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We study signatures of superconductivity in a 2–leg “checkerboard” Hubbard ladder model, de-
fined as an one–dimensional (period 2) array of square plaquettes with an intra-plaquette hopping t
and inter-plaquette hopping t′, using the density matrix renormalization group method. The highest
pairing scale (characterized by the spin gap or the pair binding energy, extrapolated to the thermo-
dynamic limit) is found for doping levels close to half filling, U ≈ 6t and t′/t ≈ 0.6. Other forms
of modulated hopping parameters, with periods of either 1 or 3 lattice constants, are also found to
enhance pairing relative to the uniform two–leg ladder, although to a lesser degree. A calculation
of the phase stiffness of the ladder reveals that in the regime with the strongest pairing, the energy
scale associated with phase ordering is comparable to the pairing scale.
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I. INTRODUCTION

The much debated theoretical issues related to the “mechanism” (i.e. microscopic origin) of high temperature
superconductivity are often ill-defined. One related question to which unambiguous answers are possible is: For a
given class of models, what values of the parameters are optimal for superconductivity? Of course, if one can make
predictions about models, the same insights might provide guidance in the search for materials with improved super-
conducting properties. Two specific questions we would like to address are: 1) In the case in which superconductivity
arises directly from the repulsive interactions between electrons, how strong (in units of the bandwidth) are the opti-
mal interactions for superconductivity? 2) Is there an “optimal inhomogeneity” for superconductivity1, in the sense
of a complex (but still periodic) electronic structure with multiple orbitals per unit cell? An obvious difficulty with
this program is that, in most cases, we do not know how to compute the transition temperature of the relevant models
in a controlled manner, so as to test the predictions of theory.

In this context, we use density matrix renormalization group (DMRG)2 to numerically compute the superconducting
correlations of the two-leg Hubbard ladder (extrapolated to infinite length) as a function of the strength of the Hubbard
interaction, U , and for various periodic patterns of the hopping matrix elements. The 1D character of the system
studied is what permits us to obtain an accurate solution of this problem. However, the same 1D character implies
that no non-zero critical temperature is possible, so in assessing the optimal conditions for superconductivity, we are
forced to use other energy scales in the problem, especially the spin-gap, ∆Es, the pair-binding energy, ∆Ep, and the
superfluid helicity modulus, ρc. We find that: 1) The optimal value of U is generally U ≈ 6t where 6t is the total
bandwidth of the uniform ladder. This result agrees with previous studies3,4 of various ladder systems. It is also
consistent with inferences made on the basis of exact diagonalization5 and dynamical cluster quantum Monte-Carlo6

studies of the 2D Hubbard model, where U ≈ 8t (i.e. the 2D bandwidth) was found to be optimal. 2) For the
checkerboard pattern with 4 sites per unit cell shown in Fig. 1b, the optimal conditions occur for an intermediate
degree of inhomogeneity, t′/t ∼ 0.6− 0.7, where t is the hopping matrix within a square and t′ is the hopping matrix
between squares. This tends to corroborate inferences made previously on the basis of exact diagonalization studies5

of the 2D “checkerboard-Hubbard model.” 3) A qualitatively similar enhancement of superconductivity is observed
for the other periodic versions of the model with 2 or 6 sites per unit cell shown in Figs. 1a and 1c, respectively,
although in these cases the magnitude of the effect is smaller and the optimal condition occurs with values of t′/t
closer to 1.

The observation that certain patterns of spatial symmetry breaking can coexist with superconductivity (or even
strongly enhance it), while others do not, is also reminiscent of recent results obtained using DMRG7 and the dynamic
cluster approximation8. In the first of these calculations, the inhomogeneity (in the form of stripes) occurs sponta-
neously, while in the second it is imposed externally. As we were completing this work, a contractor renormalization
(CORE) study of the checkerboard Hubbard model in a 2D geometry was presented in Ref. 9, extending earlier
CORE results for the uniform 2D Hubbard model10. Finite size effects were found to be large for t′ >∼ 0.8t, but in
the smaller t′ regime, where these effects are relatively small, the results of this new study are completely consistent
with those of the earlier exact diagonalization studies5, and lead to conclusions concerning the optimal conditions for
superconductivity that are similar to those obtained in the present ladder study. The CORE method was also used
to study ladders, albeit considerably shorter than those studied in the present paper, and again the results obtained
are fully consistent with the present results.

FIG. 1. Schematic representation of the “inhomogeneous” Hubbard ladders considered in the present paper: a) The period one
“dimer” ladder; b) the period two “checkerboard” ladder; c) the period three ladder. As discussed below Eq. 1, the solid and
dashed lines represent, respectively, hopping matrix elements t and t′.
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II. THE MODEL

We consider the repulsive U Hubbard model defined on a (spatially modulated) two-leg ladder

H = −
∑

j,λ,σ

(tj,j+1c
†
j,λ,σcj+1,λ,σ + h.c.)

