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The problem of wave-length kf and velocity V selection for a solid front invading an unstable
homogeneous phase is considered. A marginal stability analysis is used to predict kf and V for the
parabolic and hyperbolic (or modified) phase-field crystal models in one-dimension. It is shown that
the marginally selected wave-number of the periodic crystal monotonically increases with increasing
undercooling and relaxation times. At high undercooling and relaxation times it is found that the
system can select a kf that is unstable to an Eckhaus instability in the bulk phase. This may imply
a transition to highly defected or glassy states in higher dimensions.

PACS numbers: PACS numbers: 05.70.Fh; 05.70.Ln; 64.60.My

I. INTRODUCTION

Determining the selection of patterns that emerge un-
der non-equilibrium conditions is a difficult problem of
both technological and fundamental interest. Gener-
ally speaking the selection occurs through the growth
of fluctuations from an unstable state or through nu-
cleation from a metastable state and can often occur
as a phase front moves through an excitable or unsta-
ble media. Important and widely examined examples
include the Mullins-Sekerka1 and Asaro-Tiller-Grinfeld2

instabilities, side-branching in dendrite growth and vis-
cous fingering, convective instabilities, various types of
unstable non-gradient systems, traveling waves, chemi-
cal reactions, and front propagation into unstable states
(see overviews in Refs.3,4 and references therein). Of par-
ticular interest in this work is the determination of the
front velocity and wavelength that emerge as a phase-
front sweeps through an unstable media5.

More specifically the patterns that emerge behind a
front described by the phase field crystal (PFC) model6

will be examined. The PFC model has been proposed to
incorporate the physics naturally embedded on atomic
length scales (elasticity, dislocation, etc.) and on dif-
fusive time scales. The PFC-model is based on the free
energy functional of the Swift-Hohenberg (SH) form used
to describe pattern formation7 in Rayleigh-Bénard con-
vection. The PFC model describes a field that is related
to the local atomic number density, such that it is spa-
tially periodic in the solid and constant in the liquid. It
can be related to other continuum fields theories such
as classical density-functional theory8,9 and the atomic
density function theory10. The PFC-model may also be
considered as a conserved version of the Swift-Hohenberg
equation and provides an efficient method for simulat-
ing liquid-solid transitions11,12, colloidal solidification13,
dislocation motion and plasticity14,15, glass formation16,
epitaxial growth6,17, grain boundary premelting18, sur-
face reconstructions19, and grain boundary energies20.

The purpose of this paper is to formulate a method for
qualitative and quantitative evaluation of the periodic
pattern that emerges as a propagating phase-front of a
periodic pattern invades an unstable homogeneous super-
cooled liquid phase. For such purposes the marginal sta-
bility analysis of Dee and Langer5 will be exploited. This
analysis is essentially a linear stability analysis around
the unstable state in the coordinate frame of the mov-
ing front. In this analysis the periodicity and velocity
at the propagative front is selected by the mode that is
marginally stable and can be used to formulate analyt-
ical conditions for dynamic selection rules. Such analy-
sis has been applied to the dynamics described by the
Kolmogorov-Fisher and Swift-Hohenberg equations21–23.
In the present paper this is applied to the PFC model
in one dimension for the case in which a stable periodic
(“solid”) state invades an unstable uniform state.

As originally formulated in a parabolic form, the PFC
model allows simulations on diffusive time scales which
can be many orders of magnitude larger than molecular
dynamics simulations6,14. More recently a hyperbolic24

or modified25 PFC model was introduced that includes
faster degrees of freedom in a form of inertia and as such
leads to the description of both fast and slow dynam-
ics. Fast front dynamics proceeds when the driving force
for the phase transition is large. This occurs when the
free energy difference between the (meta)stable periodic
solid and initially unstable phase is very large which in
general occurs when a system is quenched far below a
transition point, or in this case far below the equilibrium
temperature of phase transition26. These conditions lead
to a fast phase transition when the velocity of the front
is comparable to the speed of atomic diffusion or the
speed of local structural relaxation. The movement of a
phase transition front at such fast velocities can lead to
bulk phases that are not in a local structural or chemical
equilibrium. As shown27, and recently verified in atom-
istic simulations28, the trapping of atoms during rapid
movement of the phase interface can not be described by
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purely parabolic models. For this reason both parabolic
and hyperbolic models of phase-field crystals are exam-
ined.

