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We use the extended Lifshitz theory to study the behaviors of the Casimir forces between finite-thickness

effective medium slabs. We first study the interaction between a semi-infinite Drude metal and a finite-thickness

magnetic slab with or without substrate. For no substrate, the large distance d dependence of the force is

repulsive and goes as 1/d5; for the Drude metal substrate, a stable equilibrium point appears at an intermediate

distance which can be tuned by the thickness of the slab. We then study the interaction between two identical

chiral metamaterial slabs with and without substrate. For no substrate, the finite thickness of the slabs D does

not influence significantly the repulsive character of the force at short distances, while the attractive character at

large distances becomes weaker and behaves as 1/d6; for the Drude metal substrate, the finite thickness of the

slabs D does not influence the repulsive force too much at short distances until D = 0.05λ0.

PACS numbers: 12.20.-m, 41.20.Jb, 81.05.Xj, 78.67.Pt

I. INTRODUCTION

Arising from the quantum fluctuations of the vacuum field, when two neutral parallel conducting surfaces separated by the

vacuum are very close to each other, they generate an attractive force between them given by F = −~cπ2A
240d4 and called Casimir

force after the founder Casimir.1 The Casimir force becomes more pronounced if the dimension goes to nanoscale. It will lead

to stiction and adhesion on the surface,2,3 which is a challenge for flexibly operating the Micro/Nanoelectromechanical system

devices. Later, especially recently, people were/are pursuing different methods to control the Casimir force so as to obtain a

repulsive force: immersing two objects characterized by the dielectric permittivities ǫ1(iξ) and ǫ2(iξ) in a fluid with ǫ3(iξ)
(satisfying ǫ1(iξ) < ǫ3(iξ) < ǫ2(iξ)),

4,5 using a special geometry,6 an electric (ǫ > µ) plate together with a magnetic (µ > ǫ)

plate,7,8 two interacting plates sandwiching a perfect lens,9 or resorting to strong chirality materials.10,11 Only for the first two

proposals, natural materials can be utilized, while for the others, they all need some exotic materials, i.e., strong magneto-

dielectric response materials,12–14 perfect lens,9 strong chiral metamaterials.10,11 These materials do not exist in nature and can

only potentially be made artificially. This type of material is called metamaterial.15 Under current technologies, the thickness

of these metamaterials can not be made very large especially at the optical regime.16,17 The thickest optical negative index

metamaterial so far is only around half of the operating wavelength.18 What we can obtain is just a finite-thickness artificial

metamaterial slab with or without a substrate. Therefore, in this paper, we study the behaviors of the repulsive Casimir forces

with finite-thickness effective medium slabs for two of the aforementioned proposals: with strong magneto-dielectric response

materials12–14 and with strong chiral metamaterials.10,11

First we briefly introduce the extended Lifshitz theory which is valid for chiral metamaterials as well. Lifshitz19 generalized

the calculation of Casimir force between two semi-infinite planar and parallel objects 1 and 2 characterized by frequency-

dependent dielectric functions ǫ1(ω) and ǫ2(ω). Later there was further extension to general bi-anisotropic media.20–22 The

formula for the force or the interaction energy per unit area can be expressed in terms of the reflection amplitudes rab
j (j = 1, 2),23

at the interface between vacuum and the object j, giving the ratio of the reflected EM wave of polarization a by the incoming

wave of polarization b. Each a and b stands for either electric (TM or p) or magnetic (TE or s) waves. The frequency integration

is performed along the imaginary axis by setting ω = iξ. The interaction energy per unit area is given by
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and K0 =
√

k2
‖ + ǫ0µ0ξ2; ǫ0 and µ0 are the permittivity and permeability of free space, and d is the distance between the two

interacting plates. A negative/positive slope of E(d) corresponds to a repulsive/attractive force.
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For a finite-thickness isotropic achiral slab j with a semi-infinite isotropic achiral substrate medium j′, the reflection elements

are the results of the multi-scattering by the finite slab and written as

rab
j =

rab
0j + rab

jj′e
−2Kjdj

1 + rab
0j rab

jj′e
−2Kjdj

, (3)