− t
∑

j,σ

(c†j,1,σcj,2,σ + h.c.) + U
∑

j,λ

nj,λ,↑nj,λ,↓ (1)

Here c†j,λ,σ creates an electron on rung j = 1, . . . L−1 of chain λ = 1, 2 with spin polarization σ = ±, L is the length of

the ladder, U > 0 is the repulsion between two electrons on the same site, the density operator is nj,λ,σ = c†j,λ,σcj,λ,σ,

and n = (2L)−1
∑

j,λ,σ〈nj,λ,σ〉 is the mean number of electrons per site. The much studied homogeneous Hubbard

ladder corresponds to the case tj,j+1 = t′ for all j, although it is worth noting that for t′ ≪ t, this model can also be
viewed as a coupled array of Hubbard-dimers. The “dimer ladder” is shown in Fig. 1a. The “checkerboard ladder”
in Fig. 1b has t2j,2j+1 = t and t2j+1,2j+2 = t′ < t. The “period three” ladder in Fig. 1c has t3j,3j+1 = t3j+1,3j+2 = t
and t3j+2,3j+3 = t′ < t.

The thermodynamic limit is accessed by computing quantities for various lengths, and then using finite size scaling
analysis to extrapolate to 1/L→ 0.

III. EFFECTIVE FIELD-THEORY

The uniform two-leg Hubbard ladder with n 6= 1 but still not too far from n = 1, is well known, on the basis of
weak coupling RG11, bosonzation12, and DMRG3 approaches, to be in a Luther-Emery phase characterized at low
energies by a spin-gap, ∆Es (defined in Eq. 4, below) and a single, gapless acoustic “charge” mode which propagates
with speed vc, and whose long-range (power-law) correlations are determined by a single Luttinger parameter, Kc.
The Luther-Emery liquid can be thought of as a 1D version of a superconducting state in the sense that it has a non-
vanishing superfluid stiffness (see Eq. 6, below), and, for Kc > 1/2 and T ≪ ∆Es, it has a divergent superconducting
susceptibility,

χ ∼ χ0

( vc

aT

)(2−1/Kc)

, (2)

where vc is the charge velocity and a is a lattice constant. In the single chain realization of a Luther-Emery liquid,

χ0 =

(

a

vc

) (

a∆Es

vs

)

=

(

a

vc

) (

a

ξs

)

, (3)

where ξs = vs/∆Es is the spin-correlation length and vs is the spin-velocity. For a multicomponent system, the
corresponding expression for χ0 is somewhat more complicated, as there may be multiple scales (e.g. multiple spin-
gaps) associated with the gapped modes. However, χ0 remains a monotonic, approximately linearly increasing function
of ∆Es.

Perhaps not surprisingly, we will see that the inhomogeneous Hubbard ladders we have studied are also Luther-
Emery liquids with Kc > 1/2. Thus, in addressing the “mechanism of superconductivity,” the primary purpose of our
DMRG calculations is to determine the dependence of vc, Kc, ∆Es and ξs on microscopic parameters.

The pair binding energy ∆Ep corresponds to creating two spatially-separated spin-1/2 quasiparticles. Since the
spins for these quasiparticles can either add to S = 0 or 1, we must have ∆Es ≤ ∆Ep. If the residual interactions
between quasiparticles are repulsive, we expect ∆Es = ∆Ep. Conversely, if the interactions between quasiparticles
are attractive, a neutral spin-1 “exciton” is formed, which has lower energy than two far-separated quasi-particles,
and hence ∆Es < ∆Ep. The latter behavior has been found previously in DMRG calculations on the uniform t− J
ladder13.

IV. ENERGY SCALES

The spin-gap, ∆Es, is the difference between the ground-state energies of the system with spin S = 1 and S = 0:

∆Es ≡ E0(S = 1, 2N) − E0(S = 0, 2N), (4)
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where E0(S,N) is the spin S ground-state energy of the N electron system.
Similarly, the pair-binding energy, ∆Ep, is defined as

∆Ep = 2E0(
1

2
, 2N + 1) − E0(0, 2N) − E0(0, 2N + 2). (5)

Were we computing these quantities in a BCS superconductor, then in the thermoydnamic limit, both these energies
would be equal to twice the minimum gap ∆min

lim
L→∞

∆Es = lim
L→∞

∆Ep = 2∆min.

