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We analyze the effects of flavor splitting from staggered fermion lattice simulations of a low
energy effective theory for graphene. Both the unimproved action and the tadpole improved action
with a Naik term show significant flavor symmetry breaking in the spectrum of the Dirac operator.
Note that this is true even in the vicinity of the second order phase transition point where it has
been argued that the flavor symmetry breaking should be small due to the continuum limit being
approached. We show that at weaker couplings the flavor splitting is drastically reduced by stout
link smearing, while this mechanism is ineffective at the stronger couplings relevant to suspended
graphene. We also measure the average plaquette and describe how it calls for a reinterpretation
of previous lattice Monte Carlo simulation results, due to tadpole improvement. After taking into
account these effects, we conclude that previous lattice simulations are possibly indicative of an
insulating phase, although the effective number of light flavors could be effectively less than two due
to the flavor splitting effects. If that is true, then simulations with truly chiral fermions (such as
overlap fermions) are needed in order to settle the question.
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I. INTRODUCTION

Recently, a number of lattice Monte Carlo simulations of graphene and graphene-like systems have appeared1–4.
Refs.1–3 study the effective theory of Nf flavors of massless four component Dirac fermions, constrained to 2+1 dimen-
sions, subject to an instantaneous 3+1 dimensional Coulomb interaction5,6. In Ref.4, a 2+1 dimensional Thirring-like
model is investigated. This is related to graphene-like systems through a large Nf or strong coupling equivalence in
the dispersion relation for the auxiliary boson versus photon. Graphene has Nf = 2, but studying other Nf is of
interest in order to understand the phases of such theories more generally, and because the large Nf limit is under
theoretical control6. Other interesting studies coming from the effective field theory perspective have also recently
appeared7,8.

In this article we address the flavor symmetry breaking that is introduced when staggered fermions are used in the
lattice formulation. We also discuss the effect of photon tadpoles that come from lattice field theory. We will show that
both features play an important role in the interpretation of lattice results. We explore various improvements to the
lattice formulation. One is adding a Naik term to the action, which reduces discretization errors from O(a) to O(a2),
where a is the lattice spacing. Another is tadpole improvement, which removes ultraviolet divergent renormalizations
associated with the lattice link operators. A final improvement that we consider is stout link smearing, which we
find restores flavor symmetries at weak couplings but not at the strong couplings relevant to suspended graphene.
Importantly, we find that flavor symmetry breaking is significant in the vicinity of the second order phase transition
point that occurs in the noncompact gauge formulation. Thus although it has been argued3 that the continuum limit
should be approached at this point, and hence flavor symmetry violations (which are O(a)) should be small in this
regime, we have empirical results which contradict this expectation. Finally, we discuss how the flavor symmetry
violations, revealed in split eigenvalues of the Dirac operator spectrum, perhaps imply that there are effectively less
light flavors than two. Given the phase diagram that has been suggested by a number of studies in the Nf versus
inverse coupling plane, this would imply that the critical coupling for Nf = 2 would occur at a somewhat stronger
coupling than is found from staggered fermions. Only a simulation with truly chiral lattice fermions, such as overlap
(Neuberger) fermions9, can conclusively answer the question of what is the critical coupling for Nf = 2, since no
systematic way of restoring the flavor symmetry has been found so far for the staggered fermion formulations at the
stronger values of couplings.
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The outline of this paper is as follows. In Section II we describe the action of the continuum effective theory that
is supposed to describe the low energy limit of suspended graphene. We pay particular attention to redefinitions that
are involved in going to the action in its simplest form, as these will be mirrored in redefinitions made in the lattice
formulation. It will be shown that in the massless limit there is only one parameter in the theory, a coupling g which
is strong in the case of suspended graphene. We also describe the U(4) flavor symmetry of the effective theory, which
is spontaneously broken to U(2) × U(2) by the formation of a chiral condensate, when the coupling g is sufficiently
strong. In Section III we discretize the continuum action, formulating the lattice theory with staggered fermions.
We show the redefinitions that isolate the one parameter of the lattice theory (in the massless limit), β = 1/g2.
It is important here that we make redefinitions that maintain the unitarity of links; i.e., U(n) = exp[iθ(n)], where
θ(n) is a real lattice field representing the scalar potential associated with the instantaneous Coulomb interaction.
Interestingly, this approach demands an anisotropic lattice with lattice spacing at in the time direction and as in the
spatial directions, with the anisotropy parameter as/at set equal to the Fermi speed, as/at = vF . Flavor symmetry
violation of the unimproved staggered fermion formulation is discussed in Section IV. For 2+1-dimensional staggered
fermions, O(as, at) terms reduce the U(4) flavor symmetry to U(1) × U(1) in the massless limit. We evaluate the
spectrum of the unimproved Dirac operator on a large number of lattice field configurations that we have generated
by Monte Carlo techniques. We show that at stronger values of the coupling g (equivalent to small values of β), the
flavor symmetry violation is severe. This is revealed by the lack of four-fold spectrum degeneracies that would be
present if the U(4) symmetry were respected. We find that this is even true near the second order phase transition
point of the noncompact gauge formulation.