where dj is the thickness of the slab j, Kj =
√

k2
‖ + ǫ0µ0ǫrjµrjξ2 , and ǫrj and µrj are the relative permittivity and permeability

of the medium j. In rab
mn, the superscripts a and b are defined the same way as in Eq. (2) and the subscripts m and n denote that

the light is incident from the medium m to n. 0 means vacuum. rab
mn are given as24

rss
mn = (µrnKm − µrmKn)/(µrnKm + µrmKn), (4a)

rpp
mn = (ǫrnKm − ǫrmKn)/(ǫrnKm + ǫrmKn), (4b)

rsp
mn = rps

mn = 0. (4c)

For a finite-thickness isotropic chiral slab j with a semi-infinite isotropic achiral substrate medium j′, the nondiagonal terms,

rsp and rps, are nonzero. The total reflection matrix can be written as25

Rj = R0j + Tj0∆jRjj′∆j[I − Rj0∆jRjj′∆j ]
−1

T0j , (5)

where I is the unit matrix and
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, (6)

where Kj± =
√

k2
‖ + n2

j±(iξ)ξ2/c2 and nj±(iξ) =
√

ǫrj(iξ)µrj(iξ)±κj(iξ). ǫrj(iξ) and µrj(iξ) are the relative permittivity

and permeability of the chiral slab j, respectively, and κj(iξ) is the chirality coefficient; c is the velocity of the light in vacuum.

The matrices Rmn and Tmn are the reflection and transmission matrices at the interface of the medium m and n. The subscripts

m and n still denote that the incident light is from the medium m to n. The detailed expressions of these matrices’ elements can

be found in Ref. [26].

II. REPULSIVE CASIMIR FORCES WITH MAGNETIC SLABS

There are claims, e.g., Ref. [27], that when metamaterials are made of ordinary materials with negligible intrinsic magnetic

response, repulsion is impossible at large distances, but this does not deny the possibility that a paramagnetic slab and and a

dielectric slab repel each other. Yannopapas and his collaborator recently resorted to the magnetic response of paramagnetic

composites and obtained theoretically repulsive Casimir force in the micrometer scale.14 Therefore, by employing a proper

magnetic response, it is still possible to get a repulsive force. Here we characterize the electric and magnetic response as

ǫ(iξ) = 1 +
Ωǫω

2
ǫ

ξ2 + ω2
ǫ + γǫξ

, (7a)

µ(iξ) = 1 +
Ωµω2

µ

ξ2 + ω2
µ + γµξ

, (7b)

where Ωǫ and Ωµ denote the strengths of the electric permitivity and magnetic permeability, ωǫ and ωµ are the electric and

magnetic resonance frequencies, γǫ and γµ are the collision frequencies. However, notice that a ξ dependence of µ as in Eq. (7b)

is questionable, since in the existing calculations one obtains that the constant Ωµ is actually replaced by Ωµξ2, and the 1 by

1−Ωµω2
µ; the latter because µ(+∞) → 1. The magnetic response shown in (7b) is assumed to come from the parallel alignment

of very small ferromagnetic nanoparticles in an applied magnetic field; therefore, the magnetic resonance frequency is expected

to be lower than the electric one. We choose the following parameters: ωǫ = 10ω0, ωµ = ω0, and γǫ = γµ = 0.05ω0, where

ω0 is the normalized frequency. In order to get a repulsive force, the inequality Ωµ > Ωǫ should be satisfied. Here, we choose

Ωµ = 2 and Ωǫ = 1 as an example. In the following, we calculate the Casimir force between a semi-infinite Drude metal plate,

characterized by ǫ(iξ) = 1 + ω2
pl/(ξ2 + ξγpl) with ωpl = 100ω0 and γpl = 0.05ω0, and a magnetic slab of finite thickness

d2 ≡ D. Two cases are studied in this paper: (1) with no substrate as shown by the inset of Fig. 1(b); (2) with semi-infinite

Drude metal substate as shown by the inset of Fig. 1(d).

