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In conductor-insulator composites in which the conducting particles are dispersed in an insulating
continuous matrix the electrical connectedness is established by interparticle quantum tunneling.
A recent formulation of the transport problem in this kind of composites treats each conducting
particle as electrically connected to all others via tunneling conductances to form a global tun-
neling network. Here, we extend this approach to nonhomogeneous composites with a segregated
distribution of the conducting phase. We consider a model of segregation in which large random
insulating spherical inclusions forbid small conducting particles to occupy homogeneously the vol-
ume of the composite, and allow tunneling between all pairs of the conducting objects. By solving
numerically the corresponding tunneling resistor network, we show that the composite conductivity
σ is enhanced by segregation and that it may remain relatively large also for very small values of
the conducting filler concentration. We interpret this behavior by a segregation-induced reduction
of the interparticle distances, which is confirmed by a critical path approximation applied to the
segregated network. Furthermore, we identify an approximate but accurate scaling relation permit-
ting to express the conductivity of a segregated systems in terms of the interparticle distances of a
corresponding homogeneous system, and which provides an explicit formula for σ which we apply
to experimental data on segregated RuO2-cermet composites.

PACS numbers: 64.60.ah, 73.40.Gk, 72.80.Tm, 72.20.Fr

I. INTRODUCTION

The transport properties of two-phase heterogeneous
materials are strongly related to the structure of the com-
posite i.e. the volume fraction φ of the conductive fillers,
their size and shape, and their dispersion into the insu-
lating medium.1,2 Controlling the conductivity σ of dis-
ordered composite materials by tuning these structural
parameters is of fundamental importance for several ap-
plications in the fields of micro and nanoelectronics such
as, to name a few, electromagnetic interference shield-
ers, resectable fuses, strain and chemical sensors, flexible
conductors, and anti-static compounds.3

In several classes of composite materials in which
the conductive particles are dispersed into a insulating
medium, like e.g. polymer-based composites or metal-
glass cermets, the prominent transport mechanism is
quantum tunneling. In this case of tunneling, the con-
ductance between two particles decays exponentially with
the inter-particle distance over a characteristic tunnel-
ing length ξ which is of the order of a fraction to a few
nanometers depending on the material characteristics.

Typically, the tunneling mechanism is approximated
by treating the fillers as core-shell objects, where the
impenetrable hard core represents the physical particle
and the thickness of the concentric penetrable shell is
identified with ∼ ξ.4–7 In this way, the overall behav-
ior of the composite conductivity σ as a function of φ
is commonly interpreted in the framework of percolation
theory,8,9 which considers two given conducting particles
as either electrically connected or disconnected if their
mutual distance is respectively lower or larger than the
cut-off length imposed by the shell thickness. Under this
assumption, the system undergoes a conductor-insulator
transition at a critical concentration φc of conducting

phase, which is associated with the formation of a glob-
ally connected cluster of electrically linked filler particles
which spans the entire sample. Below φc there is no such
sample-spanning cluster and σ is zero, while for φ > φc

the conductivity follows a power law behavior of the form
σ ∝ (φ − φc)

t, where t is a critical exponent.

Despite of its simplicity and of the unquestionable in-
sights that it provides on the transport problem,10–13 in-
troducing the concept of a cut-off through which elec-
trical connections are established, is nevertheless a too
crude approximation which alters the real nature of the
interparticle electrical connectedness. This is indeed
characterized by the fact that, due to the tunneling mech-
anism, two given particles are always electrically con-
nected regardless of their mutual distance,14 even if the
strength of the connection (i.e., the interparticle conduc-
tance) decays exponentially with such distance.

Recently, we have reformulated the transport problem
in conductor-insulator composites by allowing each con-
ducting particle to be connected to all others via tunnel-
ing processes,15–17 and so without imposing the restric-
tive hypothesis on which the usual core-shell model is
based. By explicitly taking into account the composite
morphology or microstructure and the conducting parti-
cles shape and dimensions, this global tunneling network
(GTN) model is able to describe the overall conductiv-
ity dependence upon the particle concentration for many
different classes of composites, ranging from granular-
like systems to colloidal dispersions in a continuum in-
sulating matrix.17 When applied to the many published
data on colloidal nanotube, nanofiber, nanosheets, and
nanosphere composites, this formalism has permitted to
extract important microscopic properties, such as the
tunneling decay length ξ, directly from the experimen-
tal conductivity vs concentration curves.15,16
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FIG. 1: (Color online) Two-dimensional representation of (a) an homogeneous and (b) segregated dispersion of the conducting
particles in the continuum. The insulating (conducting) inclusions are represented by open (filled) circles of diameter D2 (D1).
The insulating fillers can penetrate each other, while the conducting particles are impenetrable with respect to themselves and
to the insulating ones. The grey region represents the space available for placing the centers of the conducting spheres. (c)
Example of a distribution of insulating and conducting particles with D2/D1 = 4.