What we have in mind here is a system with a strongly k dependent superconducting gap. In 2D, then, the value of
the gap would depend on the position on the Fermi surface. For a ladder with a finite number of legs, there are a
discrete set of transverse values of k, so even in the thermodynamic limit, only certain discrete points on what would,
in 2D, be a full Fermi surface are crossed. In this case, in the thermodynamic limit, the gap we would obtain will
be the gap that occurs at the point on the 2D Fermi surface where the gap happens to be smallest. For an s-wave
superconductor, this is a reasonable measure of the gap in 2D. For a d-wave SC, the precise value depends on how
close the closest Fermi surface crossing is to the nodal point. Thus, it is intuitively reasonable to associate these
energy scales with a mean-field estimate of the superconducting critical temperature, TMF

c ∼ ∆Es/4. Of course,
since the ladder is a 1D system, the actual Tc = 0.

While it may be reasonable to interpret ∆Es and/or ∆Ep as measures of a pairing scale in the problem, in order to
address the growth of superconducting correlations it is ultimately necessary to consider the helicity modulus, which
governs the energetics of superconducting phase fluctuations:

ρc =
vcKc

2π
≡ lim

L→∞

[

L
∂2E0

∂φ2

∣

∣

∣

φ=0

]

(6)

where, in this case, the ground-state energy is computed in the presence of pair-fields applied to the two ends of the
system with a relative phase twist φ.

In 2D, the relative importance of phase and pair-breaking fluctuations can be assessed14 by considering the ratio
of the phase stiffness (which has units of energy) to the pairing gap. However, in 1D, ρc has units of a velocity,
so defining an energy scale, ∆Eθ, characteristic of the phase fluctuations requires introducing a length scale in the
problem. The important (longest) emergent length scale is ξs, in terms of which we define

∆Eθ ≡ πρc/ξs ≡ R ∆Es. (7)

Here R ≡ ∆Eθ/∆Es is the dimensionless ratio of the phase ordering and pairing scales.
To appreciate the significance of this ratio, consider its value for the attractive Hubbard chain in various limits. The

1D version of a BCS limit, in which there is a single characteristic energy/temperature scale, ∆s ∼ exp[−πvs/a|U |],
is realized in the limit |U | ≪ 1 where, up to corrections of order U/t, vs = vc and Kc = 1, so R = vcKc/2vs =
1/2 + O(U/t), i.e. both mesoscale phase coherence and pairing correlations onset at a temperature of the order of
Tpair ∼ ∆Es/4. Conversely, R → 0 as |U |/t → ∞; for large U , a spin pseudo-gap opens when T ∼ Tpair = |U |/2,
with a second crossover from a largely incoherent paired state to a coherent Luther-Emery liquid occurring at a
temperature Tθ ∼ ∆Eθ ∝ t2/|U |, well below Tpair. A similar dichotomy exists in the two-leg repulsive U Hubbard
ladder, where R → 0 as the doped hole concentration, x → 0, while R ∼ 1 at larger values of x where the spin-gap
is significantly suppressed relative to its value at x = 0. In the small x case, the doped holes can be thought of as a
dilute gas of charge 2e bosons at temperatures small compared to Tpair, but the phase coherence scale is much smaller
and vanishes as x→ 0.

With these examples in mind, we identify the case R ∼ 1 with the 1D version of the “BCS-like limit” in which
there is a single crossover temperature Tpair which separates the “normal” (multicomponent Luttinger liquid) high
temperature regime from the low temperature regime in which substantial mesoscale superconducting order has
developed. Conversely, if R ≪ 1, two distinct crossover scales characterize the evolution from the normal state: a
first, high temperature crossover, Tpair, characterized by the opening of a spin pseudo-gap, and a lower crossover
temperature, Tθ ∼ ∆Eθ/4, which can be viewed as the scale at which the liquid of bosonic pairs begin to exhibit
substantial local phase coherence.

The most direct and efficient way to compute ξs from DMRG is to apply a staggered Zeeman field to one end of
the ladder, j = 0 (thus locally breaking spin-rotational symmetry) and then measure the decay of the magnetization
as a function of distance down the ladder. In a spin-gapped phase, we expect

M(j) =
∑

σ

σ〈[c†j,1,σcj,1,σ − c†j,2,σcj,2,σ]〉

∼ cos[Qj + φ0] exp[−|j|a/ξs]. (8)
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In the limit of an asymptotically small spin-gap, Q = 2kF , but for larger gaps it may depend not only on n but on
U/t as well. To be explicit, we therefore define the spin correlation length as

ξs =

∑

j |j M(j)|
∑

j |M(j)| . (9)