No substrate.– Figures 1(a) and 1(b) show the Casimir interaction energy per unit area E/A versus k0d between a semi-

infinite Drude metal plate and a finite-thickness magnetic slab with no substrate. Different curves correspond to different values
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FIG. 1: (Color online) Casimir interaction energy per unit area E(d)/A (in unit of hck3

0) versus k0d between a semi-infinite Drude metal

plate and a finite magnetic slab without substrate ((a) and (b)) and with Drude metal substrate ((c) and (d)). The insets in (b) and (d) show

the schematic figures depicting the arrangements of the slabs/substrates. The curves correspond to different values of the thickness D of the

slab. The linear-log plot (left, (a) and (c) ) and the log-log plot (right, (b) and (d)). The insets in (c) magnify the regions around k0d ≃ 10 and

k0d ≃ 102.

of the thickness D of the slab. k0 = 2π/λ0 and λ0 = 2πc/ω0. These figures show that the Casimir energies exhibit a similar

behavior for the slabs of different thicknesses (from D = +∞ to D = 0.01λ0). Indeed, all Casimir energy curves exhibit a

repulsive character for large distances and an attractive one for small distances. Thus, there is only one energy peak (indicating

an unstable equilibrium point) appearing approximately at k0d ≃ 0.7 for all thickness D; the strength of this peak is diminishing

as the thickness becomes smaller (especially for D < 0.1λ0). Figure 1(b) shows that, at large distances, the d dependence of the

Casimir energy changes from 1/d3 (for infinite thickness, D = +∞) to 1/d4 (for D = 0.01λ0); the 1/d3 dependence is typical

for semi-infinite slabs. Similar d dependence was also found between ordinary media.28 At small distances, all the Casimir

energy curves for different values of thickness (from D = +∞ to D = 0.1λ0) in Fig. 1(a) overlap very well. As shown in Fig.

1(b), notice that for D = 10λ0, the energy curve overlaps with the D = +∞ below k0d = 10. If the thickness D becomes

smaller, D = 0.1λ0, the different energy curves overlap below k0d = 0.1.

Drude metal substrate.– Figures 1(c) and 1(d) show the Casimir interaction energy per unit area E/A versus k0d between a

semi-infinite Drude metal plate and a finite magnetic slab with a semi-infinite Drude metal substrate. Different curves correspond

to different values of the thickness D of the slab. These figures show that the behavior of the Casimir interaction energies are

different for different thicknesses of the slabs. If the finite magnetic slab is very thin (e.g., D ≤ 0.1λ0 in our case) , the Casimir

force is attractive for any distance. A very interesting behavior appears for large (but finite) thicknesses (D ≥ λ0 in our case): At

very large distances d the interaction is attractive (the interaction energy is negative and decreasing with decreasing d). Figure

1(d) shows that at large distances the d dependence of Casimir energy is 1/d3 and does not change with the thickness of the

slab. At some distance ds (k0ds ≃ 10 for D = λ0 and k0ds ≃ 102 for D = 10λ0) the interaction energy reaches a local

minimum (indicating a stable equilibrium distance) and then the curve increases as d decreases, it crosses the axis at some point
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d0 (d0 < ds), it reaches a maximum at d = du (at du we have an unstable equilibrium distance); du seems to be about the same

for all thicknesses D ≥ λ0. For d < du the energy curve decreases with decreasing d (indicating an attractive Casimir force)

and crosses the axis at a distance d′0, which seems to be common for all D ≥ λ0. The points d0 and d′0 are shown as sharp dips

in the log-log plot (Fig. 1(d)). It seems that d0 and ds tend to infinity as D → +∞.

The appearance of an equilibrium point at the distance d = ds is of great importance: first, because it can be tuned by the

thickness D; second, because its magnitude can be larger than the wavelength and/or the size of the unit cell of the magnetic

metamaterial and, consequently, it is in the range of validity of the effective medium approximation on which Eqs. (1)-(7b) are

based (d ≥ λ0, D), e.g., for λ0 = 700 nm and D = 7 µm, ds ≃ 1µm.