In this paper we apply the GTN model to composites
where the dispersion of the conducting fillers in the in-
sulating continuum is not homogeneous. Specifically, we
consider systems in which the insulating phase forbids
the conducting fillers to occupy large (compared to the
particle size) volumes inside the material, thereby lead-
ing to a segregated spatial distribution of the conduct-
ing phase.6,18,19 In real composites, like e.g. RuO2-based
cermets,20 this is achieved when the size of the insulating
grains is consistently larger then the one of the conduct-
ing fillers, and thermal treatments, inducing softening
and sintering of the insulating phase without large-scale
mixing, lead to a segregated distribution of the conduct-
ing particles in a continuous insulating matrix. Besides
the already cited RuO2-based cermets, another impor-
tant class of segregated conductive composites is that of
polymer-based ones,21,22 where an inorganic or carbona-
ceous conductive filler is mixed with significantly larger
polymer particles and the resulting compound is molded.

The study of the transport properties in segregated
composites is important for many technological appli-
cations where low filler concentrations are demanded in
order to have high conduction regimes combined with
the unaltered mechanical properties of the host insulat-
ing medium, or to reduce the quantity of the conduc-
tive phase when its cost is high. So far, the problem
of conduction in segregated systems has been limited
to the evaluation of the critical concentration φc within
the percolation framework, and both lattice18,21,23 and
continuum6,19 models have evidenced that φc is (usually,
see Ref.19) lowered by segregation. In the following we
shall go beyond the percolation approach by consider-
ing the GTN scenario for the segregation problem and
by solving numerically the tunneling network equations.
We find that the composite conductivity σ for fixed filler
concentration can be strongly enhanced by the segrega-

tion, in accord with the observed trends. Furthermore,
we show that the calculated filler dependencies of σ can
be reproduced to a great accuracy by the critical path
approximation,24 which we find to follow a simple scal-
ing law permitting us to provide analytical formulas for
σ(φ). When applied to experimental data of real segre-
gated composites, our formulas can be used to estimate
the degree of segregation of the composite and the value
of the tunneling length ξ.

The structure of the paper is as follow: in Sec. II we
present our GTN model for segregated composites and in
Sec. III we calculate numerically the composite conduc-
tivities. In Sec. IV we present our results on the critical
tunneling distance which will be used to approximate the
numerical results of Sec. III and to provide explicit for-
mulas for the conductivity. These are applied in Sec. V
to some previously published data of segregated compos-
ites to extract the tunneling distance. Section VI is left
to the conclusions.

II. MODEL

We model the conductor-insulator composite as de-
scribed in Fig. 1(a) and (b) for the case of an homoge-
neous dispersions of conducting particles in the contin-
uum and for a segregated distribution, respectively. In
Fig. 1(b) the spherical particles of diameter D2 represent
the insulating inclusions (e.g., the glassy frit particles in
RuO2 cermets) while the conducting particles are mod-
eled as hard spheres of diameter D1. The two kinds of
particles are mutually impenetrable and, furthermore, we
assume that the D2 spheres can penetrate each other in
order to simulate for instance sintering and softening of
the insulating grains. Typically, as in RuO2 cermets, D2

is as large as a few micrometers while D1 ranges from tens
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to hundreds of nanometers, so that the regime D2 ≫ D1

is the one of practical interest. Keeping this in mind,
we shall consider in the following also moderate values
of D2/D1 to better appreciate the overall trends towards
the D2/D1 ≫ 1 regime.

The system is generated by first randomly placing
the penetrable insulating spheres into a three dimen-
sional cubic volume of side length L with a given num-
ber density ρ2 = N2/L3, where N2 is the number of
D2 particles and L is chosen to be at least one or-
der of magnitude larger than D2 (we assume periodic
boundary conditions). Since the positions of the insu-
lating spheres are uncorrelated, their fractional volume
is φ2 = 1 − exp(−v2ρ2) where v2 = πD3

2/6 is the vol-
ume of a single sphere.25 After having placed the insu-
lating spheres, N1 conducting hard spheres are added to
the system through random sequential addition (RSA),
where random placing is accepted only if there is no
overlap with the other D1 and D2 spheres. The RSA
procedure is repeated until the desired volume fraction
value φ1 = ρ1v1, where v1 = πD3

1/6 and ρ1 = N1/L3, is
reached. However, since the conducting spheres cannot
penetrate the insulating ones, the available volume for
placing the centers of the D1 particles is reduced by the
factor19

υ∗ = (1 − φ2)
(1+D1/D2)3 (1)

with respect to the total volume L3 of the system. This
defines an effective volume fraction φ1/υ∗, larger than φ1,
for the conducting spheres. Hence, for small values of υ∗,
the limit achievable through RSA can become much lower
than that of the homogeneous limit at υ∗ = 1, which is
φmax

