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We present a sub-matrix update algorithm for the continuous-time auxiliary field method that
allows the simulation of large lattice and impurity problems. The algorithm takes optimal advantage
of modern CPU architectures by consistently using matrix instead of vector operations, resulting in a
speedup of a factor of ≈ 8 and thereby allowing access to larger systems and lower temperature. We
illustrate the power of our algorithm at the example of a cluster dynamical mean field simulation of
the Néel transition in the three-dimensional Hubbard model, where we show momentum dependent
self-energies for clusters with up to 100 sites.
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The theoretical investigation of correlated fermionic
lattice systems has been one of the most challenging tasks
in condensed matter physics. Many of these systems are
not tractable with controlled analytic approximations in
the regimes of interest, so that numerical simulations
need to be employed. Several numerical approaches exist:
With exact diagonalization1 (ED) one calculates the ex-
act eigenstates of a system on a small lattice. Because the
Hilbert space grows exponentially with lattice size, ED
is limited to comparatively small systems. Variational
methods like the density matrix renormalization group
theory2,3 (DMRG) work well in one dimension, but ex-
tensions to two-dimensional systems4–7 are still under de-
velopment. Standard lattice Monte Carlo methods8 are
hampered by the fermionic sign problem9,10 that limits
access to large system size or low temperature away from
half filling.

Systems with large coordination number are often
studied within the dynamical mean field approximation
(DMFT)11,12. Early studies by Metzner and Vollhardt13

and Müller-Hartmann14 showed that the diagrammatics
of interacting fermions becomes purely local in the limit
of infinite coordination number. In this case the solution
of the lattice model may be obtained from the solution
of an impurity model and an appropriately chosen self-
consistency condition15.

Later work on cluster extensions of DMFT16–20 took
into account non-local correlations in addition to the lo-
cal correlations already considered within the DMFT by
considering “cluster” impurity models with an internal
momentum structure20. These cluster approximations
are based on a self-energy expansion in momentum space,

Σ(k, ω) ≈
∑Nc

K ΣK(ω)φK(k)21 that becomes exact in the
limit of a complete momentum space basis (Nc → ∞) and
can therefore be controlled by increasing the cluster size.

Quantum impurity models are well suited to nu-
merical study. Methods for their solution include

numerical renormalization group approaches22, exact
diagonalization23, and approximate semi-analytical re-
summation of classes of diagrams15,24,25. However, un-
til a few years ago only the Hirsch-Fye quantum Monte
Carlo26 algorithm was able to obtain unbiased and nu-
merically exact solutions of large cluster impurity prob-
lems at intermediate interaction strength. This changed
with the development of continuous-time methods27–32.
The vastly better scaling33 of these methods and the ab-
sence of discretization errors allowed access to lower tem-
peratures, larger interactions, and more orbitals.

Large cluster calculations remain computationally
challenging as the numerical cost – even in the absence
of a sign problem – scales as O((NcβU)3) in the case
of the interaction expansion28,31, and O(exp(Nc)β

3) in
the hybridization expansion30 methods (for single orbital
cluster Anderson models at inverse temperature β and
interaction U for a cluster of size Nc). It is therefore
important to develop efficient algorithms to solve cluster
impurity models.

Two numerical algorithmic improvements have signif-
icantly increased the size of systems accessible by sim-
ulations with the Hirsch-Fye algorithm: the “delayed”
updates34, and the “sub-matrix” updates35. An impor-
tant question is therefore if these techniques may be gen-
eralized to the continuous-time algorithms and whether
similar savings in computer time may be expected, and
how these savings translate into newly accessible physics.

Both “delayed” and “sub-matrix” updates are mainly
based on efficient memory management; “sub-matrix”
updates further reduce the algorithmic complexity of the
updating procedure. Modern computer architectures em-
ploy a memory hierarchy: Calculations are performed on
data loaded into registers. Any data that is not in the
registers is stored either in “cache” (currently with a size
of a few MB) or in “main memory” (with a size of a
few GB). Cache is relatively fast but there is little of it,
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while access to main memory is often slow and shared
among several compute cores. The bottleneck in many
modern scientific applications, including the continuous-
time algorithms, is not the speed at which computations
are performed but the speed at which data can be loaded
from and stored into main memory.