The paper is organized as follows. A description of the
marginal stability analysis is given in Section II. This
analysis is then applied to the periodic patterns described
by the parabolic and hyperbolic PFC-equations in Sec-
tions III and IV, respectively. In Section V, a summary
of the necessary equations for the qualitative and quan-
titative predictions of the marginally selected lattice pa-
rameter are given. Interpretations of the selected lattice
parameter at the phase-front are then presented in Sec-
tion VI for parabolic and hyperbolic PFC-equations. Fi-
nally, Section VII presents a summary of the conclusions.

II. MARGINAL STABILITY ANALYSIS

Consider a front, described by some field φ, invading
an unstable homogeneous state in the asymptotic time
limit. Just ahead of the front φ can be expanded around
its value in the unstable homogenous state since large
deviations from this value only occur behind the front.
The marginal stability analysis examines solutions of the
linearized equations just ahead of the front in a coordi-
nate frame that is moving with the front, which are of the
form δφ ∼ eω(k)t, where ω(k) is the dispersion relation
and k is the wave-number. A saddle point approxima-
tion29 is used to define the complex wave-number k∗ at
the propagating front, i.e.,

∂ω

∂k

∣

∣

∣

k∗
= 0. (1)

Together with the dispersion relation ω(k), Eq. (1) de-
fines the most unstable mode at the front. Assuming
the front is stationary in the moving coordinate frame, it
must neither grow or decay exponentially at k = k∗, i.e,

Re[ω(k)|k∗ ] = 0. (2)

The front is oscillating at angular frequency and moving
with the linear velocity V . Consequently, the final wave-
number kf at the front must be selected as

kf =
Im[ω(k∗)]

V
. (3)

Eqs. (1)-(3) were proposed by Dee and Langer5 and
have been applied to the analysis of state selection when
fronts propagate into unstable states22. A wide class of
pattern propagation equations was investigated using the
marginal stability conditions identical to Eqs. (1)-(3) in
nonlinear dissipative systems21 as well as in the asymp-
totic time regime of phase-front dynamics23.

Marginal stability analysis essentially reduces to as-
suming that the equation of motion can be linearized in
a moving coordinate frame just ahead of the front, where
perturbations in the appropriate field (i.e., the atomic
number density) are small. As the front moves by these

perturbations increase and non-linear corrections to the
marginal stability predictions may be important. Never-
theless such analysis provides insight into the selection of
states and will be examined for the parabolic and hyper-
bolic PFC-type linearized systems.

III. PARABOLIC SYSTEM

A. Governing equations and dispersion relation

The parabolic PFC model can be written as6

∂φ

∂t
= ∇2

{[

−ǫ +
(

1 + ∇2
)2

]

φ + φ3
}

(4)

in dimensionless units, where the spatial coordinates are
measured in units proportional to the lattice constant
and the parameter ǫ is proportional to the undercooling,
i.e., ǫ ∼ Te − T , where Te is the equilibrium temperature
for phase transition. This equation can also be written
in the form of a continuity equation for a conserved field,
i.e.,

∂φ

∂t
+ ~∇ · ~J = 0, (5)

where ~J is the flux given by the steady state equation
~J = −∇(δF/δφ), and F is a dimensionless free energy
given by

F(φ, ~∇φ) =

∫

d~r

[

φ
(

−ǫ +
(

1 + ∇2
)2

) φ

2
+

φ4

4

]

. (6)

In one-dimension, Eq. (6) is minimized by a periodic pat-
tern with wave-vector kb ≈ 1 − ǫ2/1024 as predicted in
Ref.30 in the small ǫ limit. Eq. (4) is identical to Swift-
Hohenberg equation7 except for the outer Laplacian that
ensures the field φ is a conserved variable.