1 ≃ 0.382,26 and scales approximately as φmax
1 υ∗. For

densities larger than the RSA limit we have considered
cubically arranged initial configurations where particles
overlapping with the insulating spheres were removed.
Both the initial RSA and the cubic configurations were
then relaxed via Monte Carlo runs, where random dis-
placements of the D1 sphere centers were attempted and
accepted only if they did not overlap with any of its neigh-
bors and with the D2 particles. Equilibrium was consid-
ered attained when the mean nearest-neighbor distances
between the D1 particles did not change within statisti-
cal errors upon further Monte Carlo displacements. An
example of the so-obtained distribution of D1 and D2

spheres is shown in Fig. 1(c) for the case D2/D1 = 4.
In describing the overall conductivity arising from the

system described above we go beyond the usual core-shell
approximation, and employ the GTN model to the subset
of D1 particles of the composite. Hence, we treat any two
conducting spheres centered at ri and rj as electrically
connected through tunneling processes, irrespectively of
their mutual distance rij = |ri − rj |. By assuming that
the particle size D1 and the temperature are large enough
to neglect charging energy effects, then the inter-particle
conductance is given by:

gij = g0 exp

(

−
2δij

ξ

)

(2)
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FIG. 2: (Color online) Histograms for the distribution P (σ)
of the conductivity obtained from 500 realizations of the tun-
neling network for D2/D1 = 8, D1/ξ = 50 and φ1 = 0.1. The
volume fraction values of the insulating spheres are φ2 = 0
(with L/D1 = 25) and φ2 = 0.4, 0.6 (with L/D1 = 80). The
solid lines are fits to log-normal distribution functions.

where g0 is a constant “contact” conductance which we
shall set equal to the unity, ξ is the tunneling decay
length, and δij = rij−D1 is the minimal distance between
the surfaces of two conducting spheres. For a system
composed by N1 particles, the GTN model is then equiv-
alent to a weighted random network with N1 nodes, each
with coordination number N1 − 1. However, contrary
to the usual models of weighted networks,27 the weight
of each link is not random but it is given by Eq. (2),
which depends on the particular arrangement of the con-
ducting fillers in the composite. This characteristics of
the model permits in principle to study on equal foot-
ing composites with different statistical properties of the
microstructure, and has been successfully applied to ho-
mogeneous colloidal and granular composites.15–17 In the
following we shall show that the GTN approach is also
able to describe the conductivity of segregated systems,
thus providing a theoretical framework for the study of
inhomogeneous composites.

III. CONDUCTIVITY

In this section we present the results of our numerical
calculations of the filler concentration dependence of the
conductivity σ for different segregated systems specified
by φ2 and D2/D1. Since in the GTN model each conduct-
ing particle is connected to all others through Eq. (2), the
calculation of σ would require the solution of a network
with N1(N1 − 1)/2 resistors, which is a computationally
demanding, or even insurmountable, task for the N1 val-
ues considered in our study. However, we can exploit
the exponential decay of Eq. (2) by neglecting contri-
butions from tunneling between particles sufficiently far
away apart. Indeed, depending on the value of ξ and of
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FIG. 3: (Color online) Calculated GTN conductivity as a function of the volume fraction φ1 of the conducting spheres with
diameter D1 for D1/ξ = 15 and 50, and for different values of the volume fraction φ2 of the insulating spheres with diameter
D2. (a) D2/D1 = 4, (b) D2/D1 = 8. The solid lines in (b) are fits of our formula of Eq. (7).

the filler concentration φ1, it is possible to identify an
upper artificial cut-off δ∗ such that the conductances be-
tween particles at mutual distances δij > δ∗ can be safely
removed, reducing drastically the number of connected
particles in the network. In our calculations we have
then chosen δ∗ such that, depending on φ1, exp(−2δ∗/ξ)
is from five to twenty orders of magnitude smaller than
the overall network conductivity.28

Once the network has been reduced, we have eval-
uated σ by combining the numerical decimation algo-
rithm of Ref. 29 with a preconditioned conjugated gra-
dient method. Specifically, we decimated iteratively the
network starting from the nodes with the lowest coordi-
nation number in order to eliminate dead ends and to
compact the network. We continued the decimation pro-
cedure until a single conductance was left, whose value
coincided with the conductance of the original network.
If the computational time for the node decimation was
too large, as it was typically the case for segregated sys-
tems with φ1/υ∗ large, we switched to the conjugate gra-
dient method (see e.g. Ref. 30) applied to the partially
decimated network. We have applied this procedure to
Nr = 200 − 600 realizations of systems with N1 con-
ducting spheres ranging from N1 = 250 (for L/D1 = 50

and φ1 = 10−3) to N1 = 322690 (for L/D1 = 80 and
φ1 = 0.33).