III. REPULSIVE CASIMIR FORCES WITH CHIRAL SLABS
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FIG. 2: (Color online) Casimir interaction energy per unit area E(d)/A (in unit of hck3

0) versus k0d between two identical finite-thickness

CMM slabs without substrate ((a) and (b)) and with semi-infinite Drude metal substrate ((c) and (d)). The insets in (b) and (d) show the

schematic figures depicting the arrangements of the slabs/substrates. The curves correspond to different values of the thickness D of the slab.

The linear-log plot (left, (a) and (c) ) and the log-log plot (right, (b) and (d)).

Repulsive Casimir force was also found to be realized by using chiral metamaterials (CMMs) if the chirality is strong

enough.10,11 Here, we study the repulsive Casimir force between two finite-thickness chiral metamaterial slabs with or with-
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out the Drude metal substrate. The optical parameters of chiral metamaterials are characterized by11

ǫ(iξ) = 1 +
Ωǫω

2
ǫ

ξ2 + ω2
ǫ + γǫξ

, (8a)

µ(iξ) = 1 + Ωµ −
Ωµξ2

ξ2 + ω2
µ + γµξ

, (8b)

κ(iξ) =
iΩκξ

ξ2 + ω2
κ + γκξ

, (8c)

where Ωκ denotes the strength of the chirality resonance, ωκ is the resonance frequency of chiral structure and γκ is the collision

frequency. Usually, the electric, magnetic and chirality resonances are at the same frequency, therefore, we set ωǫ = ωµ = ωκ =
ω0 and γǫ = γµ = γκ = 0.05ω0. In order to get a repulsive force, Ωκ should be large enough. Here, Ωǫ = 1, Ωµ = 0.001, and

Ωκ = 0.7, i.e., large enough for repulsive forces to appear. The two slabs are identical with the same parameters and substrate

as shown by the insets of Figs. 2(b) and 2(d). Then we still consider two cases: (1) with no substrate as shown by the inset of

Fig. 2(b); (2) with semi-infinite Drude metal substate as shown by the inset of Fig. 2(d).

No substrate.– Figures 2(a) and 2(b) show the Casimir interaction energy between two finite chiral slabs without substrate.

Different curves correspond to different values of the thickness D of the slabs. We see that no matter how thin (from +∞ to

0.01λ0) the slabs are, there is only one energy minimum at the whole distance range (from k0d = 10−3 to 10), i.e., in all cases,

the Casimir forces have the same behavior: repulsive force at small distances and attractive at large distances as shown in Ref.

[10]. All the stable equilibrium points are at around k0d = 0.07, where the force changes from attractive to repulsive. As the

vertical dashed line at k0d = 0.06442 shows, the minimum is at slightly larger distance for small D. Notice that the minimum

appears at very small distance d, which makes the validity of the effective medium theory (EMT) doubtful.29 Figure 2(b) shows

similarly that, at large distances, the d dependence of the Casimir energy for finite-thickness slabs is 1/d5, as opposed to the 1/d3

between two semi-infinite media. This d dependence was also found theoretically between ordinary slabs.28 At small distances,

all the Casimir energies for different thicknesses of the finite slabs tend to coincide. However, for such short distances, the EMT

is expected to fail and the microstructure effect will dominate the Casimir repulsion effect.29

Drude metal substrate.– Figures 2(c) and 2(d) show the Casimir interaction energy between two identical finite CMM slabs

with the Drude metal substrate. It shows that the behaviors of the Casimir interaction energy are almost the same if the thickness

of the slab is larger than 0.05λ0. The thinner slabs can still give us the repulsive force but at smaller distance, e.g., for D =
0.01λ0, a repulsive force appears when k0d < 0.035. In other words, if we want to demonstrate the Casimir force experimentally,