The central object in continuous-time algorithms is a
matrix, which for large cluster calculations does not fit
into cache. Monte Carlo updates often consist of rank
one updates or matrix-vector products. Such updates
perform O(m2) operations on O(m2) data, where m is
the average matrix size, and therefore run at the speed
of memory. Matrix-matrix operations (with O(m3) op-
erations executed on O(m2) data) could run at the speed
of the registers, as more (fast) calculation per (slow) load
/ store operation are performed. The reason behind the
success of both the “sub-matrix” and the “delayed” up-
dates is the combination of several (slow) successive rank-
one operations into one fast matrix-matrix operation, at
the cost of some minimal overhead. This is illustrated in
Fig. 1.

(a)

(b)

FIG. 1. Illustration of update formulas. 1(a): “rank one”
updates of Ref. 31, accessing O(m2) data points for O(m2)
operations and performing one update. 1(b): sub-matrix up-
dates, accessing O(m2) values but performing O(m2k) oper-
ations, for k updates.

The delayed update algorithm can be straightfor-
wardly generalized to (non-ergodic) spin-flip operations
in the interaction expansion (CT-INT) and continuous-
time auxiliary field algorithms (CT-AUX)36, and an
adaptation of the concept of delayed updates to vertex
insertion and removals in the interaction expansion was
recently proposed by Mikelsons37.

In this article we present a generalization of the “sub-
matrix” technique of Ref. 35 to the CT-AUX algorithm,
which uses fewer redundant operations than “delayed”
updates. We find a speed increase of ≈ 8 for a typical
large cluster impurity problem. We demonstrate the scal-
ing both as a function of computational resources and as
a function of problem size, and we show results for con-
trolled large scale cluster calculations.

The paper is structured as follows: In Sec. I we rein-
troduce the CT-AUX algorithm and describe the Monte
Carlo random walk procedure. In Sec. II we introduce
the sub-matrix updates, and in Sec. III we apply them
to CT-AUX. Sec. IV shows physics and benchmarking
results for the new algorithm, and Sec. V contains the
conclusions.

I. THE CONTINUOUS-TIME AUXILIARY

FIELD ALGORITHM

We present the sub-matrix updates for the continuous-
time auxiliary field algorithm31 (CT-AUX), for which the
linear algebra is similar to the well-known Hirsch Fye26

method. To introduce notation and conventions we re-
peat the important parts of the derivation of Ref. 31,
limiting ourselves to the description of the dynamical
mean field solution of the single orbital Anderson impu-
rity model. Lattice problems, i.e. problems without hy-
bridization terms in the Hamiltonian and with no (clus-
ter) dynamical mean field self-consistency imposed, differ
only in the form of the non-interacting Green’s function.
Their simulation proceeds along the same lines and will
not be treated separately here.

A. Partition Function Expansion

The Hamiltonian of the single orbital Anderson im-
purity model describes the behavior of an impurity (de-
scribed by operators dσ, d†σ) with an on-site energy ǫ0
and on-site interaction U coupled by a hybridization with
strength Vpσ to a bath (described by apσ, a†

pσ) with dis-
persion ǫp:

H = H0 + V, (1)

H0 = −(ǫ0 − U/2)(n↑ + n↓)

+
∑

σ,p

(Vpσd†σapσ + h.c.) +
∑

σ,p

ǫpa
†
pσapσ, (2)

V = U

[

n↑n↓ −
n↑ + n↓

2

]

. (3)

nσ = d†σdσ denotes the impurity occupation.
Continuous-time algorithms expand expressions for the
partition function Z = Tr exp(−βH) (at inverse temper-
ature β) into a diagrammatic series. In CT-AUX, the
series is a perturbation expansion in the interaction:

Z =
∑

n≥0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

(K

β

)n

Tr
[

e−(β−τn)H0

×
(

1 −
βV

K

)

. . . e−(τ2−τ1)H0

(

1 −
βV

K

)

e−τ1H0

]

. (4)



3

The interaction term V in this expansion can be decou-
pled with an auxiliary field38

1 −
βV

K
=

1

2

∑

s=−1,1

eγs(n↑−n↓), (5a)

cosh(γ) ≡ 1 + (βU)/(2K), (5b)

introducing an arbitrary constant K and an auxiliary
“spins” s. Hence

Z =
∑

n≥0

∑

si=±1

1≤i≤n

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

( K

2β

)n

Zn, (6)

Zn({si, τi}) ≡ Tr
1

∏

i=n

e−∆τiH0esiγ(n↑−n↓). (7)

Note that the insertion of an arbitrary number of “inter-
action vertices” (auxiliary spin and time pairs) (sj , τj)
with sj = 0 into Eq. (6) does not change the value of
Zn({si, τi}). We will refer to auxiliary spins with value
sn = 0 as “non-interacting” spins.

