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Evidence of a non-thermal magnetic relaxation in the intermediate state of a type-I superconducor
is presented. It is attributed to quantum tunneling of interfaces separating normal and supercon-
ducting regions. Tunneling barriers are estimated and temperature of the crossover from thermal
to quantum regime is obtained from Caldeira-Leggett theory. Comparison between theory and ex-
periment points to tunneling of interface segments of size comparable to the coherence length, by
steps of order one nanometer.

PACS numbers: 74.25.Ha, 74.50.+r, 75.45.+j

Quantum tunneling of relatively macroscopic solid-state objects like flux lines in type-II superconductors1,2 and
domain walls in magnets3 have been subject of intensive research in the past. The corresponding energy barriers
and spatial scales are non-trivially determined by statistical mechanics of the pinning potential1,2,4,5. Interaction
with environment makes this problem the one of macroscopic quantum tunneling with dissipation6. The latter is
especially important for the tunneling of flux lines because of their predominantly dissipative dynamics7–11. Type-I
superconductors, when placed in the magnetic field, do not develop flux lines. Instead, they exhibit intermediate
state in which the sample splits into normal and superconducting regions separated by planar interfaces of positive
energy12–14. Recently, there has been a renewed interest to the equilibrium structure, pinning, and dynamics of
interfaces in type-I superconductors15–20. In the presence of pinning centers the interfaces adjust to the pinning
potential by developing curvature as is schematically shown in Fig. 1. Pinning by point or small-volume defects
should result in a broad distribution of energy barriers. It is, therefore, plausible that at low temperature type-I
superconductors continue to relax towards equilibrium via quantum diffusion of interfaces. This situation is similar
to the diffusion of domain walls in disordered ferromagnets with one essential difference. Contrary to a ferromagnetic
domain wall, the dynamics of the planar interface in a superconductor should be dominated by dissipation.

At low temperature the decay of metastable states created by pinning provides slow relaxation of magnets and
superconductors towards thermal equilibrium. This relaxation is known as magnetic after-effect. At finite temperature
it may occur via thermal activation with a probability proportional to exp(−UB/T ) where UB is the energy barrier.
As T → 0 thermal processes die out and the only channel of escape from the metastable state becomes underbarrier
quantum tunneling. Its probability is proportional to exp(−Ieff/h̄) where Ieff is the effective action associated with
tunneling. The pre-exponential factors in the two expressions are of lesser importance because the dependence of

FIG. 1: Schematic view of the interface between normal and superconducting regions of type-I superconductor in the random
pinning potential.
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FIG. 2: Color online: Isothermal magnetization curves for sample A. (Data for sample B are similar.) The inset shows scaling
with m = M/Bc(T ) and h = H/Bc(T ).

the probability on the parameters is dominated by the exponents. Equating the two exponents, one finds that the
crossover from thermal activation to quantum tunneling occurs at TQ ≈ h̄UB/Ieff . Experimental evidence of such
a crossover in type-II superconductors has been overwhelming21. There has also been some experimental evidence
of quantum diffusion of domain walls in disordered ferromagnets22. However, to our knowledge, no literature exists
on non-thermal magnetic relaxation in type-I superconducors. Experimental evidence of such a relaxation and its
theoretical treatment are subjects of this paper.

Two samples (A and B) in the shape of an octagonal disk of thickness 0.2 mm and surface area 40 mm2 were prepared
by cold-rolling of short cylinders cut from a commercial Pb rod of purity 99.999%. They were annealed during one hour
at 290oC and 280oC (melting temperature of lead is 327.5oC), respectively, in glycerol and nitrogen atmosphere to
reduce the mechanical stress from defects that might have been introduced during preparation of the sample. Magnetic
measurements were performed with the use of a commercial superconducting quantum interference device (SQUID)
magnetometer in the field up to 1 kOe in the temperature range 1.8K - 8K. The magnetometer was equipped with
a Continuous Low Temperature Control (CLTC) and Enhanced Thermometry Control (ETC) and showed thermal
stability better than 0.01 K. Isothermal magnetization curves had the same shape for samples A and B, see Fig. 2. The
fit of the data by Bc(T ) = Bc(0)[1− (T/Tc)

2] produced identical values of Bc(0) = 802± 2 Oe and Tc = 7.23± 0.02 K
for both samples, in accordance with the values of the critical field and transition temperature reported for lead. These
values of the parameters, together with high purity of our samples, confirm that we are dealing with a conventional
type-I superconductivity in lead. The observed magnetization curves are typical of a pure type-I Pb superconductor
in a weakly pinned intermediate state (see, e.g., Refs. 15,18). In such a state the type-I superconductor has the
magnetization curve that is qualitatively similar to M(H) of the type-II superconductor. This is because many of
the physical processes involved in the formation of the intermediate state of a type-I superconductor are conceptually
similar to the physical processes responsible for the formation of the mixed state of a type-II superconductor. The
essential difference is that the magnetic field penetrates into a type-I superconductor in the form of normal domains
vs quantized vortices in a type-II superconductor. The maxima in the virgin magnetization curves in Fig. 2 (not to
be confused with Hc1-effect in a type-II superconductor) are due to the surface barriers for the nucleation of normal
domains. These barriers and the pinning of interfaces separating normal and superconducting regions are responsible
for the magnetic hysteresis. At some higher field (not to be confused with Hc2 in a type-II superconductor) the
magnetization goes to zero due to the complete expulsion of superconducting domains by normal domains.