To obtain the selected lattice parameter of the periodic
pattern at the front, we first expand the order parame-
ter φ around the unstable homogeneous state φ0 = 0,
i.e.,

δφ = φ − φ0 with |δφ|/A ≪ 1 (7)

at the front of periodic pattern invading the unstable
phase with the velocity V and the undercooling ǫ > 0,
where A is the amplitude of the fluctuations in the bulk
periodic phase. This situation is schematically shown
in Fig. 1 in which λ represents the characteristic wave-
length (or lattice parameter of the crystalline solid) of
the periodic pattern. In general the marginally selected
wave-number kf at the front will be different from the
wave-number kb formed in the bulk crystalline solid, as
the selection criteria are different. It is also possible that
the selected wave-number kf at the front becomes unsta-
ble (or highly metastable) in the bulk phase and will relax
to the equilibrium value through an Eckhaus instability.
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FIG. 1: Crystalline phase invading an unstable phase. Prop-
agating oscillatory pattern with the front velocity V repro-
duces the periodic structure of solid - crystal lattice (left) by
the front invading the unstable phase (right).

Linearizing Eq. (4) in coordinate frame moving at ve-
locity V gives

∂δφ

∂t
− V

∂δφ

∂x
= α(∇2)δφ, (8)

where

α(∇2) = ∇2
[

−ǫ +
(

1 + ∇2
)2

]

. (9)

Assuming a one-dimensional solution of Eq. (8) in the
form

δφ = A exp(ωt + ikx) + C.C., (10)

gives

ω(k) = ikV + α(k), (11)

where C.C. is the complex conjugate. Using the disper-
sion relation (11), Eq. (9) transforms into

α(k) = k2
[

ǫ −
(

1 − k2
)2

]

. (12)

B. Marginal stability of the phase-front

The most unstable mode, with critical wave number
k∗, is defined by the saddle-point condition (1) which,
applied to Eq. (11) gives

iV +
dα(k)

dk

∣

∣

∣

k∗
= 0. (13)

If the front is to be stationary in the reference coordi-
nate frame moving with the constant velocity V , then
the marginal stability condition (2) applied to Eq. (11),
gives

Re[ik∗V + α(k∗)] = 0. (14)

Eq. (14) defines the condition at which the perturbation
δφ neither grows or decays at wave-number k∗ near the
front. Since Eq. (13) is complex it represents two equa-
tions and combined with Eq. (14) allows for solution of
the velocity V , and and the wave-number k∗ which is
complex:

k∗ = k∗

re + ik∗

im (15)

with k∗
re and k∗

im are the real and imaginary parts, re-
spectively.

Selection of the wave-number kf at the front oscillating
at angular frequency Im[ω(k∗)] is defined by Eq. (3).
Therefore, using the dispersion relation (11), one obtains

kf = V −1Im[ik∗V + α(k∗)]. (16)

Solution of Eqs. (13)-(16) are not possible analytically so
a numerical solution is required31.

IV. HYPERBOLIC SYSTEM

A. The governing equation

To take large deviations from thermodynamic equilib-
rium into account a model for fast phase transitions32

has been proposed by modifying the phase-field crystal
model24. By incorporating fast degrees of freedom it is
possible to make predictions at large undercoolings and

for the earliest stages of evolution. Choosing the flux ~J
as the fast variable, the non-equilibrium part of the free
energy becomes

Fne( ~J) =
τ

2

∫

~J · ~J d~r, (17)

where τ is the dimensionless time for relaxation of the
flux ~J to the steady state. The relaxation time τ is as-
sumed to be positive, because pure non-equilibrium con-
tribution should lead to an increase of the free energy in
comparison with (6). In general, non-equilibrium contri-
bution (17) have a meaning of the kinetic energy as it
has been shown in example of phase separation by mech-
anism of spinodal decomposition33.