In Fig. 2 we show the distributions P (σ) of the σ val-
ues obtained from 500 realizations of the system with
φ1 = 0.1, D1/ξ = 50, D2/D1 = 8, and for φ2 = 0 (with
L/D1 = 25), 0.4, and 0.6 (with L/D1 = 80). All three
sets of data follow approximately a log-normal distribu-
tion (solid lines) which stems from the exponential decay
of Eq. (2) (note that the distribution of the φ2 = 0 case
is broader than the two others because of the smaller size
of L). The distributions are peaked at the average of the
logarithm of σ, with no significant drifts when the sys-
tem size is increased for fixed φ1. It is clear from the
figure that, although φ1 is kept fixed, the mean value of
the conductivity steadily increases as the volume fraction
φ2 of the insulating spheres is enhanced. From Eq. (1)
this trend can be interpreted by noticing that as φ2 in-
creases, the available volume fraction υ∗ decreases, so
that the conducting particles occupy a reduced volume
compared to the homogeneous φ2 = 0 case (i.e., the effec-
tive concentration φ1/υ∗ is larger). In turns this means
that, as it can be inferred from Figs. 1(a) and (b), the
mean interparticle distances δij in Eq. (2) are reduced for
φ2 6= 0, thereby leading to an enhancement of the overall
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FIG. 4: (Color online) Histograms for the distribution P (δ)
of the minimum interparticle distance δ required to have per-
colation for 500 realizations of the same systems considered
in Fig. 2. The solid lines are fits to gaussian distribution
functions.

conductivity.
This behavior is clearly shown in Fig. 3, where we plot

σ (symbols) as a function of φ1 for D2/D1 = 4, Fig. 3(a),
and D2/D1 = 8, Fig. 3(b), and for several values of
the insulating sphere densities φ2. The reduction in σ
for decreasing φ1, which is a direct consequence of the
fact that as φ1 is reduced the interparticle distances δij

get larger, can be strongly mitigated by the segregation
which, through the reduction of υ∗, tends instead to de-
crease δij . We have therefore that, as shown in Fig. 3,
for fixed values of the tunneling length ξ, as the segre-
gation is enhanced the threshold value of φ1 required to
achieve a given σ decreases considerably. By combining
this result with the observation that, in practice, the low-
est measurable conductivity σmin in real composites is set
either by the experimental setup or by the intrinsic con-
ductivity of the insulating phase, and that this defines a
sort of “critical” threshold φ1c at which σ ∼ σmin,16 we
obtain that more segregated systems entail lower values
of φ1c. This last observation is in agreement with the
behavior seen in real segregated composites if we rein-
terpret the percolation threshold values reported in the
literature as our crossover concentration φ1c.

As we shall see in the next section, the interpretation
that the segregation basically leads to a shortening of
the tunneling distances can be established on a firmer
ground by employing the critical path approximation to
the tunneling network. This analysis will also provides
us with useful explicit formulas for the overall composite
conductivity.

IV. CRITICAL PATH APPROXIMATION

We show in this section that, as for homogeneous dis-
persions of spherical, rod-like, and plate-like impenetra-

ble particles,15,16 the critical path approximation (CPA)
can also reproduce to a high accuracy the conductivity
behavior for the inhomogeneous dispersions considered
here. According to the CPA,24 the composite conductiv-
ity σ can be expressed approximately as

σ = σ0 exp

(

−
2

ξ
δc

)

, (3)

where δc ≡ δc(φ1, φ2, D2/D1) is the largest among the
δij distances such that the sub-network defined by all
distances δij < δc forms a conducting cluster span-
ning (or percolating) the entire sample. The critical
distance δc defines the single bond critical conductance
gc = exp(−2δc/ξ) which, once assigned to all the con-
ductances gij of the network, leads to Eq. (3), where the
prefactor σ0 is the only remaining fitting parameter.

Equation (3) reduces the conductivity problem to a
simpler, geometrical one, which amounts to find the ge-
ometrical critical distance δc so that percolation is es-
tablished. In practice, δc can be obtained by coating
each conducting sphere by a concentric penetrable shell
of thickness δ/2 and by considering two spheres as con-
nected if their shells overlap. The critical distance δc is
then the minimum value of δ such that (for given val-
ues of φ1, φ2, and D2/D1) a cluster of connected spheres
spans the sample. Hence, in contrast to the usual core-
shell model approach to transport,4–7,11–13 here the shell
thickness is not fixed a priori but it depends on the par-
ticle concentration.

