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The concept of chiral tunneling in metallic single-wall carbon nanotubes, originating from the
interplay of local electrostatic and pseudomagnetic potentials, is considered and applied to an eval-
uation of the Josephson current in a nanotube-based SNS junction and the persistent current in a
circular nanotube. In the former case an oscillatory dependence of the critical supercurrent on the
potential strength and the nanotube chiral angle is predicted. In the latter case the existence of a
spontaneous persistent current in an isolated ring-like nanotube is discussed.
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I. INTRODUCTION

Tunneling of nonrelativistic and relativistic fermions
through a potential barrier is drastically different. While
for nonrelativistic electrons the transmission probability
as a rule is small and exponentially dependent on the po-
tential strength, massless Dirac fermions freely penetrate
potential barriers of arbitrary strength with the proba-
bility D = 1 for normal incidence (the Klein paradox1).
The absence of backscattering is explained by the con-
servation of fermion helicity, i.e. the additional quan-
tum number for relativistic particles with spin. Finite
backscattering (D < 1) appears in tunneling of massless
particles through a scalar (electrostatic) barrier for an-
gles of incidence other than normal or in the presence of
a vector potential (“magnetic” scattering).

In metallic single-wall carbon nanotubes (SWNTs)
electron transport is known to be ballistic (see, e.g.,2)
and the charged quasiparticles are 1D Dirac-like massless
excitations. Their weak scattering from long-range tube
defects is used to explain (by analogy with the Klein para-
dox) the delocalization of electrons in even long metallic
nanotubes2. Short-range defects cause electron backscat-
tering (∆q ≃ 2kF ), which for Dirac quasiparticles in
SWNTs is described as strong inter-valley (±kF ) transi-
tions. Since particles in different valleys are characterized
by opposite helicities, the chiral properties of an individ-
ual electron do not play a significant role for electron
transport in metallic nanotubes with short range impuri-
ties. Therefore electron tunneling through such defects in
nanotubes is qualitatively the same as for nonrelativistic
particles.

We show that a particular type of electron scatter-
ing, namely, “chiral tunneling” — can occur in metal-
lic SWNTs as a result of the interplay between long-
range (“smooth”) electrostatic and pseudomagnetic po-
tentials. The electrostatic potential (Vd) models ordinary
electron scattering by charged impurities (or by nonuni-

form gate potentials) while the pseudomagnetic potential
(Vo) describes the effective vector potential caused by
deformations of the nanotube3. Therefore physically we
study the influence of local strain on electron transport
in SWNTs. Chiral tunneling bridges between ordinary
tunneling (D ≪ 1) which reappears in the limit Vo ≫ Vd

and Klein tunneling (D = 1) which is reached in the op-
posite limit Vd ≫ Vo. Chiral tunneling is pronounced
when Vo ≃ Vd and is characterized by an oscillatory de-
pendence of the electron transmission coefficient on the
chiral phase φc = U0 cos θ̃, where U0 is the dimensionless
potential strength and θ̃ is an effective chiral angle de-
termined by the nanotube chiral angle and the phase of
the pseudomagnetic potential.

We have studied the effects of chiral tunneling on
(i) the Josephson current through nanotube-based SNS
junctions and (ii) on the persistent current4 in circular
nanotubes. As we show below, the critical supercurrent
in the first case is an oscillating function of the potential
strength and for special quantized values of the chiral
phase (φc = πN , with N an integer) the resulting su-
percurrent coincides with that through a fully transpar-
ent SNS constriction. In the second case we found that
the persistent current is strongly influenced by the chiral
phase. We have focused on the interesting problem per-
taining to the existence of a spontaneous persistent cur-
rent (at zero magnetic flux) in an isolated ring-like nan-
otube with an odd number of electrons. We show below
that the amplitude of the spontaneous current (caused
by a nonsymmetric population of Dirac points) is deter-

mined only by the effective chiral angle θ̃.

II. MODEL

In what follows we will only consider intra-valley elec-
tron scattering. Hence we can model the metallic SWNT
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by the Hamiltonian5

H± = ±h̄vF

(

0 exp(±iθ)p̂x

exp(∓iθ)p̂x 0

)

, (1)

where j = ± is the valley index, vF is the Fermi velocity,
p̂x = −i∂x, θ is the chiral angle of the nanotube (0 ≤
θ ≤ π/6) and the x-axis is directed along the cylinder
axis6. We shall neglect some small modifications on the
electron dispersion induced by the finite curvature of the
nanotube walls7 but will comment on their effect at the
end.