0.05λ0 thickness slab is enough to observe all the phenomena, assuming the validity of the EMT, which is doubtful for such

short distances, and no microstructure effect.29

IV. DISCUSSION OF THE VALIDITY OF THE EFFECTIVE MEDIUM APPROXIMATION

Ref. [29] presents a test of the effective medium approximation (EMA) for chiral metamaterials (as also used in this present

paper) against numerical calculations that include the microstructures. A numerical proof was presented29 that the effective

homogeneous approximation breaks down when the separation distance between the two plates becomes comparable to the size

of the unit cell of the chiral metamaterial making the two plates. On the contrary, we have shown in the present manuscript

and in our previous work [10,11], that chirality makes a repulsive contribution to the Casimir force. Our proof10,11 is based on

the constitutive equations connecting the Maxwell vectors; these equations are definitely valid in the regime a ≪ t, a ≪ d,

where a is the unit cell size of the chiral metamaterial, t is the thickness of the plates, and d is the separation between the

plates. By making a small enough, we can satisfy the double inequality a ≪ d ≪ d0 , where d0 is a separation distance, such

that the Casimir force is appreciable including the chiral repulsive contribution to it. We have shown in the present paper that

the combination of plates of finite thickness with appropriate background substantially facilitates the satisfaction of the double

inequality. Thus we argue that, because the present manuscript and Ref. [29] consider very different situations, there is no

contradiction whatsoever between the two, as explained in detail below.

Previously it has been shown10,11 that two semi-infinite, homogeneous, and isotropic chiral media separated by a finite-

thickness vacuum slab will experience a repulsive Casimir force between one another – or at least a significant reduction of

the attractive Casimir force – at small separations if the chirality of the embedding media becomes large enough. It has been

speculated, that such chiral materials could at least, in principle, be implemented by chiral metamaterials in the homogeneous

effective medium limit (i.e., where the EMA is valid). The major contribution to the Casimir force comes from frequencies and

wave vectors of order of magnitude comparable to the inverse separation of the chiral media; it is in this region at least where

the implementation of the chiral metamaterials should allow EMA.

Now, from here chiral Casimir repulsion has been further investigated in at least two directions:

(i) Assume an existing chiral metamaterial structure with a given unit cell size; it has been investigated to what extent a

repulsive contribution to the Casimir force can be found (in simulations) for a discreet metamaterial. This is the topic of Ref.
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[29] where only a minimal repulsive contribution to the Casimir force was found at separation much larger than the unit cell size

of the metamaterial – a regime where also the repulsive contribution in the analytical calculation of homogeneous semi-infinite

media would become negligible. Not surprisingly, for separations comparable in order of magnitude to the unit cell size of the

metamaterial, it was determined the discrete interactions between the constituents of the metamaterials dominate the force and

no chiral repulsion could be observed because the metamaterials do not behave anymore as homogeneous media at the relevant

frequencies and wave vectors. Theoretically, this problem could be easily corrected by just making sure the structural length

scale, i.e. the assumed unit cell size, is small compared to the separation maintaining the validity of the EMA at the relevant

frequencies and wave vectors. Of course, in reality this could be a problem because there are current practical limits to the nano-

fabrication of the metamaterial structures (e.g., for repulsion at 1 µm separation the structural length scale of the metamaterial

should be well below 100 nm to ensure homogeneous effective medium behavior). The effect of finite thickness was not studied

in [29] – the media were just chosen thick enough to behave as if they where in fact semi-infinite.

(ii) In this manuscript we follow a very different direction. We keep the assumptions of homogeneous isotropic chiral media

and investigate the question how a finite thickness of the semi-infinite chiral media, terminated by air or metal, will affect the sign

and magnitude of the Casimir force as well as its scaling with the separation between the media. We consider the homogeneity

and isotropy of the chiral materials as given; hence, the implementation by any to-be-designed chiral metamaterial as a technical

problem that can be considered independently. We believe this investigation provides valuable information about the physical

interplay between Casimir repulsion and attraction brought about by these boundary conditions and is relevant, if an effectively

homogeneous metamaterial implementation is fabricated. So, in summary, the present work and Ref. [29] do not contradict each

other but shed light on the possibility of a repulsive or reduced magnitude Casimir force from different angles.

We believe the approach taken and results presented here are independent of Ref. [29], not a mere extension of previous work

[10,11], and provide new results for finite-thickness effective medium slabs. The discussion of scaling of the Casimir force with

separation for the different regimes of thin versus thick finite chiral media slabs, the observation of stable equilibrium points, and

the discussion of the effects of different terminations/substrates are unique and important results presented in this manuscript.