We can express the trace of exponentials of one-body
operators in Eq. (6) as a determinant of a (n×n) matrix
N ,

Zn({si, τi})

Z0
=

∏

σ=↑,↓

detN−1
σ ({si, τi}), (8)

N−1
σ ({si, τi}) ≡ eV

{si}
σ − G

{τi}
0σ

(

eV
{si}

σ − 1
)

, (9)

eV
{si}

σ ≡ diag
(

eγ(−1)σs1 , . . . , eγ(−1)σsn

)

. (10)

G
{τi}
0σ denotes a (n×n) matrix of bare Green’s functions,

(G
{τi}
0σ )ij = G0σ(τi − τj). From now on we will omit the

spin index σ.
The matrix N is related to the Green’s function matrix

G by G = NG0. The matrices G and N for auxiliary spin
configurations have the same imaginary time location for
all vertices but differ in the value of an auxiliary spin sp,
and are related by a Dyson equation

N ′
ij = Nij + (Gip − δip)λNpj , (11a)

G′
ij = Gij + (Gip − δip)λGpj , (11b)

λ = eV ′
p−Vp − 1. (11c)

This relation is the basis for Hirsch-Fye spin-flip updates.

B. Random Walk

The infinite sum over expansion orders n and the inte-
gral and sum over vertices {(si, τi)} in Eq. (6) is com-
puted to all orders in a stochastic Monte Carlo pro-
cess: The algorithm samples time ordered configurations
{(si, τi)} with weight

w({si, τi}) =
(Kdτ

2β

)n ∏

σ=↑,↓

detN−1
σ ({si, τi}). (12)

To guarantee ergodicity of the sampling it is sufficient
to insert and remove spins with a random orientation
si =↑, ↓ at random times 0 ≤ τi < β. Spin insertion
updates are balanced by removal updates. For an inser-
tion update we select a random time in the interval [0, β)
and a random direction for this new spin, leading to a
proposal probability pprop(n → n + 1) = (1/2)(dτ/β)).
For removal updates a random spin is selected and pro-
posed to be removed, leading to a proposal probability
pprop(n + 1 → n) = 1/(n + 1). Combination of Eq. (8)
with these proposal probabilities leads to the Metropolis
acceptance rate p(n → n + 1) = min(1, R) with

R =
K

n + 1

∏

σ=↑,↓

det[N
(n+1)
σ ]−1

det[N
(n)
σ ]−1

, (13)

where (n) denotes the dimension of N−1
σ .

In addition to insertion and removal updates we
consider spin-flips of auxiliary spins. These up-
dates are self-balancing, and the transition probabil-
ity from a state {(s1, τ1), · · · , (si, τi), · · · } to a state
{(s1, τ1), · · · , (−si, τi), · · · } is given by

R =
∏

σ=↑,↓

det[N
(n)
σ ({(s1, τ1), · · · , (−si, τi), · · · })]

−1

det[N
(n)
σ ({(s1, τ1), · · · , (si, τi), · · · })]−1

.

(14)

In the particle hole symmetric case the parameter K
may be chosen such that only even orders in the perturba-
tion series occur and that the average perturbation order
is half as large as the one of the algorithm presented here
(see Ref. 39 for details in the real-time context, where
this scheme allowed propagation to much longer times).
As the resulting algorithm is far less general and requires
double-vertex insertions it will not be explored here.

Non-interacting auxiliary spins, or auxiliary spins with
value 0, do not change the value of Zn in Eq. 7. We
will make use of this fact to precompute a matrix that
is equivalent to N but contains non-interacting vertices
represented by spin 0 auxiliary spins. Insertion and re-
moval updates then become equivalent to spin flip up-
dates (from 0 to 1 or −1 and vice versa), thus allowing
for a similar application of the sub-matrix update algo-
rithm as in the case of the Hirsch-Fye solver35. This
procedure is explained in more detail in Sec. III.