Our numerical procedure to find δc goes as follows. For
fixed volume fraction φ1 of the conducting spheres, as
well as for given φ2 and D2/D1 values, we first generate
the system as explained in Sec. II. For each realization i
of the system (i = 1, . . . , Nr) we chose an initial value δi

comprised within the interval ∆δ = δmax − δmin, where
δmin = 0 and δmax is large enough so that a percolating
cluster is surely established. Clustering is performed on
the adjacency list which represents the vicinity network.
Namely, we scan iteratively the list by checking if a given
node already belongs to previously classified clusters. If
this condition is not fulfilled, we form a new cluster by
identifying which nodes are directly and indirectly con-
nected to the selected node. This is done by labeling the
first and, recursively, the next levels in the vicinity hier-
archy. Finally, a percolating cluster is the one in which at
least two of its nodes lie at the opposite faces of the sam-
ple cube. The critical distance δi

c for the i-th realization
is then found by bisecting the interval ∆δ until conver-
gence is reached within a relative error of 10−3. Finally,
an histogram representing the distribution P (δc) of the
critical distance is obtained by repeating the procedure
for all the Nr realizations of the system.

Examples of the thus obtained P (δc) are shown in
Fig. 4 for the same cases of Fig. 2 (i.e., φ1 = 0.1,
D2/D1 = 8, and φ2 = 0, 0.4, and 0.6). They approx-
imately follow normal distributions (solid lines) centered
at critical distances which steadily decrease as one moves
from the homogeneous case (φ2 = 0) to the increasingly
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FIG. 5: (Color online) Critical distance δc dependence on the
volume fraction φ1 of the conducting D1 spheres for several
values φ2 of the volume fraction of the insulating D2 spheres
for (a) D2/D1 = 4, (b) D2/D1 = 8, and (c) D2/D1 = 12.
Insets: the same data plotted according to the scaling relation
of Eq. (4).

segregated regimes (φ2 = 0.4 and 0.6), thus confirming
our previous conjecture that segregation implies a short-
ening of the tunneling lengths.

This trend is clearly seen in Fig. 5, where we plot the
overall behavior of δc as a function of φ1 and for differ-
ent values of φ2 and D2/D1. At very low filler volume
fractions, all δc curves for φ2 6= 0 tend asymptotically to
the critical distance of the homogeneous case (open cir-

cles) which in this limit behaves as δc ∝ φ
−1/3
1 , indicating

that segregation is irrelevant for φ1 → 0. As φ1 increases,
segregation acts by lowering the critical distance which,
for large φ2 and D2/D1 values, can be even one order of
magnitude smaller than that of the homogeneous case.

The reduction of δc can be explained by using the ar-
gument that the available volume for placing the con-
ducting spheres is reduced by segregation. Indeed, as
Fig. 1(b) suggests, such a reduction has the net effect of
increasing the local density of the D1 particles, and so of
reducing the critical distance for percolation. This argu-
ment neglects conductor-insulator interface effects and
assumes that narrow bottlenecks are irrelevant for the
establishment of the critical paths, which are conditions
both fulfilled in the D2/D1 ≫ 1 case.31

By following this line of reasoning, we argue that the
only relevant variable for describing segregation is the
available volume fraction υ∗, and that consequently the
critical distance can be expressed as δc(φ1, υ

∗). Further-
more, by requiring that the relevant φ1 dependence of
the D1 particles is through the effective volume fraction
φ1/υ∗, we express the critical distance as δc(φ1, υ

∗) =
af(φ1/υ∗), where f(x) is a general function and a is a
proportionality constant. The value of a can be deter-
mined by requiring that the critical distance for φ1 → 0
coincides with that of the homogeneous case, which leads
us to the following scaling relation

δc(φ1, υ
∗) = υ∗−1/3 f(φ1/υ∗). (4)

As shown in the insets of Fig. 5, where υ∗1/3δc is plotted
as a function of φ1/υ∗, the data for different φ2 values
basically collapse into a single curve already for D2/D1 ≥
8. However, for D2/D1 = 4 the scaling relation (4) is not
very effective but, as shown in the Appendix, the scaling
argument can be generalized in order to provide a better
data collapse also for D2/D1 < 8.

From the scaling relation (4) it follows that for υ∗ = 1
the function f(φ1) coincides with the critical distance in
the homogeneous limit δc(φ1, 1), thereby leading to

δc(φ1, υ
∗) = υ∗−1/3 δc(φ1/υ∗, 1), (5)

which merely states that the critical distance in the segre-
gated regime can be directly obtained from that of the ho-
mogeneous case. In order to illustrate the consequences
of Eq. (5) for the conductivity σ of segregated compos-
ites, let us first verify that the CPA of Eq. (3) actually
provides a valuable approximation of σ. In Fig. 6 we re-
plot the conductivity data of Fig. 3 as a function of the
critical distance results of Fig. 5. Irrespectively of φ2 and
of D2/D1, we find that σ nicely follows the linear relation

ln(σ) = ln(σ0) −
2

ξ
δc, (6)

with slope 2/ξ, and that therefore the CPA is in excellent
agreement with the full numerical solution of the tunnel-
ing resistor network. Thus, from Eqs. (3) and (5), this
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of Fig. 5. (a) D2/D1 = 4; (b) D2/D1 = 8. The insets shows the ln(σ) versus δc/D1 dependence in a larger scale.