It turns out that Eq. 6 is relatively difficult to implement to obtain quantitatively reliable results for ρc using
DMRG. However, it is possible15 to compute ρc by separately calculating vc and vc/Kc from quantities that are more
straightforwardly computed using DMRG. From the bosonized field theory, we can identify the inverse compressibility
of the ladder with the ratio πvc

2Kc
. In turn, in all circumstances relevant to the present calculation16, the compressibility

is related to the energy to add or remove a singlet pair of electrons from the ladder:

1

κ
= lim

L→∞
L
E0 (0, 2N + 2) + E0 (0, 2N − 2) − 2E0 (0, 2N)

4
, (10)

An independent measurement of vc can be obtained by calculating also the energy of the first excited state, E1 (S,N)
according to

vc = lim
L→∞

L

π
[E1 (0, 2N) − E0 (0, 2N)] . (11)

We then compute the helicity modulus as

ρc =
v2

cκ

4
. (12)

Note that this procedure also gives us

Kc =
π

2
κvc. (13)

An alternative way to obtain Kc is by measuring the amplitude of the “Friedel-like” density oscillations which exhibit
a power-law decay as a function of distance from the edge of the system. For long systems, the density near the center
of a length L ladder takes the form15

〈nj〉 ∼
cos[2πn(j − L/2)]

LKc/2
. (14)

Therefore, by measuring the amplitude of the density oscillations ACDW vs. L and plotting log(ACDW) vs. log(L),
Kc can be obtained. Whenever possible, we have calculated Kc using both Eq. 13 and Eq. 14, and found that the
two values agree with each other to within about 10%.

V. DMRG RESULTS

We have computed ground state properties for ladder systems for various values of n, t′/t, and U/t using DMRG.
We have kept up to m = 2400 states and extrapolated our results to zero truncation errors. As is well known,17

ground state energies (as well as one-point correlation functions18) can be extracted with great accuracy in this way.
Results have been obtained for system sizes from 2 × 16 up to 2 × 64, and then extrapolated to the thermodynamic
limit (1/L→ 0) using a finite size scaling analysis. For an example of this procedure, see Appendix A. Since DMRG
converges better for open boundary conditions, all the calculations were done using open boundary conditions in the
long direction. From the extrapolated values, we have extracted ∆Es, ξs, ∆Ep, ρc, and Kc, as described above.

In Fig.2, we show ∆Es for fixed U/t = 8 [? ] as a function of t′/t for n = 0.9375, 0.875, and 0.75. Note that the
value of ∆Es rises from its value for the uniform ladder as t′/t is reduced below t′/t = 1, reaches a maximum value
at an intermediate value of t′/t, and then drops to zero as t′/t→ 0. For instance, for n = 0.875, the maximum value
∆Es ≈ 0.12t, which occurs for t′/t = 0.6, is approximately 4 times larger than its value in the uniform ladder. More
broadly, we have studied the spin gap as a function of both U/t and t′/t; the results for n = 0.875 are shown in Fig.
3. One can see that ∆Es exhibits a broad maximum for U of order the band-width (U ∼ 4 − 8t) and intermediate
inhomogeneity, t′/t ∼ 0.5. This figure looks qualitatively similar to the analogous result for the two dimensional
checkerboard Hubbard model obtained previously by exact diagonalization of a 16 site system in Ref. 5; however, in
contrast to that study, the present results are obtained in the thermodynamic limit.
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FIG. 2. The spin-gap, ∆Es, of the checkerboard-Hubbard ladder as a function of t′/t for n = 0.9375, 0.875, and 0.75 at fixed
U = 8t, extrapolated to the thermodynamic limit (L → ∞).

FIG. 3. ∆Es(L → ∞) of the checkerboard Hubbard ladder for n = 0.875 as a function of U and t′, fixing t = 1.

FIG. 4. The pair binding energy, ∆Ep, of the checkerboard Hubbard ladder for n = 0.875 (in the thermodynamic limit) as a
function of U and t′, fixing t=1.
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FIG. 5. ∆Es(L → ∞) and ∆Ep(L → ∞) for the checkerboard ladder with fixed n = 0.875 and U/t = 8, as a function t′/t.

The dependence of ∆Ep on U/t and t′/t is generally similar to that of ∆Es, as can be seen by comparing the
contour plots of these two quantities for n = 0.875 which are shown in Fig. 4 and Fig. 3, respectively. However, there
are interesting differences, as can be seen in Fig.5, where the two quantities are plotted as a function of t′/t for fixed
U/t = 8 and n = 0.875. Note that for t′/t > 0.6, ∆Ep > ∆Es. This is, presumably, indicative of the existence of a
spin 1 excitonic bound-state for t′/t > 0.6. A similar result was found in the uniform two-leg t−J model ladders13,19.

