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Interlayer coupling in rotationally faulted graphene multilayers breaks the local sublattice-
symmetry of the individual layers. We present a theory of this mechanism, which reduces to an
effective Dirac model with space-dependent mass in an important limit. It thus makes a wealth of
existing knowledge available for the study of rotationally faulted graphene multilayers. We demon-
strate quantitative agreement between our theory and a recent experiment.
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INTRODUCTION

Experiments indicate that the 10–100 individual
graphene layers grown on the carbon-terminated face of
SiC are surprisingly well decoupled from one another
electronically. Early spectroscopic measurements [1, 2]
found a linear low-energy electronic dispersion to the ex-
perimental precision, like that of single-layer graphene
[3, 4]. In scanning tunneling microscopy/spectroscopy
(STM/STS) measurements the Landau level quantiza-
tion of the material in a magnetic field was found to be
essentially that of single-layer graphene [5]. Theoreti-
cally it has been shown that this approximate decoupling
of different layers is due to a relative twist of the layers
with respect to each other [6–12]. A renormalization of
the electron velocity [7, 11], van Hove singularities [13],
and interlayer transport [14] have been discussed as resid-
ual effects of the interlayer coupling.

In a recent STM measurement on multilayer epitax-
ial graphene [15] a spatially modulated splitting ∆ <∼
10 meV of the zeroth Landau level (LL0) was observed.
In view of the above this finding is intriguing, since the
states forming LL0 of an isolated layer of graphene with-
out electron-electron interactions are degenerate. There-
fore, either the observed splitting of LL0 is due to
electron-electron interactions, or the interlayer coupling
manifests itself prominently in this measurement. In
many ways the experimental data favors the latter sce-
nario. One such indication is the observation of a sub-
lattice polarization of the split LL0: there are regions
of space where the branch of LL0 that has positive en-
ergy ∆/2 appears to consist of wavefunctions localized
on the A-sublattice of the graphene lattice, while the
lower branch, at negative energy −∆/2, is localized on
the B-sublattice. The implied local sublattice-symmetry
breaking has a natural explanation in terms of the in-
terlayer coupling: the coupling to lower graphene layers
generically induces a difference between the local envi-
ronments of the two sublattices of the top layer in the
material, which is probed in STM. This is illustrated in
Fig. 1 for a stack of two graphene layers with a relative
twist. There are regions where atoms on the A-sublattice
of the top layer are closer to atoms in the bottom layer

than those on the B-sublattice of the top layer and re-
gions with the reverse situation. A second conspicuous
feature of the STM data is a spatial modulation of the
splitting of LL0: the regions where LL0 is split appear
to be arranged on a hexagonal superlattice with a lattice
constant l ≈ 70 nm. It thus shares the symmetries of
the moiré pattern characteristic of the twisted graphene
bilayer shown in Fig. 1—another strong indication that
the observed splitting is due to the interlayer coupling.

FIG. 1: (color online) Moiré pattern created by two graphene
lattices with a relative twist. Top layer A/B sublattice
atoms are shown as small blue/cyan (dark/light) spheres
and connectors; bottom layer A/B atoms are shown as large
red/yellow (dark/light) spheres. A region of AA alignment
lies at the center, where each top-layer atom has a neighbor
in the bottom layer. The AA region is surrounded by three
AB- and three BA-aligned regions where atoms on only one
top-layer sublattice have direct neighbors in the bottom layer.
As a consequence, the sublattice-symmetry is broken locally.

Earlier theory of the interlayer coupling in graphene
multilayers did not predict the observed splitting of LL0.
In Ref. [15] we therefore proposed a phenomenological
theory, modeling the different local environments of the
A- and the B-atoms of the top graphene layer by a “stag-
gered” electric potential VAB that has opposite sign on
the two sublattices. This model qualitatively accounts for
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the main features of the experimental data. In this article
we present a microscopic theory of the interlayer coupling
in rotationally faulted graphene multilayers. We reduce
the problem to an effective model of the top layer of the
material, which is probed in many experiments, such as
STM. In order to conveniently explain the rich spatial
structure of the system illustrated in Fig. 1 and observed
in Ref. [15] we formulate our theory in real space, as dis-
tinct from prior momentum-space approaches [7, 11, 14].
The resulting Hamiltonian reduces to the phenomeno-
logical model of Ref. [15] in certain limits and it likewise
reproduces the main qualitative features of the measure-
ments. Our theory moreover allows us to test quanti-
tatively whether the interlayer coupling can explain the
experimental findings [15]. The answer is affirmative: us-
ing the commonly accepted tight-binding parameters of
graphene multilayers our theory predicts both the mag-
nitude of the observed splitting and its magnetic field
dependence in very good agreement with experiment.