Finally, the research reported in this manuscript is in no way "invalidated" by the results reported in Ref. [29]. This previous

publication [29] only asserts that once the separation between the chiral media implemented by chiral metamaterials becomes

comparable to the structural length scale of the metamaterials, discrete interactions become dominant and the repulsive Casimir

force component expected form homogeneous chiral media ceases to exist. Theoretically, the repulsive component to the Casimir

force should still exist at any given separation between the chiral media, if only the structural length scale is chosen small enough

to ensure validity of the EMA at the relevant frequencies and wave vectors as explained above.

V. EXPLANATION

Here, we give a physical explanation regarding the Casimir force behaviors shown above: For large distances, the main

contribution to the Casimir force comes from the frequencies ξ < c/d.12 Since c/d is small, the main contribution region comes

from low frequencies. For the low frequency waves, the finite thickness of the slab is much less than the wavelengths; therefore,

the effective optical parameters of the slab/substrate approach those of the substrate. If the substrate is vacuum, the effective

optical parameters of the finite slab approach to those of vacuum; therefore, the Casimir energy of the finite slab with no

substrate decreases faster than the traditional Casimir force between two semi-infinite media. Therefore, for the Casimir force

between a semi-infinite Drude metal and a finite slab without substrate, the d dependence for large d is 1/d5; and for the Casimir

force between two identical finite chiral slabs without substrate, the d dependence is 1/d6. This behavior of the d dependence is

the same as that in the ordinary slabs.28 If the substrate is Drude metal, the effective optical parameters of the finite slab/substrate

for large distances approach to those of Drude metal; therefore, at very large distances, every force approaches to that of the

interaction between two semi-infinite Drude metal media, i.e., it is always attractive force at large distance. For short distances,

c/d is large. The main contribution region will come from high frequencies (short wavelengths). The influence of the substrate

on the finite slab will be small. Therefore, for short distances the slab/substrate system tends to behave as a semi-infinite slab.

The interesting behavior appears at intermediate distances for the Drude/magnetic slab/Drude system (see Figs. 1(c) and 1(d))

where the repulsive character of the Drude/slab subsystem competes with the attractive subsystem Drude/Drude. That is why

the magnetic slab with a Drude metal substrate can give us the equilibrium point at the intermediate distance. We repeat that

for short distances, c/d is large. Hence, the influence of the substrate on the finite slab will be small. Therefore, the finite slab

can be considered as a semi-infinite object. As a result, every curve goes to the same value at very small distances. A similar

conclusion was given in Ref. [30]. A similar equilibrium point behavior to that shown in the inset of Fig. 1(c) can also be

obtained between two dielectric slabs , ǫ1(iξ) and ǫ2(iξ), sandwiching another liquid ǫ3(iξ) and satisfying the condition of

ǫ1(iξ) < ǫ3(iξ) < ǫ2(iξ). For the case of two chiral slabs without substrate, the attractive contribution for large distances (i.e.,

for low frequencies) is smaller than that of semi-infinite chiral media due to the vacuum substrate, while the repulsive forces at

short distances, i.e., for high frequencies almost do not depend on the thickness D; therefore, it is easier to obtain the repulsive

force, when the latter appears at short distances. Thus for the force between two chiral slabs with Drude metal substrate, because

the repulsive contribution comes at very short distances, i.e., for high frequencies, the finite-thickness slab does not influence
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the repulsive Casimir force too much until D = 0.05λ0.

VI. CONCLUSION

In this paper, we used the extended Lifshitz theory to study the repulsive Casimir force between a semi-infinite Drude metal

and a finite magnetic slab with or without substrate. For no substrate, we found that at the large distances, the d dependence of

the force is 1/d5; for the Drude metal substrate, an equilibrium point appears at intermediate distances. The thickness of the

slab can tune the position of this equilibrium point. We also study the repulsive Casimir force between two identical chiral slabs

with and without substrate. For no substrate, we found that the finite slabs repel each other at short distances, while for large

distances the d dependence of the attractive force is 1/d6. For the Drude metal substrate, we found that the finite thickness of

the slab D does not influence the repulsive force at short distances too much until D = 0.05λ0. These results are very useful to

the experimentalists who are obliged to work with finite slabs.
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