means that for D2/D1 ≫ 1 (see the Appendix for the
D2/D1 ∼ 1 case) we can express σ in terms of the crit-
ical distance δc(φ1, 1) of the homogeneous limit, leaving
only the prefactor σ0 to be determined. By using some
approximate formula for δc(φ1, 1), like for example those
reported in Refs. 15,16,35, the full φ1 dependence of σ for
given υ∗ can be then expressed in analytical terms with
high accuracy. This is illustrated in Fig. 3(b), where the
solid lines have been obtained from

σ = σ0 exp

[

−
2

ξ

δc(φ1/υ∗, 1)

υ∗1/3

]

, (7)

with υ∗ from Eq. (1), D2/D1 = 8, and δc(x, 1) as given
in Ref. 15.36 As shown in the next section, the possi-
bility of expressing the composite conductivity in terms
of an analytic formula is a valuable tool to describe the
filler dependences of real segregated composites and to
interpreted the experimental data.

V. APPLICATION TO EXPERIMENTS

We show here that the result of the previous section
can be used to analyze experimental σ vs φ1 data in order
to extract estimates of the tunneling length ξ value and
of the degree of segregation in the composite. This is so
because, if the experimental values of ln(σ) are plotted
as a function of δc instead of φ1, and if our GTN picture
applies, then they are expected to follow Eq. (6) whose
slope −2/ξ directly gives the value of the tunneling factor
ξ independently of the specific σ0 value. Furthermore,
the available volume fraction υ∗ appearing in Eq. (5) does
not depend, in principle, on the particular model chosen
to represent segregation,37 and so it may used as a fitting
parameter which best reproduce the experimental data.
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FIG. 7: (Color online) (a) Experimental conductivity σ data
of two series of RuO2-cermets as a function of the volume
fraction φ1 of the RuO2 particles (from Ref. 32). The same
σ values are plotted as a function of the critical distance δc

for (a) D1 ∼ 100 nm and (c) D1 ∼ 40 nm by assuming two
different values of the available volume fraction υ∗. The solid
lines are fits to Eq. (6).

In order to illustrate how the theory applies to real
composites, we consider here the conductivity data of
RuO2-cermet samples which were already reported in
Ref. 32. In particular we consider two series of samples
constituted by RuO2 conducting particles of mean sizes
D1 ≈ 40 nm and D1 ≈ 100 nm, dispersed in a borosili-
cate glass. The glassy grains prior to thermal processing
(firing) had average size of about 3µm, so that for both
series of composites D2/D1 ≫ 1. The two series of sam-
ples were fired by following identical thermal cycles so
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FIG. 8: (Color online) Values of the tunneling decay distance
ξ as a function of the available volume fraction υ∗ extracted as
explained in the text. The two horizontal dashed lines at 4.6
nm and 2.1 nm represent the maximum and minimum values
of ξ which are compatible with both series of composites.

that, in principle, they differ only in the mean size D1 of
the conducting RuO2 particles. It should be noted how-
ever that although the finer RuO2 powders were given by
nearly spherical and monodispersed particles, the coarser
powders had more dispersed grain sizes with less regular
shape.

In Fig. 7(a) we plot the measured conductivity as a
function of RuO2 volume fraction φ1 for both series of
composites. In Ref. 32 we interpreted these same data in
the framework of percolation theory and fitted them with
the power-law relation (φ1−φ1c)

t. The resulting low per-
colation threshold values, φ1c ≃ 0.07 − 0.05, were found
to be consistent with the segregated distribution of the
RuO2 conducting phase observed in the microstructure,
while the large transport exponent values, t ≃ 3−4, were
concluded to arise from the nonuniversality of the critical
behavior as predicted by the tunneling-percolation model
of Ref. 33 (see also later developments of this theory in
Refs. 31,34). Here, we offer an alternative interpretation
of these data based on the GTN theory which, as ex-
plained in this paper and in Refs. 15–17, is more justified
on physical grounds than our previous percolation-based
one of Ref 32.

