ref. 64, since contours in the unallowed configurations give rise to overall multiplicative terms

with canceling phases. The terms with at least one contour at ηµ will vanish after taking the
∏n/2
j=1

∮

Crj
dw̄j

∮

Cr′
j

dw′
j

contour integrations, because this results in unallowed configurations of screening contours (i.e. too many screening
charges on the V21 operators). Most of the J-terms will cancel each other, just as in Mathur’s construction, except
for the ones on either side of a branch cut. The branch cuts occur when wa 6= w′

a. (We note that w1 and w′
1 can
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actually be treated the same as the ui screening charges, since its contour placement is uniquely specified). We want
to show that, in the end, the J-terms vanish or cancel, at least after performing the dw′

a and dw̄a integrations.
If we could make the J-terms vanish, then Eq. (G7) would become

Gα,β
(

η̄µ, η
′
µ

)

=

n/2
∏

j=1

∮

Crj

dw̄j

∮

Cr′
j

dw′
j Γ̃α,β (w̄a, w

′
a; η̄µ, ηµ) (G11)

where one can now apply the plasma analogy to

Γ̃α,β (w̄a, w
′
a; η̄µ, ηµ) =

∫ N
∏

k=1

d2zkd
2ukf̄α (w̄a; ūi; η̄µ; z̄i) fβ (w′

a;ui; ηµ; zi) =

∫ N
∏

k=1

d2zkd
2uke

−Φ̃/T = e−F . (G12)

Here, T = g and Φ̃ describes the two-dimensional Coulomb interaction between N charge Q =
√

3g particles at zi, N
charge −Q particles at ui, n charge Q/2 particles at ηµ,

n
2 particles with electric charge −Q/2 and magnetic charge

−Q/2g at w′
a, and n

2 particles with electric charge −Q/2 and magnetic charge Q/2g at wa. Hence, F is the free
energy of a classical two-dimensional two-component plasma at temperature T of N charge Q particles and N charge
−Q particles, with n charge Q/2 test particles at ηµ,

n
2 test particles with electric charge −Q/2 and magnetic charge

−Q/2g at w′
a, and n

2 test particles with electric charge −Q/2 and magnetic charge Q/2g at wa. By confinement of
magnetic charge in a screening plasma, we know that Eq. (G12) will vanish unless wa = w′

a, which shows that the
result is proportional to δαβ , as desired, since α 6= β requires wa 6= w′

a for at least one a.
We now proceed by seeing what happens for a single u screening charge. We partition the plane into a number of

annular regions Dl such that the positions of the other coordinates where there are potentially singularities or branch
cuts are left outside of Dl. Leaving the other coordinates implicit, we have for a region D

∫

D

d2uf̄α (ū) fβ (u) =
i

2

∫

∂D

dūf̄α (ū) f̂β (u) (G13)

where

f̂β (u) =

∫ u

P

du′fβ (u′) . (G14)

We define

JCαβ =

∫ P ′

P

dūf̄α (ū) f̂β (u) (G15)

ICβ =

∫ P ′

P

dufβ (u) (G16)

for C a contour running from P to P ′. Now taking the same steps as Mathur, we get
∫

D

d2uf̄α (ū) fβ (u) =
i

2

[

JC1

αβ + ĪS1
α IC1

β + JS1

αβ − ĪC2
α IS2

β − JC2

αβ − JS2

αβ

]

(G17)

=
i

2

[

JC1

αβ − JC2

αβ + JS1

αβ − JS2

αβ − (1 −Mα)
−1
ĪC1
α IC1

β − (1 −Mβ)
−1
ĪC2
α IC2

β +
Mα −Mβ

(1 −Mα) (1 −Mβ)
ĪC2
α IC1

β

]