We first evaluate the transmission coefficient D(θ) for
electron scattering by a “local” chiral potential (see be-
low) in a SWNT. Note that the electrostatic (scalar) po-
tential is diagonal in the pseudospin indices and therefore
unable to induce electron backscattering due to the con-
servation of helicity for massless Dirac particles. To get
nontrivial scattering of chiral particles we therefore con-
sider the phenomenological matrix potential

V̂±(x) =

(

Vd(x) Vo(x) exp(±iα)
Vo(x) exp(∓iα) Vd(x)

)

, (2)

which mixes the two sublattice components of the elec-
tron wave function. The off-diagonal components Vo(x)
correspond to “pseudomagnetic effects”8. By using
”strain engineering”9 of the SWNT (possibly with the
help of an atomic force microscope) both Vo and α can
be considered as controllable parameters. In particular
the phase α is readily expressed through the components
of the strain tensor uik

10 (α = −2θ̃−arctan[2uxy/(uxx−
uyy)]). Therefore scattering potential Eq. (2) can be
produced by elastic deformation of SWNT. It is also
appeared in the problem of electron scattering in car-
bon nano-peapods5, were pseudomagnetic potential is in-
duced by the hybridization of fullerene molecular orbitals
with conduction electron states in the chiral nanotube.

III. CHIRAL TUNNELING

We will consider the potentials in Eq. (2) as local
and model them by rectangular barriers of width a and
heights Vo and Vd in the limit a → 0, Vo, Vd → ∞ with
Voa = const and Vo/Vd = const. The resulting scattering
problem is solved for the transmission (t) and reflection
(r) amplitudes by the standard procedure of matching
plane wave and evanescent solutions of the Dirac equa-
tion, yielding

t =
exp

(

−iVoa cos θ̃/h̄vF

)

√

1 − (Vo/Vd)2 sin2 θ̃
√

1 − (Vo/Vd)2 sin2 θ̃ cosκ + i sinκ
,

r = −
Vo

Vd

sin θ̃ sinκ
√

1 − (Vo/Vd)2 sin2 θ̃ cosκ + i sinκ
, (3)

where κ = (Voa/h̄vF )[(Vd/Vo)
2−sin2 θ̃]1/2 and θ̃ = θ−α.

These amplitudes depend on several unknown parame-
ters. We will focus on the case Vo ≃ Vd, when the effects
of chiral tunneling are most pronounced. In this case
the transmission and reflection amplitudes, expressed as
t(θ̃) = D(θ̃)1/2 exp[iδf (θ̃)] an r(θ̃) = R(θ̃)1/2 exp[iδb(θ̃)]

where R(θ̃) = 1 − D(θ̃), take the form

D(θ̃) =
cos2 θ̃

cos2(U0 cos θ̃) cos2 θ̃ + sin2(U0 cos θ̃)
,

δb(θ̃) = arctan

[

tan(U0 cos θ̃)

cos θ̃

]

(4)

The forward (δf ) and backward (δb) scattering phases

are related as δf (θ̃) = U0 cos θ̃ + δb(θ̃). Consequently,
the (dimensionless) strength of the ”local” scatterer in
our model is characterized by a single parameter U0 =
aVo/h̄vF .

Although one can not talk about an angle of inci-
dence in the 1D SWNT scattering problem, our result
(4) for the transmission coefficient D coincides – after a
change of notation — with the analogous expression for
the transmission coefficient in graphene11. In our case
the chiral angle θ̃ formally plays the role of the angle of
incidence of a particle scattered by a rectangular elec-
trostatic barrier in graphene. It should be stressed that
chiral tunneling in SWNTs differs from the phenomenon
of Klein tunneling. In nanotubes chiral tunneling is in-
duced by the interplay of local electrostatic (scalar, Vd)
and pseudomagnetic (vector, Vo) potentials whereas in
graphene pure electrostatic potential already leads to fi-
nite electron backscattering (R 6= 0) for angles of inci-
dence θ 6= 011. In general case Vd 6= Vd the expressions
(3) for the scattering data can not be reduced to Klein
tunneling in graphene. From the dependence of the trans-
mission probability on θ̃ shown in Fig. 1 for different
values of the potential strength U0, we observe that for
a sufficiently strong (U0 > 1) potential the transmission
probability is an oscillating function of the chiral angle
0 ≤ θ̃ ≤ π/2.