The condition that the total free energy must decrease
in time, dF/dt+dFne/dt < 0, for Eqs. (6) and (17), leads
to the following evolution equation

τ
∂ ~J

∂t
+ ~J = −~∇

(

δF
δφ

)

. (18)

Substituting Eq. (18) into the balance law (5) gives the
hyperbolic (modified) PFC-equation:

τ
∂2φ

∂t2
+

∂φ

∂t
= ∇2

{[

−ǫ +
(

1 + ∇2
)2

]

φ + φ3
}

. (19)

Eq. (19) shows that, in addition to dissipation described
by the parabolic PFC-equation (4), inertia ∝ ∂2φ/∂t2 is
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also taken into account due to kinetic contribution (17).
Alternatively Eq. (19) was proposed by Stefanovic et
al.25 to incorporate both fast elastic relaxation and slower
mass diffusion.

Linearizing Eq. (19) in δφ gives

τ
∂2δφ

∂t2
+

∂δφ

∂t
= α(∇2)δφ, (20)

where the operator α(∇2) is defined by Eq. (9). Before
conducting a marginal stability analysis of this equation
near the front, some basic features of this equation will
be discussed in the next section.

B. Dispersion relation and particular solution

Substituting Eq. (10) into Eq. (20) gives

τω2 + ω − α(k) = 0, (21)

or

ω± =
1

2τ

[

±
√

1 + 4τα(k) − 1
]

, (22)

where α(k) is the same as given by Eq. (12). As expected
when τ → 0 this equation reduces to the parabolic solu-
tion ω± ≡ ω = α(k), at V = 0, consistent with Eq. (11).

The solution of interest is ω+ since it describes the
fastest growing modes and is maximized when dω+/dk =
0, or in this instance when dα/dk = 0. Solving dα/dk = 0
gives

km = 0, and km =

√
3

3

√

2 +
√

4 + 3(ǫ − 1), (23)

with the condition α 6= −1/(4τ). Note that the val-
ues of ω+(km) and km do not depend on the relaxation
time τ that characterizes local non-equilibrium phenom-
ena. This is quite logical because the final state of the
φ-field evolution should be in local thermodynamic equi-
librium.

The linear solution for the ω+ can be written,

δφ(x, t) = Ae
√

1+4τα(k) t/2τe−t/2τeikx + C.C. (24)

When 1 + 4τα(k) < 0 this solution describes under-
damped time oscillations that decay exponentially on
time scales of the order 2τ . This damped oscillatory
mode is a feature of fast phase transitions in the hyper-
bolic Swift-Hohenberg system24 and a spinodally decom-
posed system34, and does not occur in parabolic equa-
tions. Using Eq. (12), the range of k at which solu-
tion (24) becomes oscillatory (or ω+ becomes complex)
is given by the following inequality

k6 − 2k4 + (1 − ǫ)k2 − (4τ)−1 > 0. (25)

Obviously, the range of imaginary values of ω+

and δφ(x, t) exists at k > kuc, where kuc is the ultravio-
let cutoff. The latter gives a boundary for modes having

FIG. 2: Amplification rate ω+(k) for the hyperbolic PFC-
equation computed by Eq. (22) with ǫ = 0.25 and τ = 0.85.
(a) Real part of amplification rate, Re[ω+]. Here: values
for kc are given by solution for α+(k) = 0, one of maxima
at km ≈ 1.05 is given by Eq. (23), and region k > kuc is
given by inequality (25). (b) Imaginary part of amplification
rate, Im[ω+], existing at k > kuc.

oscillations, i.e., a boundary between real and complex
values for the amplification rate.

Fig. 2 shows the behavior for ω+(k) for sample val-
ues of the undercooling ǫ and relaxation time τ . The
real part Re[ω+] shown in Fig. 2(a) is positive in the
range kc1 < k < kc2 that leads to instability and
growth of fluctuations in the φ-field. The negative real
part Re[ω+] < 0 in the ranges 0 < k < kc1 and k > kc2

presents stable mode for φ. Re[ω+] becomes a nega-
tive constant behind the ultraviolet cutoff, i.e., at k >
kuc. The latter range characterizes the increase in the
imaginary part Im[ω+] as the wave-number increases,
Fig. 2(b).