II. SUB-MATRIX UPDATES

To derive the sub-matrix updates35 let us consider a
typical step k of the algorithm at which the interaction pk

[with spin and time (spk
, τpk

) of m interaction vertices] is
changed from Vpk

to V ′
pk

. The new matrix Gk+1 is then
given by Eq. (11a),

Gk+1
ij = Gk

ij + (Gk
ipk

− δipk
)λkGk

pkj , (15)

λk = eV ′
pk

−Vpk − 1.
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λk denotes the change of interaction at step k.
We proceed by showing how the determinant ratio
detNk/ detNk+1 of Eq. (13) as well as the new matrix
Nk+1 are computed efficiently using the Woodbury for-
mula: We define an inverse matrix A of G, analyze its
changes during an update, and show how they can be
incorporated in a small (k × k) matrix Γ that is easily
computed by accessing only k2 ≪ m2 matrix elements in
each step. The inverse of this matrix is then iteratively
computed either by employing an LU decomposition, or
a partitioning scheme.

A change to the inverse Green’s function matrix Ak =
(Gk)−1 is of the form40

Ak+1
ij = Ak

ij + γk(Ak
ip − δip)δpj (16)

= Ak
ij + γkAk

ipδpj − γkδipδpj ,

γk = e−γσ(s′
pk

−spk
) − 1.

γk, similar to λk above, contains the information about
the changed interaction at step k. Eq. (16) is commonly
known as the Sherman Morrison formula and illustrated
in Fig. 1(a). We define Ãk

ij = Ak
ij + γkAk

ipδpj , i.e. the

matrix Ak where the p-th column is multiplied by (1 +

γk), and therefore det Ãk = (1 + γk) det(Ak). We then

rewrite Eq. (16) as Ak+1
ij = Ãk

ij − γkδipδpj , and, using

the “matrix determinant lemma” det(Aij + uivj) = (1 +
vl(A

−1)lquq) detAij , we have

detAk+1 = det(Ãk) det(1 − γk[(Ãk)−1]pp) (17)

= detAk
(

1 + γk
)

(

1 −
γk

1 + γk
Gk

pp

)

= − detAkγk

[

Gk
pp −

1 + γk

γk

]

.

This formula yields the determinant ratio

det Nk

detNk+1
= −γk

[

Gk
pp −

1 + γk

γk

]

(18)

needed in Eq. (13) for the acceptance or rejection of an
update.

We can recursively apply Eq. (17) to obtain an expres-
sion for performing multiple interaction changes, as long
as they occur for different spins pi 6= pj(i 6= j):

Ak+1
ij = A0

ij +

k
∑

l=0

γl(A0
ipl

− δipl
)δplj

= Ãk
ij −

k
∑

l=0

γlδipl
δplj

= Ãk − Xk(Y k)T , (19)

Xk
ij = γjδipj

, (20)

(Y k)T
ij = δpij . (21)

The new matrix Ak+1 is therefore generated from A0 by
successively multiplying columns pl, 0 ≤ l ≤ k of A0 with

γl and adding constants to the diagonal. X and Y T

are index matrices that label the changed spins and keep
track of a prefactor γk.

For measurements we need access to the Green’s func-
tion G, not its inverse A. It is obtained after kmax steps
by applying the Woodbury formula Eq. (22) to Eq. (19):
with q denoting a Woodbury step combining kmax vertex
update steps:

Gq+1 = (Aq+1)−1

= Ã−1 + Ã−1X(1 − Y T Ã−1X)−1Y T Ã−1, (22)

Gq+1 = G̃ + G̃X(1 − Y T G̃X)−1Y T G̃. (23)

where G̃ = Ã−1. After some simplification, Eq. 23 can
be shown to be

Gq+1
ij = D−1

i

(

Gij − Gipk
Γ−1

pkpl
Gplj

)

. (24)

Here we have introduced a kmax×kmax - matrix Γ, defined
as

Γpq = G0(p, q) − δpq

1 + γp

γp

, (25)

and a vector D that is 1 everywhere but at positions
where auxiliary spins are changed:

D−1
pk

=
1

1 + γk
. (26)

Note that G0 is the interacting Green’s function at step
k = 0 and not the bare Green’s function G0 of the effec-
tive action, unless all auxiliary spins are zero.