From Eq. (4) one finds that D(θ̃ = 0) = 1 irrespective
of the potential strength, which is a manifestation of the
Klein paradox. In addition one finds maxima, D(θ̃) = 1,

for U0 cos θ̃ = πN where N is an integer. The minimal
value of the transmission probability, Dmin = cos2 θ̃, is
reached at U0 cos θ̃ = π(N + 1/2). We will refer to these
cases as on- and off-resonance chiral tunneling. To under-
stand the physical meaning of these quantization condi-
tions and the oscillations of the transmission coefficient,
it is useful to consider the spectrum of the Dirac equa-
tion with a constant matrix potential given by Eq. (2).

It reads E = Vd ± h̄vF [(p+ Ũ0 cos(θ−α))2 + Ũ0

2
sin2(θ−

α)]1/2, where Ũ0 ≡ | Vo | /h̄vF . The only effect of the
uniform diagonal (electrostatic) potential Vd is a con-
stant shift of the energy spectrum. The influence of the
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FIG. 1: Transmission coefficient as a function of chiral angle
at different values of potential strength: solid curve corre-
sponds to U0 = 11, for the dashed curve - U0 = 6.5; and as a
function of Vd/Vo (inset) for different chiral angles (U0 = 8):

solid curve for θ̃ = 0.52, dashed curve for θ̃ = 0.2.

pseudo-magnetic (off-diagonal) potential Vo is more in-
teresting. This is because it brings about an opening of
a gap, ∆g = 2h̄vF Ũ0 sin(θ − α), in the energy spectrum
and plays the role of a vector potential by shifting the
momentum to p + Ũ0 cos(θ − α). We will call the quan-
tity φc = U0 cos(θ − α) the chiral phase (or chiral flux)
since it appears as an Aharonov-Bohm-like phase in chi-
ral tunneling.

Another interesting limit of Eq. (3) is Vd = 0 (while

for Vo = 0 we always have D(θ̃) = 1). In this case the

transmission probability takes the simple form D(θ̃) =

1/ cosh2(U0 sin θ̃). For chiral tunneling (θ̃ 6= 0) the trans-
mission probability D is smaller than unity and in gen-
eral exponentially small for strong potentials (as in the
case of ordinary tunneling). The oscillatory dependence

of the transmission probability D(θ̃) on the ratio Vd/Vo

is presented in Fig. 1 (inset), which confirms that chiral
tunneling is most pronounced when Vo ≃ Vd.

Next we consider the effects of chiral tunneling in two
phase-coherent phenomena – the Josephson current in a
nanotube-based SNS junction and the persistent current
in a circular nanotube. Both systems have been studied
experimentally12,13.

IV. JOSEPHSON CURRENT IN A CHIRAL SNS

JUNCTION

To calculate the supercurrent in the SNS junction from
the relation J = (4e/h̄)∂Ω/∂ϕ (where Ω is the themo-
dynamic potential, ϕ is the phase difference and the fac-
tor 4 accounts for spin and valley degeneracies) we need
to know the spectrum of Andreev bound states in the
normal region (here a SWNT containing a “soft” scat-
terer characterized by Eq. (4), while the S/N boundaries
are assumed to be fully transparent). To this end we

FIG. 2: The Josephson critical current(in units e∆0/h̄ ) in a
short junction as a function of the potential strength U0 for
chiral angles: θ̃ = 0.52 (solid) and θ̃ = 0.2 (dashed).

follow the standard approach and solve the Bogoliubov-
de Gennes (BdG) equation with the piece-wise constant
magnitude (∆0, 0, ∆0) and phase of the order parameter.

In this way we obtain the usual bound state energies
in an SNINS junction (see, e.g.,14), where all the SWNT-
specific information is included in the transmission prob-
ability D(θ̃). Neither the scattering phases δf,b nor the
chiral phase φc appear in the spectral equation. The scat-
tering phases, being energy independent quantities in our
model, cancel (as in the case of ordinary SNS junction)
since they have opposite signs for electrons and holes.
In the absence of backscattering (U0 = 0) the nanotube
chirality has no influence on the Josephson current.