(G18)

where we used IC1

β + IS1

β − IC2

β − IS2

β = 0 and IS1

β = MβI
S2

β , and now Mα and Mβ are not equal for the regions Dl

between wj+1 to w′
j+1 (i.e. from radius |η2j | − ǫ to |η2j+1| − ǫ) when πj 6= π′

j , but are otherwise equal. This is not a
problem, because (as previously mentioned) this only gives us an extra term with a contour at η2j and one at η2j+1,
but these give a vanishing result when one evaluates the dw̄j+1 and dw′

j+1 contour integrals.
The J-terms are however a more difficult problem. We know that these will cancel as long as wj = w′

j , since then

JS1

αβ = JS2

αβ and JC1

αβ from region Dl is equal to JC2

αβ from region Dl+1. However, when wj 6= w′
j , there is a branch cut

running between wj+1 and w′
j+1 and the J-term on the two sides of the cut do not cancel each other. Thus, we are

stuck with a J-term integrated around these branch cuts, and no obvious way to cancel them out.

Appendix H: Explicit Examples of Orthogonality for Unmatched Quasiparticles

In this appendix, we provide the derivation of the overlap Eq. (182) for wavefunctions describing the ν = 1 filled
Landau level with n holes and of the overlap Eq. (183) for wavefunctions describing an arbitrary quantum Hall state
(that has a plasma analogy) with one Laughlin-type quasihole.
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1. ν = 1 Integer Quantum Hall State

We first consider the ν = 1 filled Landau level state, which can be solved exactly. The wavefunction for one filled
Landau level of N electrons with n holes is

Ψ1 (ηµ; zi) =
∏

µ<ν

(ηµ − ην)
∏

µ,i

(ηµ − zi)
∏

i<j

(zi − zj) e
− 1

4

P

µ
|ηµ|2− 1

4

P

i

|zi|2
. (H1)

Taking the inner product of two such wavefunctions with holes not necessarily at the same positions, one finds

G
(

η̄µ, η
′
µ

)

=

∫

∏

k

d2zkΨ̄1 (η̄µ; z̄i) Ψ1

(

η′µ; zi
)

=

∫

∏

k

d2zk
∏

µ<ν

[

(η̄µ − η̄ν)
(

η′µ − η′ν
)]

∏

µ,i

[

(η̄µ − z̄i)
(

η′µ − zi
)]

∏

i<j

|zi − zj |2 e
− 1

4

P

µ

“

|ηµ|2+|η′µ|2
”

− 1
2

P

i

|zi|2

= C1

∑

π∈Sn

(−1)π
∏

µ

e−
1
4 (|ηπ(µ)|2+|η′µ|2−2η̄π(µ)η

′
µ)

= C1(2π)n
∑

π∈Sn

(−1)π
∏

µ

δ2LLL

(

ηπ(µ) − η′µ
)

, (H2)

where C1 is the (unspecified) normalization constant. For this, we note that one can think of wavefunction with N
electrons and n holes as one filled Landau level of N + n particles, which is a Slater determinant state. Thus, the
integral over the N electron coordinates zi gives the 2n-point particle correlation function, which factorizes into a
product of 2-point functions summed over permutations, as per Wick’s theorem. Finally, we used the fact that the
(normalized) 2-point function119

1

2π
e−

1
4 (|z|

2+|z′|2−2z̄z′) = δ2LLL (z − z′) (H3)

is the lowest Landau level projection of the delta-function, in the sense that
∫

d2z δ2LLL (z − z′) f (z) e−
1
4 |z|

2

= f (z′) e−
1
4 |z

′|2 (H4)

for any holomorphic function f(z). We also note that

e−
1
4 (|z|

2+|z′|2−2z̄z′) = e−
1
4 |z−z

′|2e
1
4 (z̄z

′−zz̄′) = e−
1
4 |z−z

′|2ei
1
2 Im[z̄z′], (H5)

so the 2-point function has Gaussian decay with the distance between z and z′. Hence, we find that

‖Ψ1 (ηµ; zi)‖2
= C1 +O

(

e−|ηµ−ην |2/4ℓ2B
)

. (H6)

This is a somewhat stronger result than given by the plasma analogy, which nominally involves O(e−|ηµ−ην |/ℓ1)
corrections.