Translating this Green’s function formalism to a for-
malism for N - matrices is straightforward: writing
G = NG0 and multiplying Eq. (24) from the right with
(G0)−1 yields

N q+1
ij = D−1

i (Nij − Gipk
Γ−1

pkpl
Nplj), (27)

where one Gipk
remains in Eq. (27). This equation is

illustrated in Fig. 1(b).
Inserting G = NG0 into Eq. (11a) and setting V ′ = 0

(N ′ = 1) we obtain:

1 = NeV − NG0e
V + NG0 (28)

(NG0)ij = (Nije
Vj − δij)/(eVj − 1) = Gij (29)

Nij = Gij(1 − e−Vj ) + e−Vj δij . (30)

The computation of G from N in this manner fails if the
interaction Vj is zero. In this case we need to compute
Gij = NikG

0
kj at a cost of O(N) for each i and j.

A. Determinant Ratios and Inverse Matrices

To either accept or reject a configuration change, we
need to compute the determinant ratio detNk+1/ detNk
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(Eq. (13)). Following Ref. 35 we write:

detAk+1 = (−1)k+1
k

∏

j=0

γj detA0 det Γk. (31)

The computation of the determinant det Γk is an expen-
sive O(k3) operation, if Γk has to be recomputed from
scratch. However, we successively build Γk by adding
rows and a columns. In the following we present two ef-
ficient (and as far as we could see equivalent) methods
to iteratively compute determinant ratios of Γ: keeping
track of an LU decomposition, and storing the inverse
computed using inversion by partitioning.

1. LU decomposition

For each accepted update we keep track of a LU -
decomposition of Γ:

Γk =

(

Γk−1 s
wT d

)

=

(

Lk−1 0
xT 1

) (

Uk−1 y
0 β

)

, (32)

Ly = s, (33)

UT x = w, (34)

β = G0(pk, pk) −
1 + γk

γk
− xT y (35)

where both xT and y are computed in O(k2) by solving a
linear equation for a triangular matrix. The determinant
ratio needed for the acceptance of an update is

detAk+1

detAk
= −βγk. (36)

These updates have been formulated for spins that
have only been updated once. In the case where the
same spin is changed twice or more, rows and columns in
Γ, or L and U , need to be modified. These changes are
of the form Γ → Γ+uvT , and Bennett’s algorithm41 can
be used to re-factorize the matrix.

The probability to accept/reject a (k + 1)-th spin re-
quires O(k2) operations (computation of x and y us-
ing Eqs. (33) and (34) requires O(k2) operations, while
Eq. (35) requires O(k) operations). On the other hand,
the “delayed” algorithm requires O(km) operations to
compute the acceptance rate of a (k + 1)-th spin flip,
for a matrix of size m. In this sense the sub-matrix up-
date methodology not only manages matrix operations
efficiently but also improves the computational efficiency
of the spin flip acceptance rate.

2. Inversion by Partitioning

Alternatively, we can compute the inverse of Γ by em-
ploying the Sherman Morrison formula:

β = (d − wT Γ−1
k s) (37)

Γ−1
k+1 =

(

Γ−1
k + (Γ−1

k s)β−1(wT Γ−1
k ) −Γ−1

k sβ−1

−β−1wT Γ−1
k β−1

)

,

(38)

det Γk+1

det Γk
= β,

detAk+1

detAk
= −γkβ. (39)

Although both methods obtain the acceptance rates
Eq. (36) and (39) in O(k2) steps, inversion by partition-
ing requires an additional step of updating the Γ−1

k+1,
and hence is expected to be slower than the LU de-
composition approach. However, the complication of re-
orthogonalizing the LU factorized matrix using Bennet’s
algorithm does not arise.

III. THE RANDOM WALK WITH

SUB-MATRIX UPDATES

The sums and integrals of Eq. (6) are computed by a
random walk in the space of all expansion orders, auxil-
iary spins, and time indices. In the cluster case, configu-
rations acquire an additional site index. A configuration
ck at expansion order n contains n interaction vertices
with spins, sites, and time indices:

ck = {(τ1, s1, σ1), · · · (τn, sn, σn)}. (40)

The configuration space C consists of all integrands /
summands in Eq. (6), which we can represent by sets of
triplets of numbers, consisting of auxiliary spins, times,
and site indices:

C = {c0, · · · , ck((τ1, s1, σ1), · · · , (τk, sk, σk)), · · · }. (41)