MODEL

We analyze the electron dynamics in a graphene layer
“0” when coupled to a second layer “1,” twisted by a
relative angle θ (θ = 0◦ for aligned honeycomb lattices,
cf. Fig. 1), neglecting electron-electron interactions. The
corresponding dynamics in multilayers at perturbatively
weak interlayer coupling, such as in the experiment [15],
are obtained by summation over all layers coupled to
the top layer 0. Twisted graphene bilayers have been
described before [7, 9–12] by a local interlayer coupling
Hamiltonian with parameters fitted to experiment [16],

Hint =

∫

dr Ψ(0)†(r)Γ(r)Ψ(1)(r) + h.c. (1)

Here, the spinors Ψ(j) collect the amplitudes for electrons
on the two sublattices of layer j ∈ {0, 1}. The interlayer

coupling Γ has contributions at wavevectors b
(0) − b

(1),
where b

(j) are reciprocal vectors of the graphene lattice in
layer j [12]. The Fourier components of Γ quickly decay
with increasing wavevector [9, 10, 12]. In this article we
therefore neglect all but the zero wavevector component,
setting Γ(r) = γ. In the “first star approximation” of the
wavefunctions employed below, the distinction between
commensurate and incommensurate interlayer rotations
then disappears. This approximation is valid for energies
ε ≫ V , where V is set by the Fourier components of Γ
that directly connect K-points of the two layers [12]. We
take the limit 0 < θ ≪ 1, when V ≪ γ (in the experiment
[15] θ ≈ 0.25◦ and according to the estimate V ≃ θ2γ of
Ref. [12] this approximation is justified at all accessed
energies).

In our limit 0 < θ ≪ 1 a long-wavelength description
is appropriate, where the isolated layers j are described

by Dirac model Hamiltonians (we set h̄ = 1)

H(j) = v

∫

dr
∑

ν

ψ(j)†
ν (r) [σν · (−i∇ + eA(r))]ψ(j)

ν (r).

(2)
Here, σν = (νσx, σy) is a vector of Pauli matrices, ν = ±
is the valley spin, −e the electron charge, and v the elec-
tron velocity in graphene. We have included an external
vector potential A to describe a perpendicular magnetic

field B. Eq. (2) acts on the long-wavelength spinors ψ
(j)
µν

defined by Ψ
(j)
µ (r) =

∑

ν u
(j)
µν (r)ψ

(j)
µν (r). We write the

Bloch functions u
(j)
µν (r) = {∑p exp[iK(j)

pν ·(r−τ
(j)
µ )]}/

√
3

in the“first star approximation” appropriate for the in-
terlayer coupling problem [12]. Here, p sums over the

three equivalent Brillouin zone corners K
(j)
pν that form

the Dirac point of valley ν [12] and τ
(j)
µ gives the position

of an atom on sublattice µ ∈ {A,B} within the unit cell
of layer j. In the long-wavelength theory (which neglects
inter-valley processes) the interlayer coupling reads

Hint =

∫

dr
∑

ν

ψ(0)†
ν (r)tν(r)ψ(1)

ν (r) + h.c., (3)

with a matrix t whose long-wavelength components have
wavevectors δKpν = (Rθ−1)K(0)

pν . Here, Rθ is a rotation
around the z-axis by angle θ. Retaining only those long-
wavelength parts of t we find

tµµ′

ν (r)=
γ

3

∑

p

e
iδKpν ·r+iKpν ·

“

τ
(0)
µ −τ

(1)

µ′

”

, (4)

where terms of order θ are neglected, while terms of order
θKr are kept as they may grow large.