Further analysis of ω+ can be made with respect to pa-
rameters ǫ and τ . First, at a fixed and finite value of τ ,
this calculation shows that an increase in undercooling ǫ
leads to a wider range kc1 < k < kc2 for instability of φ.
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With ǫ > 1, one has kc1 = 0 and positive function ω+(k)
within the range 0 < k < kc2. Therefore, the φ-field be-
comes unstable in a whole range of 0 < k < kc2 at ǫ > 1.
On the other hand, with near zero undercooling, i.e., at
the thermodynamic equilibrium state with ǫ = 0, the
real part of amplification rate is negative, Re[ω+] < 0
excluding roots ω+ = 0 at k = 0 and k = 1. In this
case, the solution for φ becomes stable for ǫ = 0 at any k
with k 6= 0 and k 6= 1. Second, at a fixed and finite value
of ǫ, the decrease of relaxation time τ shifts the imagi-
nary part Im[ω+] to the region of larger wave-numbers.
In the local equilibrium limit, τ → 0, the imaginary
part Im[ω+] completely disappears. In this case: (i) the
oscillatory behavior for δφ does not exist according to
solution (24); (ii) the order parameter φ monotonically
evolves in time by the parabolic PFC-equation (4) char-
acterizing the local equilibrium dynamics.

C. Propagative speeds

The parabolic PFC-equation (4) describes relaxation
of the “slow” thermodynamic variable φ and predicts
low-frequency regimes with long-wave interaction in the
periodic pattern. The hyperbolic PFC-equation (19) de-
scribes relaxation of the slow thermodynamic variable φ

as well as of the fast variable ~J (in a sense of the model
of fast transformations32 consistent with a general ther-
modynamics of transport processes35). Eq. (19) extends
the analysis to describe both high-frequency mode and
low-frequency mode, i.e., it predicts short-wave and long-
wave interaction, respectively. Propagation of the inter-
action in the evolving periodic pattern can be charac-
terized by the phase speed and group speed. Therefore,
we consider these speeds to characterize the high- and
low-frequency modes assumed by the hyperbolic PFC-
equation.

The phase speed characterizes propagation of a sin-
gle monochromatic harmonic and is obtained as Vp(k) =
ω+(k)/k. Using Eqs. (12) and (22), it is given by

Vp(k) =

√

1 + 4τα(k) − 1

2τk
. (26)

Additionally, propagating disturbances of the order pa-
rameter φ can be characterized by an undistorted wave
packet with the group speed dω+(k)/dk = ±W (k), where
the upper and lower signs correspond to the propagation
of wave packets in the positive and negative x-directions,
respectively. Using Eq. (22), the group speed which is
moving only in positive direction of origin, is given by

W (k) =
dα/dk

√

1 + 4τα(k)
=

2k{ǫ + (1 − k2)(3k2 − 1)}
√

1 + 4τα(k)
.

(27)
Both speeds (26) and (27) become complex with the

inequality α(k) < −1/(4τ), which holds in the region
k > kuc, i.e., behind the ultraviolet cutoff given by the

FIG. 3: Phase and group speeds for hyperbolic PFC-equation
computed by Eqs. (26) and (27), respectively, with ǫ = 0.5
and τ = 2.0. (a) Real part Re[Vp(k)] of phase speed (solid
line) and real part Re[W (k)] of group speed (dashed line). (b)
Imaginary part Im[Vp(k)] phase speed (solid line) and imag-
inary part Im[W (k)] of group speed (dashed line), existing
at k > kuc.