To efficiently make use of the sub-matrix updates, we
add an additional step before insertion and removal up-
dates are performed. In this preparation step, we insert
a number kmax of randomly chosen non-interacting ver-
tices with auxiliary spin s = 0, which, as discussed in
Sec. I, does not change the value of the partition func-
tion. Once these vertices are inserted, insertion and re-
moval updates at the locations of the pre-inserted non-
interacting vertices become identical to spin-flip updates:
an insertion update of a spin s = 1 now corresponds to a
spin-flip update from spin s = 0 to spin s = 1, and sim-
ilar for removal updates. This pre-insertion step of non-
interacting vertices then allows for a similar application
of sub-matrix updates as in the case of the Hirsch-Fye
algorithm.

To accommodate this pre-insertion step, we split our
random walk into an inner and an outer loop. In the
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outer loop (labeled by q) we perform measurements of
observables and run the preparation step discussed above
as well as recompute steps. These steps are described in
more detail below. In the inner loop (labeled by k) we
perform kmax insertion, removal, or spin flip updates at
the locations of the pre-inserted non-interacting spins. It
is best to choose 〈m〉 ≫ kmax ≫ 1 so the blocking be-
comes efficient but matrices of linear size kmax are small
enough to fit into cache.

A. Preparation steps

We begin a Monte Carlo sweep with preliminary com-
putations for spins that we will propose to insert or re-
move. For this, we generate randomly a set of kins

max pairs
of (site, time) indices, where kins

max denotes the maximum
insertions possible. We then compute the additional rows
of the matrix N for these noninteracting spins:

Ñ =

(

N 0

R̃ 1

)

, (42)

where R̃ is a matrix of size n× kins
max containing the con-

tributions of newly added noninteracting spins,

R̃ij = G0
ik(e−γσsk − 1)Nkj , (43)

at the cost of O(n2kmax
ins ), as well as the Green’s function

matrix G = NG0 for the new spins (cost n2kmax
ins ).

B. Insertion, removal, spinflip of an auxiliary spins

Vertex insertion updates are performed by proposing
to flip one of the newly inserted non-interacting spins
from value zero to either plus or minus one. The deter-
minant ratio is obtained using Eq. (33), (34), (36), and
(35), i.e. by the solution of a linear equation of a trian-
gular matrix. If the update is accepted the auxiliary spin
is changed and the matrix Γ is enlarged by a row and a
column.

Starting from a configuration ck =
{(τ1, s1, σ1), · · · (τk, sk, σk)} we propose to remove
the interaction vertex (τj , sj , σj). The ratio of the two
determinants (Eq. (35)) is computed by proposing to flip
an auxiliary spin from ±1 to zero. For this we compute
s and w as in Eq. (25), and then compute x and y
by solving a linear equation for a triangular system
[Eq. (33) and Eq. (34)]. Finally Eq. (36) is computed
using Eq. (35). If the update is accepted the auxiliary
spin is set to zero and Γ is enlarged by a row and a
column.

Double vertex updates required for the scheme of
Ref. 39 proceed along the same lines and enlarge Γ by
two rows and two columns.

To perform a spinflip update we choose a currently
interacting spin with value ±1 and propose to flip it to ∓1
using Eq. (33), (34), and (36). If the update is accepted,
Γ grows by a row and a column.

C. Recompute step

This scheme of insertion, removal, and spinflip updates
is repeated kmax times. With each accepted move the ma-
trix Γ grows by a row and a column.To keep the algorithm
efficient we periodically recompute the full N -matrix us-
ing the Woodbury formula 27:

N q+1
ij = D−1

i (Gij − Gipk
Γ−1

pkpl
Nplj), (44)

as Γ grows with every accepted update, and the cost of
computing determinant ratios is O(k2). The recompute
step consists of two inversions for L and U , which are
both O(k2) operations, and two matrix multiplications,
at cost O(k2N) and O(N2k) respectively. Noninteract-

ing auxiliary spins can then be removed from N q+1
ij by

deleting the corresponding rows and columns.

D. Measurements

At the end of a sweep, if the system is thermalized,
observable averages are computed. As the complete N -
matrix is known at this point, the formulas presented in
Ref. 31 are employed without change. In most calcula-
tions, the computation of the Green’s function is the most
expensive part of the measurement. In large “dynami-
cal cluster approximation” (DCA)16,18,20 calculations it
is therefore advantageous to compute directly the Green’s
functions in cluster momenta, of which there are only Nc,
in contrast to the N2

c real-space Green’s functions. Also,
on large clusters, Green’s functions are best measured
directly in Matsubara frequencies.