Let us start by re-plotting the conductivity data of
Fig. 7(a) in terms of the critical distance δc(φ1, υ

∗) by us-
ing the scaling relation of Eq. (5). For the functional form
of δc(φ1/υ∗, 1) we use the fitting formula published in
Ref. 15,36 and we treat υ∗ as an adjustable parameter.38

The resulting ln(σ) vs δc plots for two different values of
υ∗ are shown in Fig. 7(b) and Fig. 7(c) for the D1 ≈ 100
nm and D1 ≈ 40 nm samples, respectively. In both cases
the data follow a better linear dependence for υ∗ = 0.3

(strong segregation) than for υ∗ = 1 (homogeneity), and
from the corresponding fits to Eq. (6) (solid lines) we
obtain that lower values of υ∗ imply also lower values
of ξ (i.e., the slopes are larger). This is most clearly
seen in Fig. 8 where we report the υ∗ dependence of the
so-obtained ξ values for both series of samples. Start-
ing from the homogeneous limit at υ∗ = 1 the tunneling
length ξ of the D1 ≈ 100 nm series decreases by a fac-
tor of five when the available volume fraction is lowered
down to the minimum value υ∗ = 0.2 for which a linear
fit of ln(σ) vs δc was possible, while the D1 ≈ 40 nm
case displays a weaker decrease in the same range of υ∗

due to the smaller RuO2 grain size. By realizing that
the tunneling decay length should be independent of the
size D1 of the conducting particles, while the specific υ∗

value could be different for the two series of composites,
then ξ must be comprised between the two horizontal
dashed lines at 4.6 nm and 2.1 nm in Fig. 8. However,
since the microstructure of both series of composites dis-
plays a marked segregated dispersion,32 then υ∗ should
be sensibly smaller than the unity, suggesting that the
lower limit ξ ≃ 2 nm is a more reliable estimate for ξ.
This value is fully comparable to those extracted from
other conductor-insulator composites,15,16 and, specifi-
cally, agrees well with the results of microscopical inves-
tigations of thick-film cermet resistors.39

VI. CONCLUSIONS

In this paper we have generalized the GTN model,
where each conducting particle is connected to all oth-
ers through tunneling processes, to describe composites
whose microstructure is given by a segregated dispersion
of the conducting phase. This particular class of non-
homogeneous composites is characterized by large con-
ductivity even for volume fraction values φ1 of the con-
ducting phase as low as a few percents. According to the
percolation theory, this behavior is explained by the re-
duced values of the percolation threshold induced by the
segregated dispersion of the conducting particles. Here,
we have shown that the φ1 dependence of the conduc-
tivity in nonhomogeneous segregated composites can be
understood without imposing any fixed cut-off in the mi-
croscopic electrical connectivity (as it is done in percola-
tion theory) and that the GTN formulation provides thus
a natural and physically justified approach to the study
of transport in disordered composites.

Besides the full numerical solutions of the tunneling
resistor network, we have also shown that the critical
path approximation is valid for a wide range of φ1, and
that it permits to formulate a scaling relation connecting
the critical tunneling distance δc for a segregated sys-
tems with that of a homogeneous composite. Finally,
we have illustrated the practical importance of this scal-
ing by applying it to experimental conductivity data of
RuO2-cermet segregated composites, which has permit-
ted us to extract a realistic tunneling decay length ξ and
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FIG. 9: (Color online) Dependence of the correction parame-
ter (a) α and (b) β on the volume fraction φ2 of the insulating
spheres and on D2/D1. Inset: the δc data for D2/D1 = 4 of
Fig. 5(b) rescaled according to Eq. (A2) for the corresponding
values of α and β.

to estimate the degree of segregation in these materials.
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Appendix A: improved scaling formula

Here we briefly address the problem of generalizing the
scaling relation of Eq. (5) in order to extend its validity
beyond the D2/D1 ≫ 1 regime. To this end, let us first
remind that υ∗ defined in Eq. (1) gives the volume frac-
tion available for placing the centers of the conducting
particles with diameter D1. However, in order to de-
fine the critical distance δc, the conducting spheres are
treated as core-shell particles, where the hard-core of di-
ameter D1 is coated by a concentric penetrable shell of
thickness δc/2. Since this penetrable shell may actually
overlap the insulating spheres then, to what concerns the
connectivity, these latter may be treated as having effec-
tively a smaller diameter αD2 ≤ D2, where 0 ≤ α ≤ 1 is
a correction factor which captures such effective reduc-
tion. In this way the corrected available volume fraction
reads:

υ∗
α = (1 − φ2)

(α+D1/D2)3 . (A1)

For α ≤ 1 the net effect of the overlapping between shells
and insulating spheres is then an effective increase of the
available volume. This increase is expected to be unim-
portant when D2/D1 ≫ 1, so that α ≃ 1 in this regime,
while when the two diameters D1 and D2 are comparable
the α correction has to be considered. By using Eq. (A1),

we generalize thus the scaling relation (4) as follows:

δc(φ1, υ
∗
α) = υ∗−β

α f(φ1/υ∗
α), (A2)

where in addition to the corrected available volume υ∗
α

we have introduced the new exponent β to improve the
scaling in the large φ1 region.