wave-number k = kuc (25). Also, the group speed (27)
diverges at α(k) = −1/(4τ) and k = kuc. These features
are shown in Fig. 3, where the real and imaginary parts
of the phase and group speeds are presented as a func-
tion of the wave-number k for fixed values of undercool-
ing ǫ = 0.5 and relaxation time τ = 2.0. The appearance
of imaginary components of Vp(k) and W (k) means that
the propagation of interaction by the dispersion law (22)
proceeds with changing amplitude for both single har-
monics and wave packet at high k-values consistent with
the high-frequency mode. This mode is also consistent
with the oscillatory solution (24) at the high-frequency,
α(k) < −1/(4τ) and k > kuc. Such a regime is absent
for the parabolic PFC-equation in which these speeds are
always real:

Vp(k)
∣

∣

τ→0
=

α(k)

k
, W (k)

∣

∣

τ→0
=

dα

dk
, (28)

as predicted by Eqs. (26) and (27) for the local equilib-
rium limit τ → 0. Thus, one can characterize the be-
havior of φ in the hyperbolic PFC-equation (19) as an
oscillatory relaxation in the high-frequency (short-wave)
regime and monotonic relaxation to equilibrium in the
low-frequency (long-wave) regime.
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V. SELECTION OF THE LATTICE

PARAMETER

The lattice parameter λ of the periodic pattern de-
scribed by the PFC-model can be obtained by the spe-
cific wave-number k as λ = 2π/k. Now the marginal
stability analysis from Section II will be used to pre-
dict lattice parameter selection in the hyperbolic sys-
tem. Consider Eq. (20) in the moving reference frame
with the origin at the front invading unstable phase.
Then, in Eq. (20), both transformations for time deriva-
tives being considered ∂(δφ)/∂t = ∂(δφ)/∂t−V ∂(δφ)/∂x
and ∂2(δφ)/∂t2 = ∂2(δφ)/∂t2 − 2V ∂2(δφ)/∂t∂x +
V 2∂2(δφ)/∂x2. In this case, the one-dimensional hyper-
bolic PFC-equation is given by

τ
∂2δφ

∂t2
− 2τV

∂2δφ

∂t∂x
+

∂δφ

∂t

=
∂2

∂x2

[

−(τV 2 + ǫ) +

(

1 +
∂2

∂x2

)2
]

δφ + V
∂δφ

∂x
.

(29)

Assuming a solution of the form given in Eq. (10), the
dispersion relation obtained from Eq. (29) is then

τω2 + (1 − 2iτV k)ω = τV 2k2 + iV k + α(k) (30)

with α(k) given by Eq. (12). Eq. (30) shows that, in
the high frequency limit (high ω and high V at large
ǫ), the term 2iτV k may have significance in comparison
with unity36. Solution of Eq. (30) gives the following
amplification rate

ω+ =
1

2τ

[

√

1 + 4τα(k) − 1
]

+ iV k. (31)

Two limits for equation (31) can be outlined: (i) the
equation transforms into amplification rate ω+ from
Eq. (22) in the fixed laboratory system of coordinates,
V = 0, and, (ii) the equation transforms into dispersion
relation (11) in the local equilibrium limit τ → 0.

The marginal stability criterion (2) together with the
amplification rate (31) gives the front velocity as

V =
1

k∗
im

Re

{

1

2τ

[

√

1 + 4τα(k∗) − 1
]

}

, (32)

where k∗ is the selected wave-number assumed to be com-
plex valued, Eq. (15). The critical wave-number given by
the saddle-point (1) is obtained by Eq. (31) as

dω+

dk

∣

∣

∣

k∗
= 0 = iV +

2k∗
[

ǫ − 1 + 4(k∗)2 − 3(k∗)4
]

√

1 + 4τα(k∗)
. (33)

Finally, the angular frequency selects the wave-number
at the front by Eq. (3). As in the case of parabolic PFC-
dynamics, the system of equations (32), (33), and (3)
should be solved numerically.

FIG. 4: Quantitative predictions of the PFC-model: (a) the
front velocity V and (b) the wave-number kf at the font of
periodic pattern (qualitative scheme for these parameters is
shown in Fig. 1). Marginal stability predictions are made
for parabolic system with τ = 0, and the hyperbolic model
with τ = 2 and τ = 5. Dashed region in (b) presents a region
of Eckhaus instability.