IV. RESULTS

We present two types of results. First we examine
the performance of sub-matrix updates in practice, using
several scaling metrics. We then illustrate a physics ap-
plication where we test the DCA approximation on large
clusters, showing cluster size dependence and extrapola-
tions to the infinite system limit.

A. Scaling of the algorithm

Two types of scaling are commonly analyzed in high
performance computing: the so-called “weak” scaling,
which defines how the the time to solution varies when
the resources are increased commensurately with the
problem size, and the “strong” scaling, which is defined
as how the time to solution decreases with an increasing
amount of resources for fixed problem size.

We begin by analyzing the scaling of the time to so-
lution for fixed resources but varying problem size. As
“problem size” we consider the average expansion order
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U/t = 8, for temperatures indicated.

or matrix size, 〈k〉. The average expansion order is re-
lated to the potential energy and therefore e.g. extensive
in cluster size. For systems with small average expan-
sion orders (N <

∼ 200), the entire matrix fits into cache,
and therefore there is no advantage in using sub-matrix
updates. With increasing average matrix size caching
effects become more important.

Fig. 2 shows the strong scaling, as the time per update
(in arbitrary units) as a function of expansion order (ma-
trix size), for rank one updates and several kmax. The
ideal scaling is O(k2) per update, or O(k3) for 〈k〉 up-
dates needed to decorrelate a configuration.42 The scaling
per update is indicated by the dashed line.

Submatrix updates are, for problems with expansion
orders between 512 and 2048, about a factor of eight
faster than straightforward rank one updates.

For small expansion order CT-AUX with and with-
out sub-matrix updates behave similarly. For expansion
orders of 256 and larger, the speed increase from sub-
matrix updates becomes apparent, and at expansion or-
ders of 512 and larger the difference with and without
sub-matrix updates corresponds to the difference of data
transfer rates between cache and CPU and main mem-
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FIG. 4. Time to solution as a function of the number of
CPUs, for a 16-site cluster impurity problem. Squares (black
online): U/t = 8, βt = 10 (〈k〉 = 550), half filling. Circles
(red online): βt = 20 (〈k〉 = 1100). The dashed lines show
the ideal scaling.

ory and CPU, or the difference at which memory inten-
sive (Sherman Morrison like vector operations) and CPU
intensive (Woodbury like matrix operations) run.

The optimal choice of the expansion parameter kmax

for the test architecture lies somewhere between 64 and
128 (performance is relatively insensitive to the exact
choice of kmax). This is also illustrated in Fig. 3: for
a small choice of kmax the Woodbury matrix-matrix op-
erations do not dominate the calculation and the algo-
rithm is similar to CT-AUX, where much time is spent
idling at memory bottlenecks. Caching effects get more
advantageous for larger kmax, until for kmax

>
∼ 128 most

of the time is spent updating and inverting the Γ ma-
trices. Note, however, that the optimal value of kmax is
expected to depend on architectural details such as the
size of the cache.

In Fig. 4 we present a strong scaling curve by show-
ing the time to solution (in seconds) for two problem sets
(symbols), as well as the ideal scaling (dashed lines), as a
function of the number of CPUs employed. This time in-
cludes communications and thermalization overhead that
does not scale with the number of processors. This is the
part that according to Amdahl’s law43 leads to less than
ideal scaling behavior. CT-AUX has a remarkably small
thermalization time and is therefore ideally suited for
parallelization on large machines. As can be seen, for the
chosen problem sizes, the algorithm can be scaled almost
ideally to at least 10,000 CPUs. Note, however, that the
scaling behavior is expected to depend critically on the
number and type of measurements that are performed.
This is because the measurements are perfectly parallel,
since they are only performed once the calculation is ther-
malized. Here, we have restricted the measurements to
the single-particle Green’s function. If, in addition, more
complex quantities such as e.g. two-particle observables
are measured, the simulation run-time will be dominated
by the measurements and the ideal scaling behavior is
expected to continue to much larger processor counts.
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B. Simulations of the 3D Hubbard model

As an illustration of the power of the algorithm we
present results from a calculation of the Néel temperature
of the three-dimensional Hubbard model at half filling,
within the DCA approximation, as a function of cluster
size.