In light of the above, one may inquire what an effect
chiral tunneling could have on the Josephson current. For
chiral tunneling the junction transparency is an oscillat-
ing function of the potential strength U0. Therefore one
may expect a non-monotonic behavior of the maximal
supercurrent as a function of U0. For resonant chiral tun-
neling the junction becomes fully transparent (Dr = 1)
and the supercurrent coincides (up to a statistical fac-
tor 2) with the Josephson current in a superconducting
constriction15. The dependence of the critical (maximal)
current on U0 is shown in Fig. 2. The junction trans-
parency is minimal, Dmin = cos2 θ̃, for off-resonance chi-
ral tunneling. In this case the energy gap between the
Andreev levels in a junction that is short compared to the
superconducting coherence length is Eg(θ̃) = 2∆0 sin θ̃ ,
which could be very small for nanotubes with small chiral
angles. If so, this would be of importance and relevance,
e.g., for a recently proposed method for cooling the vi-
brations of a suspended nanotube16.

V. SPONTANEOUS PERSISTENT CURRENT

We turn next to the persistent current in a circular
SWNT, where the chiral phase influences the spectrum.
A local chiral scatterer, characterized (as above) by Eq.
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(4), is placed in a ring-shaped nanotube of circumfer-
ence L which is threaded by a magnetic flux Φ. We then
consider two sets of plane-wave solutions of the Dirac
equation, one to the left (l) and one to the right (r) of
the scatterer. By using the Aharonov-Bohm boundary
condition Ψr(x + L) = exp (2πiΦ/Φ0)Ψl(x) (Φ0 = hc/e
is the flux quantum) and relating Ψl and Ψr at the po-
sition of the scatterer by means of Eq. (4), one readily
finds the energy spectrum to be

En,jL

h̄vF
= ± arccos

[

√

D(θ̃) cos (χj)

]

+ δb(θ̃) + 2πn . (5)

Here n = 0,±1,±2, ..., , j = ±1 denotes the electron
energies in the ±kF -valley, χj = 2πΦ/Φ0 − jφeff and

φeff = kF L − φc(θ̃) is the effective dimensionless flux.
The term kF L represents a“statistical flux”, which results
in parity effects for spinless electrons in an isolated ring
(see, e.g.,17). Chiral tunneling introduces an additional
term –, namely, the chiral flux. Note that particles in the
±kF -valleys feel effective fluxes of opposite sign.

Evaluating the persistent current in a ring at a given
chemical potential µ as J(Φ; φc, µ) = −c∂Ω/∂Φ (where Ω
is the grand canonical thermodynamic potential) for the
energy spectrum (5) is rather straightforward. The re-
sult at low temperatures T ≪ h̄vF /πL and zero chemical
potential (undoped ring) is

J(Φ; φc) =
4

π
I0

∑

j=±

sin (χj)
√

D−1(θ̃) − cos2 (χj)
× (6)

∞
∑

k=1

sin

{

k arccos

[

√

D(θ̃) cos (χj)

]}

cos[kδb(θ̃)]

k
.

where I0 = evF /L. We observe from Eq. (6) that there
is a spontaneous persistent current (i.e., at zero external
magnetic flux Φ = 0, see18) in each valley (j = ±). How-
ever, at equilibrium and for a ring with a fixed chemical
potential (in particular µ = 0), when the energy levels in
the two valleys are equally populated, the net persistent
current at zero flux vanishes, J(Φ = 0; φc) = 0.

A net spontaneous current can appear in an isolated
SWNT-ring with a nonequilibrium population of Dirac
points. This happens for an isolated ring with an odd
number of spin-1/2 fermions and in the absence of 2kF -
backscattering. Under these conditions there is always
one “uncompensated” electron with definite spin projec-
tion and definite chirality (η = ±) at one of the two
(j = ±) Dirac points. The spontaneous current,

Jsp = jη
evF

L

√

D(θ̃) sin(U0 cos θ̃)
√

1 − D(θ̃) cos2(U0 cos θ̃)
=

±I0sgn
(

sin(U0 cos θ̃)
)

cos θ̃ , (7)

FIG. 3: Spontaneous persistent current (in units of I0 =

evF /L ) as a function of chiral angle θ̃ for the potential
strength U0 = 15.

is associated with the partial current of this zero-energy
state. Fig. 3 illustrates the behavior of spontaneous cur-
rent as a function of chiral angle θ̃. Note that the cur-
rent abruptly changes sign at the on-resonance points.
Irrespective of the actual potential strength U0, the am-
plitude of the current corresponds to the off-resonance
case |Jsp| = I0[Dmin(θ̃)]1/2 = I0 cos θ̃. This current is
analogous to the semi-resonance peaks in the persistent
current oscillations considered in Ref.19.