In order to calculateR = ∆Eθ/∆Es, we must compute ρc and ξs. To obtain ξs, we apply a relatively strong staggered
Zeeman field of magnitude t to the end sites of the ladder and measure the decay of the staggered magnetization,
M(j) as in Eq. 8. In all cases, we have found that M(j) decays rapidly on scales short compared to the length of our
longest ladders, so ξs can be extracted from the calculations accurately. Representative results for M(j) are shown
in the inset of Fig. 6. ξs as a function of t′/t is shown in Fig. 6, for fixed n = 0.875 and U/t = 8. Note that for
t′/t < 1/2, the spin-correlation length is roughly 3a, which is of the order of one unit cell of the checkerboard ladder.

Next, we calculate both ρc and Kc following the procedure described above [Eqs. 10–14]. The value of Kc is shown
in Fig. 7 for n = 0.75, 0.875, and 0.9375, fixing U/t = 8, as a function of t′/t. In contrast to the results for ∆Es

(and somewhat to our surprise), for n = 0.875, Kc is a weakly varying function of t′/t (and, as it turns out, U/t as
well). To a good approximation, for a wide range of values, we can simply take Kc ≈ 1, independent of t′/t and U/t.
Note that this implies that the superconducting susceptibility diverges as T → 0, so that it is reasonable to think of
the ladder as a fluctuating superconductor. (Of course, there is also a divergent charge-density wave susceptibility,
χCDW ∼ T−(2−Kc), so there is some unavoidable ambiguity with this simple intuitive picture.) As n is increased to
0.9375, Kc increases, consistent with the expectation that Kc → 2 as n→ 1.20

TABLE I. Values of the ratio R defined in Eq. 7 for n = 0.875 and U = 8t.

t′ = 0.2 0.4 0.6 0.7 0.8 1.0
R = 3.38 3.06 0.96 1.01 0.99 0.98

From the measured values of ξs, κ, and Kc, the energy scale characteristic of phase-ordering can be extracted.
Table I shows the ratio R from Eq. 7. Note that for t′/t > 0.5, R ≈ 1. Thus, at least crudely, this regime can
be thought of as a “BCS like” regime, in which there is a single energy scale, set by ∆Es, which characterizes the
growth of superconducting correlations. Depending on precisely what criterion one chooses to quantify the crossover
scale, phase fluctuations will produce a quantitative difference in the magnitude of the specified scale, but not large
qualitative effects. Therefore, it is reasonable to assert that the values of the parameters which lead to the largest
values of ∆Es and/or ∆Ep are the “optimal values for superconductivity.”

For t′ < 0.5t, we obtain R ∼ 3, i.e. ∆Eθ > ∆Es, suggesting that this regime cannot be thought of in terms of
either a naive weak or strong coupling picture. Remarkably, the transition from R ∼ 1 to R > 3 occurs quite sharply
around t′ = 0.5, close to the point where the spin gap is optimal.

It is interesting to note that for n = 0.75, t′/t = 0.4 we find a sharp decrease of Kc and ρc. The value of Kc at this
point is smaller than the critical value of 1 at which a static charge-density wave should be stable15, indicating that
this behavior of Kc and ρc may be due to a charge- density wave phase that exists for n = 0.75, t′ <∼ 0.4t.

We thus conclude that for the checkerboard Hubbard ladder, optimal superconductivity occurs for intermediate
values of U/t ∼ 6, intermediate inhomogeneity, t′/t ∼ 0.6 − 0.7, and electron concentrations near (but not equal



8

0 0.2 0.4 0.6 0.8 1
0

5

10

15

t’/t

ξ
s
/a

0 20 40 60
−0.5

0

0.5

x

〈S
z  (

x)
〉

FIG. 6. The spin correlation length, ξs, for the checkerboard ladder with U = 8t and n = 0.875 as a function of t′/t, calculated
from Eq. 9. The inset shows the expectation value of the spin 〈Sz〉 for U = 8t, n = 0.875, and t′/t = 1, as a function of
position. A staggered Zeeman field of strength t has been applied to the two sites at the left edge of the ladder.