Magnetic relaxation was measured by first applying the field B > Bc(T ), then subsequently switching the field
off and recording (for more than one hour) isothermal temporal evolution of the remnant magnetization Mrem(T )
in a zero field. Fig. 3 shows the time evolution of Mrem(t)/Mrem(0) in sample A between 2 K and 6 K. Similar data
with slightly different slopes were obtained for sample B. At all temperatures the observed slow relaxation followed
very well the logarithmic time dependence, Mrem(t) = Mrem(0)[1 − S(T ) ln t], where S(T ) is the so-called magnetic
viscosity. Temperature dependence of the viscosity for samples A and B is shown in Fig. 4. Remarkably it does not
extrapolate to zero in the limit of T → 0 but, instead, tends to a finite temperature-independent limit as the sample
is cooled down.

Conceptually, the slow relaxation of interfaces separating normal and superconducting regions is similar to the
magnetic after-effect due to relaxation of domain walls in bulk ferromagnets. In the latter case the logarithmic time-
dependence of the relaxation is usually considered an indication of the broad distribution of energy barriers3. Same
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FIG. 3: Color online: Magnetic relaxation of sample A at various temperatures. (Data for sample B are similar.) Logarithmic
time dependence provides an accurate fit to the data.
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FIG. 4: Color online: Temperature dependence of the magnetic viscosity for samples A (black) and B (red). S(T ) tends to a
non-zero value in the limit of T → 0. Experimental error is less than the size of the points.

result can be obtained in a model with a single barrier if the height of the barrier is affected by the global relaxation23.
Regardless of the model, the finite value of S(0) points towards quantum mechanism of the escape from metastable
states. By analogy with type-II superconductors where non-thermal magnetic relaxation is due to quantum tunneling
of flux lines, and with ferromagnets where non-thermal relaxation implies tunneling of domain walls, it is reasonable
to assume that in type-I superconductors the effect is due to quantum tunneling of interfaces separating normal and
superconducting regions. The structure of the interface (see Fig. 5) is determined by two parameters: the coherence

length ξ and the London length λL. Type-I superconductivity corresponds to κ = λL/ξ < 1/
√

2. Concentration of
Cooper pairs |Ψ|2 gradually goes to zero on a distance ξ as one moves through the interface from the superconducting
to the normal region. When crossing the interface in the opposite direction one would see the magnetic field going
down from its thermodynamic critical value Bc to zero on a distance δ =

√
λLξ < ξ.

The energy of the unit area of the interface is24

σ = ξB2
c/(3

√
2π) . (1)

Pinning provides curvature of the interface, see Fig. 1. We shall describe such an interface by a singled-valued function
Z(x, y, τ). The energy of the interface,

E = σ

∫

dxdy





√

1 +

(

dZ

dx

)2

+

(

dZ

dy

)2

+ U(x, y, Z)



 , (2)
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FIG. 5: Structure of the interface between normal and superconducting regions of type-I superconductor. The magnetic field
decays on a scale δ =

√
λLξ, while the modulus of the Cooper-pair condensate wave function changes on a scale ξ.

FIG. 6: Flattening (or formation) of a bump via quantum tunneling of a pinned interface (I) separating normal (N) and
superconducting (SC) regions.

consists of two parts: Elastic energy and energy due to pinning potential U(x, y, z). Metastable equilibrium is achieved
through the balance of these two energies that corresponds to the minimum of Eq. (2). Magnetic relaxation occurs due
to the decay (or formation) of the bumps in the interface shown in Fig. 1. We shall describe such a bump by the lateral
size L and height a. For a particular bump these parameters are determined by the local pinning potential. Since the
latter is unknown we shall test self-consistency of the approach based upon theory of tunneling with dissipation6 by
extracting the average values of L and a from experiment.