EFFECTIVE THEORY

We next integrate out layer j = 1 in order to arrive at
an effective Hamiltonian Heff

0 (ω) = H0 + δHeff
0 (ω) for the

top layer j = 0, with

δHeff
0 (ω) = Hint(ω + V −H1)

−1Hint. (5)

We include an interlayer bias V that accounts for differ-
ent doping levels of the two layers [24]. In general, Heff

0 is
nonlocal in space and it depends on the energy ω. In the
limit of a large interlayer bias, however, |V | ≫ ω, γ, θv/a,
the sum ω + V − H1 becomes momentum- and energy-
independent to a good approximation. The spatial non-
locality and the energy-dependence of Heff

0 then may be
neglected and Heff

0 becomes a conventional Dirac Hamil-
tonian (2) with a matrix potential

δHeff
0 =

∫

dr
∑

ν

ψ(0)†
ν (r)

tν(r)t†ν(r)

V
ψ(0)

ν (r), (6)
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which we parametrize as

tν(r)t†ν(r)

V
= V eff(r)+νveσν ·Aeff(r)+meff(r)v2σz . (7)

The interlayer coupling in this limit generates effective
scalar and vector potentials V eff and A

eff , respectively,
and a mass term ∝ σzm

effv2 that implies an effec-
tive staggered potential V eff

AB = meffv2 in locally Bernal
stacked regions. It follows from Eq. (4) that δHeff

0ν oscil-
lates in space with wavevectors k = (Rθ −1)b, where b is
in the “first star” of reciprocal lattice vectors of graphene.
We plot δHeff

0ν in the parameterization of Eq. (7) in Fig.
2.

COMPARISON WITH EXPERIMENT

Now turning to the experiment [15] we note that at
large interlayer bias V our theory takes the form of the
phenomenological Hamiltonian proposed in Ref. [15]. It
then intuitively explains the main qualitative features of
the experiment: perturbatively in γ, the energy shift of
a LL0 wavefunction ψ0ν in valley ν is given by

δε0ν = 〈ψ0ν |δHeff
0ν (ω = 0)|ψ0ν〉. (8)

The unperturbed LL0 wavefunctions are localized on in-
dividual sublattices. Therefore, if δHeff

0 included a con-
stant staggered potential VAB > 0, with potentials VAB

and −VAB for atoms on the A- and B-sublattice, respec-
tively, a splitting ∆ = δε0,ν=1 − δε0,ν=−1 = −2VAB be-
tween sublattice-polarized LL0 states would result, as ob-
served experimentally: VAB would increase the energy of
the states ψ0,ν=−1 localized on the A-sublattice and de-
crease the energy of the ν = 1 states, localized on the
B-sublattice. For the space-dependent V eff

AB = meffv2 of
Fig. 2 that splitting is still present locally, around the
extrema of meff , at sufficiently large magnetic fields B,
when the LL0 wavefunctions fit well into the regions with
extremal meff . Comparison of Fig. 2 with Fig. 5a of Ref.
[15] shows that the thus predicted spatial symmetries of
|∆| ∝ |meff | agree with experiment. For large B the split-
ting approaches limB→∞ ∆ = −2V eff

AB. With decreasing
B, as the wavefunctions become more extended, ∆ gets
averaged over maxima and minima of meff and it is sup-
pressed, also in accordance with experiment.

The experiment of Ref. [15], however, was not done
in the high bias limit. The fact that in the measurement
[15] tunneling into LL0 occurred only at a finite bias volt-
age VSTM ≈ 60 meV between STM-tip and sample does
indicate a doping of the graphene layers at the surface.
The difference between the chemical potentials of the top
layer and the layers below after screening is expected to
be |V | <∼ VSTM ≈ 60 meV. However, the large applied
magnetic field 4 T ≤ B ≤ 8 T corresponds to a large cy-
clotron frequency ωc =

√
2v/lB [17], where lB = 1/

√
eB

(a) V eff (b) meff

(c) Aeff
x (d) Aeff

y

FIG. 2: (a) Effective potential V eff , (b) effective mass meff ,
(c) Aeff

x , and (d) Aeff

y of Eq. (7) as functions of rθ/a in grey-
scale. Scale bars span a unity increment in rθ/a. Note the
expected sixfold and threefold symmetries of V eff and meff ,
respectively. Aeff transforms as a vector under rotations.

is the magnetic length: ωc ≈ 105 meV at B = 8 T. In
this experiment therefore |V | < ωc and Heff

0 is not local
on the scale lB on which the wavefunctions vary.