0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

t′

K
c

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

t′

ρ
c

n=0.9375

0.75
0.875

0.9375

0.875
n=0.75

FIG. 7. Left: the Luttinger parameter Kc as a function of t′/t for n = 0.75,0.875 and 0.9375 and U = 8t. The error bars were
estimated by comparing between the values of Kc obtained from Eq. 13 and Eq. 14. Note that according to our definition of
Kc, the non-interacting value is Kc = 2. Right: The phase stiffness ρc (defined in Eq.12) as a function of t′/t.
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FIG. 8. ∆Es(L → ∞) for the three types of inhomogeneous ladders in Fig. 1 is shown at fixed n = 0.875 and U/t = 8 as a
function of t′/t. The inhomogeneity induced by breaking up the ladders to period 1, 2 and 3 clusters increases the spin gap for
t′/t < 1. The increase is most dramatic for the checkerboard ladder, in which the maximum spin gap is about 4 times larger
than the spin gap for the uniform (t′ = 1) system. For the period 1 (dimer) ladder, the enhancement is by a factor of 2, while
for the period 3 ladder the spin gap is only slightly enhanced (by about 10%).

to) one electron per site. We can now ask if this result is special to the checkerboard pattern, or if it applies more
generally to the situation in which there are multiple sites per unit cell. We thus have repeated (although not in as
much detail) the same calculations for the dimer ladder (period 1) and the period 3 ladder. (See Fig. 1.)

In Fig. 8 we exhibit the dependence of the spin-gap of all three ladders for fixed U = 8t and n = 0.875 as a function
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FIG. 9. A system of coupled checkerboard ladders, connected with by a single particle tunneling matrix element t′′

of t′/t. In all the cases we see that there is an increase in the spin gap for some t′/t < 1.

The result was expected, qualitatively, in the dimer (period one) case from previous works3,4,21, which found that
the spin gap (as well as pairing correlations) is enhanced upon making t′ smaller than t in the dimer (period 2) ladder.
In the case of the period three ladders, there is a very weak increase of the spin gap, which occurs at t′/t ∼ 0.9.

In Refs. 4, it was argued that the enhancement of superconducting correlations in the dimer ladder is due to the
increase in the density of states close to the “Van Hove” point, in which one of the two bands of the two–leg ladder
becomes unoccupied. Beyond this point, there is only a single band crossing the Fermi level, and the system is likely
to behave as a single–component Luttinger liquid. Therefore the superconducting signatures are rapidly suppressed.
Consistently with this picture, in the dimer ladder, we find that the spin gap collapses to zero below t′/t <∼ 0.6. In
the period 2 (the checkerboard ladder) and period 3 cases, however, no such sudden suppression of the spin gap is
observed as t′/t is reduced below the optimal point. This leads us to believe that the mechanism of the enhancement
of the spin gap for t′ < t in the checkerboard and period 3 ladders is unlikely to be related to a proximity to a Van
Hove point.

Note also that for all the inhomogeneous patterns in Fig. 8, the spin gap seems to reach zero at a critical t′c > 0
(which is different for each pattern). In particular, for the “checkerboard” pattern, t′c ∼ 0.05t. It is likely that for
t′ < t′c, the Luther-Emery phase gives way to a Luttinger liquid phase with one gapless charge mode and and gapless
spin mode (or more), although more work is needed to establish that.

Overall, among all the patterns we have reported, the optimal ladder for superconductivity is a checkerboard ladder
with U = 6t, t′/t = 0.6 − 0.8, and n = 0.875, for which ∆Es = 0.12t, ∆Ep = 0.16t.

VI. EXTENSION TO QUASI 1D

Above, we have argued that the superconducting tendency in the checkerboard-Hubbard ladder is optimized for an
intermediate value of t′/t. However, since the superconducting Tc of that system (as in any one-dimensional system)
is strictly zero, one can worry that this statement may depend on how one chooses to measure the strength of the
superconducting correlations. We will now consider a system composed of an array of parallel checkerboard-Hubbard
ladders coupled weakly in the direction transverse to the ladders, in which Tc can be estimated in a controlled way

based on the solution of the single-ladder problem. We will show that Tc is maximal for t′

t < 1. Thus, in this system,
Tc is indeed optimized when the electronic structure is non-uniform; i.e., there is an “optimal degree of inhomogeneity”
for superconductivity.

The quasi-1D system of coupled checkerboard Hubbard ladders is depicted in Fig. 9. The ladders are coupled by a
single particle tunneling matrix element t′′. We fix the value of t′′ ≪ t, t′, and estimate Tc (t′/t) from an inter-chain
mean field theory, described in Appendix B. From the numerical results for the checkerboard-Hubbard ladder with

n = 0.875 and U = 8t we recall that Kc

(

t′

t

)

≈ 1 over the entire range 0 < t′ ≤ 1 (see Fig. 7). We therefore fix

Kc = 1, independent of t′. The resulting expression for Tc is

Tc ∼ K(
√

1 − x2)

x
∆Es

(

at′′

vc

)2

. (15)