VI. DISCUSSION

In this section numerical results for the wave-number
and front velocity for the parabolic and hyperbolic equa-
tions are presented and discussed. Fig. 4 show solutions
for the front velocity V and the selected wave-number kf

as functions of the undercooling ǫ given by the parabolic
PFC-model (with τ = 0) and the hyperbolic PFC-model
(with the finite value of τ). As shown in Fig. 4(a), the
front velocity V predicted by the parabolic PFC-model
is always higher than that predicted by the hyperbolic
PFC-model for positive ǫ.

The parabolic PFC-model predicts lower values for the

selected wave-number k
(p)
f in comparison with the wave-

number k
(h)
f predicted by the hyperbolic PFC-model as
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is shown in Fig. 4(b) for finite ǫ. In this case, the lat-

tice parameter λ
(p)
f , marginally selected by the parabolic

PFC-model, should be greater than the lattice parame-

ter λ
(h)
f predicted by the hyperbolic PFC-model:

λ
(p)
f = 2π/k

(p)
f > λ

(h)
f = 2π/k

(h)
f . (34)

The tendency given by Eq. (34) might be tested in molec-
ular dynamic simulations or in experimental findings for
the freezed metastable phases undergoing a fast phase
transition. Thus, atomistic modeling or experimental
data on the front velocity and lattice parameter may
give independent tests to correctness in predictions of
parabolic and hyperbolic models, especially in a high-
velocity regime of phase transition.

At the smallest values of undercooling 0 ≤ ǫ < 0.05
both PFC-models predict the same values for V and kf

as is shown in Fig. 4. Therefore, the inertial as well
as local non-equilibrium phenomena are negligible in the
front dynamics of the phase-field crystals at small values
of undercooling.

In Fig. 4(b), regions of stable, metastable, and unsta-
ble periodic patterns are also plotted. These are obtained
using a linear analysis of stability around a periodic state
as developed in Refs.24,37. Indeed, it is straightforward to
show that the stability analysis of the present hyperbolic
PFC-model, described by Eq. (19), gives the same bound-
aries for stable-metastable-unstable regions in the “ǫ-k”
phase diagram as it is treated for periodic patterns in
the parabolic PFC-equation37 and the hyperbolic Swift-
Hohenberg equation24. As a result of such analysis, the
equilibrium38 value of k ≈ 1, is obviously always linearly
stable. As k deviates from this value (getting larger or
smaller) eventually an Eckhaus instability occurs (for de-
tails, see Ref.39). The shaded region in Fig. 4(b) corre-
sponds to a region where this instability occurs, for which
the lower bound is

ǫ(k) =
1 − 9k2 + 15k4 − 7k6

1 − 3k2
. (35)

The upper bound of the shaded region shown in Fig. 4(b)
is given by the curve 24,37

ǫ(k) = (1 − k2)2. (36)

This curve (36) gives the cut (demarcation line) between
the region of Eckhaus instability and the region of ab-
sence of real periodic solutions in a one-mode approxi-
mation.

As is clearly seen in Fig. 4(b), for parabolic dynam-
ics (with τ = 0) the marginally selected wave-number kf

completely lies in a region of metastability. In contrast
for large enough undercooling the wave-number selected
for hyperbolic dynamics can be in an unstable region,
i.e., above the Eckhaus bound. Defining ǫc as the critical
undercooling below which kf is metastable and beyond
which kf falls into the unstable region, we find that ǫc de-
creases as τ increases. This implies that for large enough
τ the critical undercooling becomes small.