The experiment also indicates that it is the coupling
between the top layer and its next-to-nearest layer (that
is the third layer from the top) that produces the ob-
served splitting. One concludes this from the observation
that the dominant moiré of the STM topography, most
likely due to the coupling of the top layer to its nearest
neighbor, has a much smaller lattice constant l̄ ≈ 4 nm
than the superlattice associated with the splitting of LL0

with l ≈ 70 nm. The estimates of the next-to-nearest
layer coupling in the literature vary [16, 18–20], but there
is a consensus that the coupling constant is γ <∼ 40 meV.
The physics at the energies ω = ±∆/2 ≈ ±5 meV where
the splitting of LL0 occurs is thus described by Heff

0 at
|ω|, γ ≪ |V | ≪ ωc. In this limit the effects of the inter-
layer coupling are perturbative, which allows us to deal
with the non-locality of Heff

0 analytically. We evaluate
Eq. (8) at |ω|, γ ≪ |V | ≪ ωc in the appendix. In accor-
dance with the intuition gained from the limit V → ∞
of the previous paragraph, the resulting ∆ is extremal
in locally Bernal stacked regions and the wavefunctions
are sublattice-polarized. The qualitative agreement with
experiment thus carries over to the non-local theory.

Now comparing our theory also quantitatively with the
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experiment we first take the limit of a large magnetic
field, when the wavefunctions fit well into the Bernal
stacked regions. The maximal splitting ∆max, reached at
B → ∞ in AB- or BA-stacked regions, can be extracted
from Eq. (20) of the appendix by taking the limit θ → 0
at fixed B. We find

|∆max| = |V |
∣

∣

∣

∣

γ

ωc

∣

∣

∣

∣

2

(9)

in our approximations. Estimating γ by γ = γ5 ≈
38 meV given in Ref. [19] we find that |∆max| ≈ 5 meV
for V ≈ 40 meV. Considering the uncertainties in our
knowledge of γ and V , this agrees well with the experi-
mentally observed value ∆ ≈ 10 meV.

We next quantify the magnetic field dependence of ∆
in the regions with maximal ∆ at B → ∞ (that is AB-
or BA-stacked regions) by expanding Eq. (20) asymptot-
ically for δKlB ≫ 1:

|∆| ∼ 2|V |√
3

∣

∣

∣

γ

v δK

∣

∣

∣

2

e−B∗/B (10)

×
∣

∣

∣

∣

∣

cos

(√
3B∗

5B
− π

6

)

− 2v δK

V
cos

(√
3B∗

5B
+
π

6

)∣

∣

∣

∣

∣

.

The crossover field B∗ = 5(δK)2/4e, where the expo-
nent in Eq. (10) becomes of order 1 and ∆ starts to be
exponentially suppressed, evaluates to B∗ = 4.8 T for
the interlayer rotation angle θ = 0.25◦ of the moiré pat-
tern in the experiment of Ref. [15]. Also that crossover
field compares favorably with the experiment, where the
splitting ∆ disappears between B ≈ 4 T and B ≈ 6 T.
Clearly therefore, the interlayer coupling can account for
the main features of the splitting of LL0 reported in Ref.
[15] also on a quantitative level.

We finally discuss the influence of the graphene layers
in the experimental sample that we have ignored so far.
The coupling of the top layer to layers further away than
the third layer from the top is negligibly small. The cou-
pling γ̄ to the second layer, however, is not: γ̄ ≈ 0.4 eV
[18]. As mentioned before, the STM topography of Ref.
[15] has a moiré pattern with scale l̄ ≈ 4 nm, which in-
dicates a rotation angle between the top two layers of
θ̄ ≈ 4◦. At this angle the coupling between the“first
stars” of the Brillouin zones of those two layers is per-
turbative, because of large energy denominators [7]. The
coupling between other K-points in the extended Bril-
louin zone is too small to play a role at the scale of the
observed splitting ∆ [12]. The perturbative calculation
outlined in the appendix therefore describes also the cou-
pling between the top two layers of the measured sample.
Applying Eq. (10) to that coupling we find an exponential
suppression of ∆ that is lifted only above a crossover field
B̄∗ = (θ̄/θ)2B∗ ≈ 300B∗ that is much larger than the ex-
perimentally applied fields. The only interlayer coupling
relevant to the experiment of Ref. [15] is therefore the
next-to-nearest layer coupling discussed above.