Here, x ≡ vs/vc, and K (x) is a complete elliptic integral of the first kind. Note that Tc depends on t′/t through vs,
vc and ∆Es. As t′ decreases, both vc and vs decrease; their ratio, however, is found to be approximately constant as
a function of t′/t down to about t′/t = 0.5. (vs is obtained by using the estimate ∆Esξs, where both ∆Es and ξs are

calculated from DMRG.) ∆Es

(

t′

t

)

, on the other hand, has a maximum for t′

t < 1. Therefore, as t′

t is reduced from

1, Tc (t′) necessarily increases, and reaches a maximum for some t′max < t.
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VII. DISCUSSION

The present study, along with a variety of other recent studies5,8,9,22, provide strong support for a number of
intuitively appealing ideas concerning the physics of the superconducting Tc in unconventional superconductors in
which the pairing arises directly from the repulsive interactions between electrons: 1) The highest superconducting
transition temperatures occur at intermediate interaction strength, when U is comparable to the band-width. (A
corollary of this is that materials which are studied because of their high transition temperatures are also likely to
exhibit more general signatures of lying in an intermediate coupling regime; here, theoretical results from both weak
and strong coupling approaches must be extrapolated, at best, to the limits of their regimes of applicability.) 2)
Certain mesoscale structures (“optimal inhomogeneity”1) can lead to enhanced superconducting pairing, although
clearly if the system is too strongly inhomogeneous, that always leads to a suppression of global phase coherence.
3) While short-range magnetic correlations, possibly of the sort envisioned in the putative RVB state of a quantum
antiferromagnet or in certain theories of a spin-fluctuation exchange mechanism, may well be important for pairing,
longer range magnetic correlations, especially of the sort one would expect near a magnetic quantum critical point, do
not appear to be particularly favorable for superconductivity. (This final conclusion follows from a comparison of the
t′/t dependence of the magnetic correlation length and the superconducting pairing in Figs. 6 and 4, respectively.)

In addition, we found that the two-leg ladder at intermediate coupling (with U of the order of the bandwidth)
and close to half filling is, in many respects, surprisingly well described as a “BCS–like” superconductor, in which
there is a single crossover energy scale from the “normal” to the “superconducting” state (rather than two separate
scales, associated with pairing and phase coherence). This is based on the fact that the ratio of the pairing and phase
coherence scales (defined in Eq. 7) is close to its weak-coupling value, which justifies the identification of the spin gap
∆Es (or the pair binding energy ∆Ep) as the relevant energy scale for superconductivity.

Finally, there are a couple of unresolved issues and further directions we would like to highlight: 1) The extrapolation
of the present results to higher dimensions is, of course, the most important open issue. The strong qualitative
similarity between the present results and those obtained by exact diagonalization and CORE calculations on relatively
small 2D clusters certainly encourages us to believe that the results obtained here give insight into the behavior of
the higher dimensional problem. In this context, it might be useful to carry out similar calculations on 4 leg and
possibly even 6 leg ladders and cylinders, although it is considerably more difficult to extend these results to such long
systems as are accessible for the 2 leg ladder. 2) It is not clear exactly what aspects of the local electronic structure
are essential features of an optimal inhomogeneity for superconductivity. In the present case, it is notable that pair-
binding does not occur on an isolated dimer or six-site rectangle for any value of U/t, while there is pair-biding on
an isolated square for U/t < 4.6. However, this observation does not provide an entirely satisfactory account of our
findings, since the optimal pairing in the checkerboard ladder occurs for U/t = 4 − 8t, where the pair-binding energy
of an isolated square is either small or negative.
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FIG. 10. Spin gap ∆Es as a function of 1/L for systems of sizes 2 × L where L = 16, 32, 64, with n = 0.875, U/t = 8, and
various values of t′/t. Symbols: DMRG results, solid lines: second order polynomial fits.
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Appendix A: Extrapolation to the thermodynamic limit

The physical quantities reported in this paper are mostly extrapolated to the thermodynamic (L→ ∞) limit. This
is done by calculating the corresponding quantity for various system sizes (typically we have used L = 16, 32 and 64
rungs) and then extrapolating to the limit 1/L→ 0. As an example of this procedure, we present the spin gap ∆Es

for n = 0.875, U = 8t and various values of t′/t, as a function of 1/L, in Fig. 10. We use a second order polynomial
in 1/L to fit the data and extrapolate, which in most cases fits the finite size data well.

Overall, the extrapolation to the thermodynamic limit gives a correction of up to about 30% to the measured
values, making it the largest source of error in our calculations. (DMRG truncation errors are typically smaller than
the symbol sizes in Fig. 10). Interestingly, the amount of extrapolation needed is smallest at values of t′/t which
correspond to the maximum spin gap. We found that this behavior repeats itself for other values of n and U/t.