VI. CONCLUSIONS

In summary we have extended the concept of chiral
tunneling to metallic single-wall carbon nanotubes. This
phenomenon, which originates from an interplay between
electrostatic (Vd) and pseudomagnetic (Vo) potentials, is
pronounced when Vo ≃ Vd. The characteristic value of Vo

(caused by lattice deformations) is about 1 eV, but the
same lattice deformation leads to a much larger potential
Vd (of order 10 eV)10. Consequently, to achieve optimal
chiral tunneling conditions the electrostatic potential has
to be tuned, e.g. by a local gate. Notice that the electron-
electron interaction, neglected here, does not renormalize
intra-valley electron backscattering. This is because the
resulting smooth redistribution of electron charge den-
sity does not influence the transmission of 1D Dirac-like
electrons. This assertion was explicitly verified by our
calculation of the interaction-renormalized electron re-
flection probability for weakly interacting electrons using
the model as in Ref.20. Energy scales induced by the fi-
nite curvature of the nanotube walls ( a small band gap,
spin-orbit splitting) are of order 10 K for nanotubes with
diameter d ≃ 1 nm. To diminish the influence of these
effects on chiral tunneling one can use either nanotubes
with larger diameter ( a few nm) or nanotubes with small
chiral angles.



5

Acknowledgments

Discussions with L. Gorelik, A. Kadigrobov, S.
Kulinich, V. Shumeiko and finanical support from the
Swedish VR, the EC (FP7-ICT-2007-C; 225955 STELE),
and the Korean WCU program funded by MEST/NFR
(R31-2008-000-10057-0) is gratefully acknowledged. The
work of ENB and UL was supported by the US DOE
grant FG05-86ER 45234. IVK thanks the Department of
Physics at the University of Gothenburg for hospitality.



6

1 O. Klein, Z. Phys. 53, 157 (1929).
2 P. L. McEuen, M. Bockrath, D. H. Cobden, Y. G. Yoon,

and S. G. Louie, Phys. Rev. Lett. 83, 5098 (1999).
3 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

4 I. O. Kulik, Pisma Zh. Eksp. Teor. Fiz. 11, 407 (1970)
[JETP Lett. 11, 275 (1970)].

5 C. L. Kane, E. J. Mele, A. T. Johnson, D. E. Luzzi, B. W.
Smith, D. J. Hornbaker, and A. Yazdani, Phys. Rev. B
66, 235423 (2002).

6 The chiral angle is defined as in5 (θ = 0 for armchair nan-
otube and θ = π/6 for zigzag nanotube).

7 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932
(1997).

8 The effective scattering potential in Eq. (2) has been de-
rived microscopically for electron scattering in metallic car-
bon nanopeapods5.

9 N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui,
A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crom-
mie, Science 329, 544 (2010).

10 H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 (2002).
11 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat.

Phys. 2, 620 (2006).
12 R. Martel, H. R. Shea, and Ph. Avouris, Nature 398, 299

(1999).
13 A. Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H.

Bouchiat, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, C.
Journet, and M. Burghard, Science 284, 1508 (1999).

14 P. F. Bagwell, Phys. Rev. B 46, 12573 (1992).
15 I. O. Kulik and A. N. Omelyanchouk, Fiz. Nizk. Temp. 3,

945 (1977) [ Sov. J. Low Temp. Phys. 3, 459 (1977)].
16 G. Sonne, M. E. Pena-Aza, L. Y. Gorelik, R. I. Shekhter,

and M. Jonson, Phys. Rev. Lett. 104, 226802 (2010).
17 D. Loss, Phys. Rev. Lett. 69, 343 (1992).
18 I. O. Kulik, Fiz. Nizk. Temp. 30, 705 (2004) [ Low Temp.

Phys. 30, 528 (2004)].
19 P. Sandström and I. V. Krive, Phys. Rev. B 56, 9255

(1997).
20 D. Yue, L. I. Glazman, K. A.Matveev Phys. Rev. B 49,

1966 (1994).