Let us first estimate the energy barrier associated with the bump. It is easy to see that the change in the elastic
energy of the interface due to formation of the bump (see Fig. 6) is independent of L and is generally of order σπa2.
(This follows from the fact that the area of a spherical segment above any cross-section of a sphere differs from the
area of that cross-section by πa2). This energy must be balanced by the negative energy of the pinning to make the
bump an equilibrium state of the interface. Consequently, UB ≈ πσa2 with the average value of a should represent the
typical amplitude of the random pinning potential and, thus, the height of the energy barrier. Note that the transport
current would tilt the pinning potential and lower the barriers. In this paper, however, we consider quantum relaxation
towards equilibrium in the absence of the transport current (similar to the magnetic relaxation of a ferromagnet in a
zero magnetic field), rather than quantum creep of the interfaces caused by the transport current.

We want to find the WKB exponent, Ieff/h̄, for the tunneling of Z(x, y) between two configurations of the interface
corresponding to the local energy minima (see Fig. 6). Same as for the flux lines7–11 we shall assume that the tunneling
probability is dominated by the dissipation part of the Caldeira-Leggett effective action6:

Ieff =
η

4π

∫ h̄/T

0

dτ

∫

∞

−∞

dτ ′

∫

dxdy
[Z(τ) − Z(τ ′)]

2

(τ − τ ′)2
, (3)

where η is a viscous drag coefficient describing dissipative motion of the interface and τ = it is imaginary time. For a
segment of the interface of size L, that tunnels by a distance a, the T = 0 value of the effective action in Eq. (3) can
be estimated as

Ieff ≈ ηL2a2/(4π) . (4)

The drag coefficient η can be obtained from the argument similar to that of Bardeen and Stephen for the flux
lines25. Let magnetic field be in the y-direction. In the presence of the current of density j in the x-direction, the
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magnetic force experienced by the dxdy element of the interface in the z-direction is

dF =
1

c

∫

dxdydz jB . (5)

Writing j via the electric field and normal-state resistivity ρn as j = E/ρn, and substituting here E = (V/c)B for the
electric field produced inside the interface moving at a speed V in the z-direction, one has j = (V/c)(B/ρn). This
gives

dF

dxdy
=

V

ρnc2

∫

dzB2(z) (6)

for the force per unit area of the interface. Substitution into this formula of B ≈ Bc exp(−z/δ) finally yields

dF

dxdy
= ηV , η =

√
λLξB2

c

2ρnc2
. (7)

As has been explained in the introduction, the crossover from thermal to quantum diffusion of the interface should
occur around TQ = h̄UB/Ieff . With the help of Eqs. (1), (4), and (7) one obtains

TQ ≈ 4π2h̄σ

ηL2
=

4π
√

2h̄ρnc2

3
√

κL2
. (8)

Notice that due to the dimensionality of the problem TQ does not depend on the size of the tunneling step a.

Recalling that λL = [mc2/(4πe2n)]1/2 in terms of the effective mass m and concentration n of the electrons and
writing ρn = (mν/e2n) = 4πνλ2

L/c2 in terms of the normal electron collision frequency ν, the crossover temperature
can be presented in the form

TQ ≈ 16π2
√

2

3
κ3/2

(

ξ

L

)2

h̄ν (9)

that shows its explicit dependence on the microscopic parameters of the material.
TQ can be estimated from experiment, based upon the following argument. At finite temperature the magnetic

viscosity shown in Fig. 4 has contributions from both, thermal activation and quantum tunneling, S = ST +SQ, where
SQ = S(0). The parameter TQ is defined as temperature at which the two contributions are equal, that is, ST = SQ

and S(TQ) = 2SQ. This gives TQ in the ballpark of 4 − 5K. The values of λL and ξ in lead are 37nm and 83nm,
respectively, giving κ = λL/ξ = 0.45. For the energy of the unit area of the interface Eq. (1) with Bc ≈ 800G gives
σ ∼ 0.4 erg/cm2. Normal resistivity of lead at 4 K is of order26 5× 10−11 Ω· m ≈ 5.6× 10−21s. Eq. (7) then gives for
the drag coefficient η ≈ 0.35 erg· s/cm4. We shall now check self-consistency of our model by computing the average
size of the tunneling segment L and the tunneling step a. From Eq. (8) one obtains L ≈ 90 nm ∼ ξ, which is rather
plausible. Indeed, L ∼ ξ describes the segment of the interface inside which Cooper pairs are strongly correlated and,
therefore, they can collectively participate in a coherent tunneling event. For the tunneling transition to occur in our
experimental time window of one hour, Ieff cannot significantly exceed 25h̄. According to Eq. (4) this condition is
satisfied by tunneling steps a below 1 nm, which is also quite plausible. The typical energy barrier, UB ≈ πσa2, must
be then of order 100K in accordance with the fact that thermal activation dies out below 4 K.

In Conclusion, we have observed non-thermal magnetic relaxation in lead that we attribute to quantum tunneling
of small segments of interfaces separating normal and superconducting regions. Theory of such a tunneling has
been developed. Comparison between theory and experiment suggests macroscopic quantum tunneling of interface
segments comparable in size to the coherence length, by steps of order one nanometer.
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