CONCLUSIONS

We conclude that the interlayer coupling is a viable
explanation of the splitting of LL0 reported in Ref. [15],
both qualitatively and quantitatively. The theory that
allowed us to reach these conclusions reduces in certain
limits to an effective Dirac model for the top layer of a
multilayer system, with effective potentials and a space-
dependent mass. As such it makes the wealth of knowl-
edge and intuition existing for the physics of single layer
graphene available for the study of rotationally faulted
multilayer graphene. Our theory thus appears to be an
advantageous starting point for the exploration of much
of the physics of this rather complex system. Numerous
unconventional and so far unexplained phenomena ob-
served in the material [21] as well as known properties
of our theory promise that such exploration will be re-
warding. Especially the effective mass term is expected
to have profound implications, for instance topologically
confined states [22, 23].

We gratefully acknowledge discussions with E. J. Mele,
D. L. Miller, P. San-Jose, and A. Lamacraft. This work
was funded in part by the NSF (DMR-0804908) and by
the Semiconductor Research Corporation Nanoelectron-
ics Research Initiative (NRI-INDEX).

Appendix: Perturbative Landau level splitting in a

large magnetic field

We evaluate the splitting ∆ = δε0,ν=1 − δε0,ν=−1 be-
tween the two valleys of LL0 at |ω|, γ ≪ |V | ≪ ωc, when
it is perturbative, using Eq. (8) with localized wave-
functions of LL0: ψ0,ν=1 = (0, exp[−(x2 + y2)/4l2B +
ixy/2l2B]/

√
2πlB) and ψ0,ν=−1 = σyψ0,ν=1. We write the

effective Hamiltonian as

δHeff
ν (r, r′, ω) = tν(r)Gν(ω, r, r′)t†ν(r′), (11)

where

Gν(ω, r, r′) =

∫

dk

2π

∑

n≥0,s=±

ψsnkν (r)ψ†
snkν (r′)

ω + V − sεn
(12)

with

ψsnk,ν=1(r) =
1√
2lB





Φn−1

(

y
lB

− klB

)

sΦn

(

y
lB

− klB

)



 eikx (n ≥ 0)

(13)
in terms of the oscillator wavefunctions

Φn(χ) =
(−1)n

√

2nn!
√
π
eχ2/2 d

n

dχn
e−χ2

. (14)

Here, Φ−1 = 0, εn =
√
nωc and the wavefunctions in the

valley ν = −1 are obtained as ψsnk,ν=−1 = σyψsnk,ν=1.
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In our limit |V | ≪ ωc, the contribution to δε0ν with the
smallest energy denominator comes from the term in Eq.
(12) with n = 0. That term is ∝ |tBB|2 in valley ν = 1. In
valley ν = −1 the corresponding term is identical, except
that tBB is replaced by tAA. One has tBB = tAA +O(θ)
[25]. To leading order in θ this term therefore does not
contribute to ∆. The dominant contribution to δε0 thus
comes from the off-diagonal elements of δHeff and from
the diagonal elements that are ∝ |tAB|2 or ∝ |tBA|2 [the
upper diagonal element in Eq. (12) at ν = 1]. In those
matrix elements all contributing energy denominators are
of the same order, O(ωc). We thus need to carry out the
sum over n in Eq. (12). We do this below for G1. The
Green function in the other valley is then obtained as
G−1 = σyG1σy. We first rewrite Eqs. (12) with (13) and
(14) as

G1(ω, r, r
′) =

∫

dk

2π
eik(x−x′)+[(y/lB−klB)2+(y′/lB−klB)2]/2

×g
(

ω,
y

lB
− klB,

y′

lB
− klB

)