Appendix B: Inter-chain mean–field theory

In this Appendix, we describe the inter–chain mean–field treatment of the quasi one dimensional system described
in Sec. VI. This procedure is quite standard23–25. We consider an array of plaquette ladders, modelled by Luther–
Emery liquids. For simplicity, we will assume that each ladder is a single component system with a spin gap ∆Es.
(The extension to the case of a two-component system is straightforward, and the result is qualitatively the same.)
The ladders are coupled by an inter-chain hopping term of the form:

H⊥ = −t′′
∑

σ,P=±

∑

n

∫

dxψ†
Pσ (x, n)ψPσ (x, n+ 1) , (B1)

where ψ†
Pσ (x, n) (P = ±) creates a right or left moving electron with spin σ =↑, ↓ at position x in chain n. Next,

we integrate out degrees of freedom of lengthscales smaller than the spin correlation length ξs ∼ vs

∆Es
. Over such

lengthscales, the system is essentially gapless and can be treated as a Luttinger liquid. To second order in t′′, the
following effective inter–chain action is generated:

Seff
⊥ = (t′′)2

∑

σσ′,n

∫

dxdτ

∫

dx′dτ ′〈T ψ†
+,σ (x, τ, n)ψ+,σ (x, τ, n+ 1)ψ†

−,σ′ (x′, τ ′, n)ψ−,σ′ (x′, τ ′, n+ 1)〉0,>, (B2)

where 〈. . . 〉0,> denotes averaging over the “fast” (short-wavelength) degrees of freedom [using the decoupled (t′′ = 0)
action], and T denotes time ordering. Since we are essentially performing a “coarse graining” step, increasing the cutoff

of the theory from the lattice constant a to ξs, the region of integration in Eq. B2 is

√

(x− x′)
2

+ v2
s (τ − τ ′)

2
< ξs.

In order to evaluate the integrand, we write the fermionic fields in bosonized form: ψPσ ∼ ei
√

π(θσ+Pϕσ), where ϕσ

and θσ are dual bosonic fields which satisfy [ϕσ (x) , ∂xθσ′ (x′)] = iδσσ′δ (x− x′). As usual, we introduce also charge

and spin fields defined as ϕc,s = (ϕ↑ ± ϕ↓) /
√

2, and similarly θc,s = (θ↑ ± θ↓) /
√

2. We define the fermionic Green’s
function G (x, τ) = 〈T ψ+,↑ (x, τ, n)ψ−,↓ (0, 0, n)〉0,>. Expressing G (x, τ) in terms of the bosonic fields,

G (x, τ) ∼
〈

e
i
√

2π

»

θc+θ′c
2

+
θs−θ′s

2
+

ϕc−ϕ′

c
2

+
ϕs+ϕ′

s
2

–〉

0,>

∼
∣

∣

∣

∣

∣

a2

x2 + (vcτ)
2

∣

∣

∣

∣

∣

1
8Kc

∣

∣

∣

∣

∣

a2

x2 + (vcτ)
2

∣

∣

∣

∣

∣

Kc
8

∣

∣

∣

∣

∣

a2

x2 + (vsτ)
2

∣

∣

∣

∣

∣

1
4

ei
√

2π[θ̄c+ϕ̄s],

(B3)
where we have used the shorthand notation θc ≡ θc (x, τ), θ′c ≡ θc (x′, τ ′), θ̄c ≡ θc (x/2, τ/2), and similarly for θs, ϕc

and ϕs. Plugging G (x, τ) into Eq. B2 and performing the integral, we get that the following inter–chain Josephson
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coupling term:

Heff
⊥ = −J⊥

∑

n

∫

dxΦ (x, n)Φ† (x, n+ 1) + H.c., (B4)

where Φ (x, n) = ψR↑ψL↓ − ψR↓ψL↑ ∼ ei
√

2πθc cos
√

2πϕs and

J⊥ ∼ K





√

1 −
(

vs

vc

)2




(

at′′

vc

)2
vc

a
. (B5)

Here, K (α) =
∫ π/2

0 dλ/
√

1 − α2 sin2 λ is a complete elliptic integral of the first kind. Eq. B5 contains a Kc–dependent
prefactor, which we omit.

The mean–field equation for Tc is

zJ⊥χ (Tc) = 1, (B6)

where χ (T ) is the superconducting susceptibility of a single chain, and z is the number of nearest–neighbor chains
(e.g., for a two dimensional array of checkerboard ladders, z = 2). Inserting Eqs. 2,B5 in the mean–field equation
(B6), and using the fact that for the checkerboard Hubbard ladder Kc ≈ 1 over a wide range of parameters, we obtain
Eq. 15 for Tc.
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