In Fig. 9 we plot (a) α and (b) β obtained from the
minimization of ||δc(φ1/υ∗

α, 1) − υ∗−β
α δc|| as functions of

the volume fraction φ2 of the insulating spheres and for
D2/D1 = 4, 8, and 12. For D2/D1 = 8 and 12 the co-
efficients α and β are close to respectively α = 1 and
β = 1/3 for all values of φ2 considered, so that, as ex-
pected, Eq. (5) with υ∗ as given in Eq. (1) provides a
rather good scaling of the δc data. On the contrary, for
D2/D1 = 4 the coefficient α displays a stronger φ2 de-
pendence and is sensibly smaller than α = 1 for large φ2

values, while β is larger than 1/3. In particular, α < 1
indicates that for this case the increase of the effective
available volume υ∗

α is an important effect for the correct
scaling of δc which, as shown in the inset of Fig. 9(a), is
now almost perfect.

Finally, note that the value β ≃ 1/3 is expected to be
observed when it is possible to identify large (compared
to D1) and compact regions of available space occupied
by the conducting particles. The increase of β as φ2

is enhanced for large D2/D1 values in Fig. 9(b) can be
intuitively interpreted as arising from the growing impor-
tance of the narrow quasi one-dimensional necks in the
structure of the available space.19 If we regard β as given
by 1/D∗, where D∗ is an effective dimensionality of the
system, then the increase of β reflects the decrease of D∗

from D∗ ≃ 3 to D∗ ≃ 1. The deviation from β = 1/3
for D2/D1 = 4 can instead be interpreted as due to the
enhanced tortuosity of the available space which seems
to act as a similar dimensionality lowering, leading to
D∗ ∼ 2.



10

∗ Electronic address: biagio.nigro@epfl.ch
† Electronic address: claudio.grimaldi@epfl.ch
1 C. -W. Nan, Y. Shen, and J. Ma, Annu. Rev. Mater. Res.

40, 131 (2010).
2 T. Schilling, S. Jungblut, and M. A. Miller, Networks of

Nanorods, in Handbook of Nanophysics: Nanotubes and

Nanowires, Ed. K. D. Sattler (Taylor & Francis, New York,
2010).

3 T. Tamai, IEEE T. Compon. Hybr. 5, 56 (1982); R.
Strümpler and J. Glatz-Reichenbach, J. Electroceram. 3,
329 (1999); D. D. L. Chung, J. Mater. Sci. 39, 2645 (2004);
R. N. Torah, S. P. Beeby, M. J. Tudor, and N. M. White,
J. Electroceram. 19 95 (2007);

4 J. F. Wang and A. A. Ogale, Compos. Sci. Technol. 46, 93
(1993).

5 X. Jing, W. Zhao, and L. Lan, J. Mater. Sci. Lett. 19, 377
(2000).

6 D. He and N. N. Ekere, J. Phys. D: Appl. Phys. 37, 1848
(2004).

7 L. Berhan and A. M. Sastry, Phys. Rev. E 75, 041120
(2007).

8 D. Stauffer and A. Aharony, Introduction to Percolation

Theory (Taylor & Francis, London, 1994).
9 M. Sahimi, Heterogeneous Materials I. Linear Transport

and Optical Properties (Springer, New York, 2003).
10 I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner,

Phys. Rev. B 30, 3933 (1984); I. Balberg and N. Binen-
baum, Phys. Rev. A 35, 5174 (1987).

11 T. Schilling, S. Jungblut, and M. A. Miller, Phys. Rev.
Lett. 98, 108303 (2007).

12 A. V. Kyrylyuk and P. van der Schoot, Proc. Natl. Acad.
Sci. USA 105, 8221 (2008).

13 R. H. J. Otten and P. van der Schoot, Phys. Rev. Lett.
103, 225704 (2009).

14 I. Balberg, J. Phys. D: Appl. Phys. 42, 064003 (2009).
15 G. Ambrosetti, N. Johner, C. Grimaldi, T. Maeder, P.

Ryser, and A. Danani, J. Appl. Phys 106 , 016103 (2009).
16 G. Ambrosetti, C. Grimaldi, I. Balberg, T. Maeder, A.

Danani, and P. Ryser, Phys. Rev. B 81 , 155434 (2010).
17 G. Ambrosetti, I. Balberg, and C. Grimaldi, Phys. Rev. B

82, 134201 (2010).
18 R. P. Kusy, J. Appl. Phys. 48, 5301 (1977).
19 N. Johner, C. Grimaldi, T. Maeder, and P. Ryser, Phys.

Rev. E 79, 020104(R) (2009).
20 G. E. Pike and C. H. Seager, J. Appl. Phys. 48, 5152

(1977); P. F. Carcia, A. Ferretti, and A. Suna, J. Appl.
Phys. 53, 5282 (1982); A. Kusy, Physica B 240, 226
(1997); A. Alessandrini, G. Valdrè, B. Morten, and M.
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