While the analysis provided in the manuscript is a lin-
ear analysis around a one-dimensional moving front, it is
interesting to speculate about the consequences of wave-
number selection for the bulk when kf is in the unstable
region. To continue the discussion it is useful to note
the Eckhaus instability analysis considers the stability of
an infinitely long periodic pattern to a perturbation of
wavelength Q, i.e., δφ ∼ ∑

n bnei(nk+Q)x, where k is the
wave-number of the infinitely long periodic pattern. In
this analysis it is found that bn ∼ eωEck(Q)t, where ωEck

is positive for some range of Q’s in the unstable region in
Fig. 4b and negative for all values of values of Q in the
metastable region. In the unstable region the maximum
positive value of ωEck occurs at some value of Q = Qmax

that is zero at the boundary between metastable and un-
stable regions and increases as the system goes deeper
into the unstable zone (i.e., as kf increases). In ad-
dition ωEck(Qmax) also increases further into unstable
zone. With these considerations several possible scenar-
ios or limiting cases can be outlined.

If the selected wave-number kf is just above the
metastable zone, then Qmax is small and thus it is pos-
sible that the bulk will form at kf since the instability
to change wavelengths can only occur when many wave-
length appear (i.e., so that fluctuations on wavelengths of
order ∼ 2π/Qmax are possible). In this limit ωEck(Qmax)
is relatively small so it may take some time before a phase
slip occurs in the bulk region and the system obtains re-
turns to a k value closer to the equilibrium one.

In contrast when kf is well into the unstable region,
Qmax is larger and the magnitude of ωEck(Qmax) in-
creases. This implies a much larger likely hood of an
Eckhaus instability occurring near the front. If such an
instability occurs near to the front then the bulk may
form at a wave-number closer to the equilibrium value.
It should however be emphasized that the marginal sta-
bility analysis just ahead of the front and the Eckhaus
analysis in the bulk are both linear and thus not appli-
cable in the transition zone between the bulk and just
ahead of the front. It is possible that non-linear instabil-
ities can occur and correct the conclusion drawn in this
paragraph.

Finally, we stress that the above analysis has been
given for the linearized systems described by the
parabolic (8) and hyperbolic (29) equations in limit in
which the average value of φ is zero. In this instance the
transition is second order and the periodic state invades
a state that is linearly unstable. This situation occurs in
many other systems with long-range interactions, such as
in block copolymer melts40 where structural transitions
of the Landau-Brazovskii type may proceed41. For first
order phase transitions, e.g., in solidification phenomena,
the average value of φ is not zero, and the crystalline state
typically invades a metastable phase. In this instance a
solvability condition (see e.g., Ref.42) is required to de-
termine velocity and wavelength selection. It would be
interesting in the future to compare the predictions of
this selection criteria for phase field crystal models with
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the present calculations.

VII. CONCLUSIONS

The present work is devoted to a marginal stability
analysis of the parabolic and hyperbolic phase field crys-
tal model in one spatial dimension. Predictions for the
front velocity V and selected wave-number kf were pre-
sented as a function of undercooling ǫ and relaxation
rate τ . It was found that in both parabolic and hyper-
bolic cases, kf can differ significantly from the equilib-
rium value and this difference increases with both under-
cooling and relaxation rate.

The central result of this work is that for large τ it
is possible for the front to select a wave-number that is
unstable in the bulk phase. This should lead to phase
slips occurring at the front or in the bulk depending on
how far kf is above the Eckhaus boundary. The analysis
shows that if kf is just above the Eckhaus boundary then
the instability of the perfect periodic state occurs for very
long wavelengths at very slow rates. In contrast, when kf

is well above the Eckhaus boundary, then the instabil-
ity occurs at shorter wavelengths and at a faster rate.
It is interestingly to speculate on the consequences of
this instability for the periodic pattern described by the
conserved order parameter (crystal structure) in higher
dimensions. In higher dimensions the phase slips corre-
spond to the nucleation of dislocations, thus it is possible
that this instability could lead to solids containing many
defects or perhaps glassy states. Of course in higher di-
mensions other interesting phenomena are possible since
the front may prefer to select not only a different lattice
constant, but could also select a different crystal symme-
try than preferred by the bulk phase. These speculations
provide motivation for extending this study to higher di-
mensions. Finally it would also be interesting to apply
the analysis to rapid phase transformations in solids both
far above and below the transition point.
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