A comprehensive study, showing DCA data at and
away from half filling, for interaction strengths up to
U ≃ 12 and clusters of size ≤ 64, will be published
elsewhere44. The results we present here are for tem-
perature T = t (far above TN), for T = 0.5t, and for
T = 0.35t. The lowest temperature is close to the Néel
temperature, and long ranged correlations cause a slow
convergence. Results were obtained on 128 CPUs in one
hour per iteration. In Fig. 5 we show the extrapolation of
the energy for several cluster sizes and an extrapolation
to the infinite cluster size limit. The plot shows that con-
trolled extrapolations to the thermodynamic limit44–47

can be obtained in practice. Monte Carlo errors are much
smaller than the symbol size.

Fig. 6 shows self-energy cuts along the main axes in re-
ciprocal space. Plotted are results for single site DMFT
and clusters of size 18, 84, and 100, interpolated using
Akima splines. While momentum averaged quantities
like the energy in Fig. 5 show clear convergence and the
possibility for extrapolation, convergence is not uniform
in all quantities. The high temperature self-energy plot-
ted in panel 6a is clearly converged as a function of cluster
size, the intermediate temperature self-energy plotted in
panel 6b shows some cluster size dependence, and the
right panel 6c shows a self-energy that even for 100 clus-
ter sites is not yet converged (a sign of the long wave-
length physics important near TN). Reliable extrapola-
tion of the cluster self-energy to the Σ(k, ω) of the infi-

nite system would require even larger clusters. Further
insight can be gained from the frequency dependence of
the Matsubara self-energy (Fig. 7). Plotted is the fre-
quency dependence at three points in the Brillouin zone.
While a significant cluster size dependence is observed at
low frequencies, the results converge to the local DMFT
limit at high frequencies, as one would expect.

V. CONCLUSIONS

We have presented a variation of the CT-AUX algo-
rithm that, while mathematically equivalent, arranges
operations in such a manner that they are ideally suited
for modern computational architectures. For large prob-
lem sizes, this “sub-matrix” algorithm achieves a signifi-
cant performance increase relative to the traditional CT-
AUX algorithm, by replacing the slow rank-one updates
by faster matrix-matrix operations. Our implementa-
tion of the sub-matrix updates in the CT-AUX algo-
rithm requires an additional preparation step in which
non-interacting vertices with auxiliary spins s = 0 are
introduced. After this step, the CT-AUX vertex inser-
tion and removal updates become equivalent to spin-flip
updates. The sub-matrix algorithm then proceeds by ma-
nipulating the inverse of the Green’s function matrix, for
which changes under auxiliary spin-flips are completely
local. This allows for a significantly faster computation
of the QMC transition probabilities under a spin-flip up-
date. The algorithm keeps track of a number k of these
local changes, similar to the delayed update algorithm,
and then performs a Green’s function update as a matrix-
matrix multiply.

Because this algorithm requires additional overhead
over the traditional CT-AUX implementation, there is
an optimal choice for the maximum number of spin-flip
updates kmax per Green’s function update which depends
on problem size and architectural parameters such as the
cache size. For the test architecture we have used, we
have found that kmax ≈ 128 for large problem sizes. For
this optimal value, we find a speed increase up to a factor
of 8 relative to the traditional CT-AUX algorithm.

We have shown that simulations for large interacting
systems, previously requiring access to high performance
supercomputers, become feasible for small cluster archi-
tectures, and we have demonstrated the scaling on su-
percomputers that shows that, by using the sub-matrix
algorithm, continuous-time quantum Monte Carlo meth-
ods are almost ideally adapted to high performance ma-
chines.

As an example we have shown how some cluster dy-
namical mean field theory quantities, like the energy, can
be reliably extrapolated to the thermodynamic limit, and
how for other quantities, like the self-energy, even large
cluster calculations are not sufficient to obtain converged
extrapolations.

The algorithm is similarly suited to the solution of lat-
tice problems, i.e. problems where Vpσ = 0 and where
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no (cluster) dynamical mean field self-consistency is im-
posed.

Our results are also readily generalized to the interac-
tion expansion formalism developed in Ref. 27 and 28,
offering the possibility to significantly accelerate simula-
tions of multi-orbital systems.
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