(15)

and note that in our limit |ω| ≪ |V | ≪ ωc the component
gAA, which makes one of the leading contributions to ∆
according to the above considerations, can be expressed
as

gAA(0, χ, χ′) =

√
πV

2ω2
c

l(χ, χ′) + O
(

V 2

ω3
c

)

(16)

in terms of a function l that solves the differential equa-
tion

∂2l

∂χ∂χ′
= − 4√

π

∑

n≥1

Φn(χ)Φn(χ′)e−(χ2+χ′2)/2. (17)

Using the completeness of the oscillator wavefunctions
we find that Eq. (17) is solved by

l(χ, χ′) = [erf(χ) − sgn (χ− χ′)] [erf(χ′) + sgn (χ− χ′)]

+f(χ) + f ′(χ′) (18)

with arbitrary functions f and f ′. Exploiting the sym-
metries g(ω, χ′, χ) = g(ω, χ, χ′) and g(ω,−χ,−χ′) =
g(ω, χ, χ′) that are implied by Eqs. (12) and (15), one
finds that f = f ′ and that f is an odd function of χ. Now
noting that according to Eq. (12) 〈Φn|G(ω)|Φm〉 = 0 for
n 6= m one concludes that f = 0 [26]. The off-diagonal
matrix elements of g are found similarly. To leading order
in V they read

gAB(0, χ, χ′) =

√
2π

4ωc

∂

∂χ′
l(χ, χ′) + O

(

V

ω2
c

)

,

gBA(0, χ, χ′) = gAB(0, χ′, χ). (19)

Eqs. (11), (15), (16), (18), and (19) allow us to evaluate
δε0,ν=1, Eq. (8), to leading order in γ, yielding

δε0,ν=1 =
V

2ω2
c

∫

dχdχ′
∑

p,p′

[erf(χ) − sgn(χ− χ′)] [erf(χ′) + sgn(χ− χ′)]

×
{

t∗BA(δKp)tBA(δKp′) + (ωc/
√

2V ) [t∗BB(δKp)tBA(δKp′)(c · δKp′)∗ + t∗BA(δKp)tBB(δKp′)(c · δKp)]
}

× e−l2B[(2(δKp,x−δKp′,x)2+(δKp,x+δKp′,x)2+(δKp,y−δKp′,y)2+2i(δKp,x+δKp′,x)(δKp,y−δKp′,y)]/4−lB[(c·δKp)χ+(c·δKp′)∗χ′],

(20)

where scalar multiplication with c = (1, i) maps a vector
a onto its counterpart c · a in the complex plane. Here,
all wavevectors δKp are evaluated in valley ν = 1. The
energy shift δε0,ν=−1 in the other valley is obtained as
in Eq. (20), but with t replaced by σytσy and δKp eval-
uated in valley ν = −1. In Eq. (9) of the main text,
that is in the limit of large B, only the first term in the
curly brackets of Eq. (20) contributes and the resulting
splitting ∆ has extrema in regions where the layers are

locally Bernal stacked and |tBA|2 − |tAB|2 is extremal.

In the limit B → 0, when the wavefunctions become
more and more extended and start averaging over several
unit cells of the moiré superlattice, the splitting of LL0

decays to zero. In order to quantify this decay of ∆, Eq.
(20) may be expanded asymptotically in a large δKlB.
Then δε0ν is dominated by the terms with the weakest
exponential decay in δKlB, which give
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δε0,ν=1 ∼ V
∑

p,p′

t∗BA(δKp)tBA(δKp′) + (ωc/
√

2V ) [t∗BB(δKp)tBA(δKp′)(c · δKp′)∗ + t∗BA(δKp)tBB(δKp′)(c · δKp)]

v2(c · δKp)(c · δKp′)∗

× e−l2B[(δKp−δKp′)2+δKp·δKp′−i(δKp×δKp′)·ẑ]/2 (21)

at δKlB ≫ 1. Here, ẑ is the unit vector along the z-axis.
Again all wavevectors δKp are evaluated in valley ν = 1
and δε0,ν=−1 in the other valley is obtained by replacing
t with σytσy in Eq. (21) and evaluating δKp in valley
ν = −1. The sum over p and p′ in Eq. (21) results in Eq.
(10) of the main text.
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