One could also arrive at the result of Eq. (H2) by noting that

Γ
(

η̄µ, η
′
µ

)

=

∫

∏

k

d2zk
∏

µ,i

[

(η̄µ − z̄i)
(

η′µ − zi
)]

∏

i<j

|zi − zj |2 e
− 1

2

P

i

|zi|2
(H7)

is holomorphic in η′µ, antiholomorphic in ηµ, and

Γ
(

η̄µ, η
′
µ

)

= Γ
(

η̄µ, η
′
π(µ)

)

= Γ
(

η̄π(µ), η
′
µ

)

= Γ
(

η̄′µ, ηµ
)

(H8)

for any π ∈ Sn. By the plasma analogy, we know that G (η̄µ, ηµ) = C1 + O
(

e−|ηµ−ην |/ℓ1
)

and thus can uniquely
obtain the result of Eq. (182), i.e. that

G
(

η̄µ, η
′
µ

)

=
∏

µ<ν

[

(η̄µ − η̄ν)
(

η′µ − η′ν
)]

e
− 1

4

P

µ

“

|ηµ|2+|η′µ|2
”

Γ
(

η̄µ, η
′
µ

)

Γ
(

η̄µ, η
′
µ

)

= C1

∏

µ<ν

[

(η̄µ − η̄ν)
(

η′µ − η′ν
)]−1 ∑

π∈Sn

(−1)π
∏

µ

e
1
2 η̄π(µ)η

′
µ , (H9)

where C1 can now be identified as the undetermined constant from the plasma analogy, by using only the plasma
analogy and the analytic properties of Γ.
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2. Laughlin-type Quasihole

For the ν = 1/M Laughlin states, Laughlin demonstrated such an orthogonality for the single quasihole wavefunction
using the plasma analogy and analyticity120. Specifically, he showed that

G (η̄, η′) =

∫

∏

k

d2zkΨ̄ 1
M

(η̄; z̄i)Ψ 1
M

(η′; zi)

=

∫

∏

k

d2zk
∏

i

[(η̄ − z̄i) (η′ − zi)]
∏

i<j

|zi − zj |2M e
− 1

4M

“

|η|2+|η′|2
”

− 1
4

P

i
|zi|2

= C1e
− 1

4M (|η|2+|η′|2−2η̄η′), (H10)

where C1 =
∥

∥

∥Ψ 1
M

(η; zi)
∥

∥

∥

2

. For this, he noted that, except for the Gaussian factors exp
(

− 1
4M |η|2 − 1

4M |η′|2
)

, the

inner product is holomorphic in η′ and antiholomorphic in η, and the plasma analogy indicates that G(η̄, η) = C1.
These properties uniquely determine the result of the inner product. One similarly has that

1

2πM
e−

1
4M (|η|2+|η′|2−2η̄η′) = δ2LLLM

(η − η′) (H11)

is a projection of the delta-function into a lowest Landau level with a re-scaled magnetic length of ℓ
(M)
B =

√
MℓB, i.e.

∫

d2η δ2LLLM
(η − η′) f (η) e−

1
4M |η|2 = f (η′) e−

1
4M |η′|2 (H12)

for any holomorphic function f(η).
The same argument applies to wavefunctions with one Laughlin-type quasihole for any state with a plasma analogy

(e.g. the I2 excitation in the MR state). Specifically, one has

G (η̄, η′) =

∫

∏

k

d2zkΨ̄ 1
M

(η̄; z̄i)Ψ 1
M

(η′; zi)

=

∫

∏

k

d2zk
∏

i

[(η̄ − z̄i) (η′ − zi)] e
− 1

4M

“

|η|2+|η′|2
”

∣

∣

∣Ψ 1
M

(zi)
∣

∣

∣

2

= C1e
− 1

4M (|η|2+|η′|2−2η̄η′), (H13)

where Ψ 1
M

(zi) is the ground-state wavefunction and Ψ 1
M

(η; zi) the wavefunction with one Laughlin-type quasihole
at η.

It is difficult to generalize these methods of obtaining explicit overlap results that go beyond the qualitative behavior
obtained in Section X for cases that involve multiple Laughlin-type quasiparticles or different types of quasiparticles.
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