Section V describes Naik fermion and tadpole improvements to the lattice formulation. We do not find any
restoration of flavor degeneracy but do find significant reinterpretation of the bare lattice parameters in terms of
those that are tadpole improved, at strong coupling. It will be seen that that has important implications for the
phase diagram of the theory. We measure the average plaquette in dynamical simulations. We will show that for
stronger couplings the resulting tadpole improvement of the theory has a large effect when relating the simulation
lattice coupling β to the coupling in the tadpole improved action, βTI . The result is that for the noncompact gauge
action the insulator/semi-metal transition occurs at a physical coupling that is significantly smaller than the g2 of
suspended graphene. The apparent absence of a spectral gap in the experimental results for suspended graphene near
the Dirac K points14 is in conflict with the lattice simulations, and we will not be able to provide an explanation for
this discrepancy.

The topic of stout link smearing, which is also a type of improvement, is discussed in Section VI. We find that
this is very effective at weak couplings, but that it is not useful for restoring flavor symmetry at the strong coupling
relevant to either graphene or the second order phase transition point that occurs in the noncompact gauge action.
We conclude in Section VII with a number of observations, summarizing our finding.

II. CONTINUUM ACTION

A. The effective coupling g

The Euclidean spacetime action for the effective theory is given by

S =

∫

dtd2x
∑

α=1,2

(

ψ̄αγ0Dtψα + ~vF

∑

i=1,2

ψ̄αγi∂iψα

+mc2ψ̄αψα

)

+
ǫ0
2

∫

dtd3x

3
∑

i=1

(∂iA0)
2 (1)

Here γi, i = 0, 1, 2, are Euclidean Dirac matrices satisfying the SO(3) Euclidean rotation group Clifford algebra
{γi, γj} = 2δij . For instance we could choose

γi =

(

0 iσi

−iσi 0

)

, i = 0, 1, 2, (2)

composed of Pauli matrices with σ0 ≡ σ3. Also note that due to the nonrelativistic approximation, the covariant
derivative only involves the scalar potential A0

Dt ≡ ~∂t − ieA0 (3)
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Next we make the redefinitions

x0 = vF t, A0 =
~vF

e
A′

0, D0 = ∂0 − iA′
0 (4)

to obtain

1

~
S =

∫

d3x
∑

α=1,2

(

ψ̄αγ0D0ψα +
∑

i=1,2

ψ̄αγi∂iψα

+
mc2

~vF
ψ̄αψα

)

+
ǫ0~vF

2e2

∫

d4x

3
∑

i=1

(∂iA
′
0)

2 (5)

Recall that the Euclidean path integral that defines the theory has as its integrand exp(−S/~). The rescalings have
isolated the sole coupling constant in the theory,

g2 ≡ e2

~vF ǫ0
= (c/vF )4πα (6)

where α is the fine structure constant. A final redefinition

A′
0 = gÃ0, D̃0 = ∂0 − igÃ0 (7)

makes it clear that g is the coupling constant in the photon-electron-electron vertex of this theory.

Perturbation theory would be valid in the limit where αg ≡ g2

4π = α c/vF ≪ 1, which is clearly not the case for
graphene, where c/vF ≈ 300. Given that the coupling is in fact strong, it is natural to appeal to lattice Monte Carlo
methods, as has been done in the case of the nuclear strong interaction, quantum chromodynamics (QCD). It also
becomes clear why one would like to be able to adjust vF experimentally, since the coupling of the theory determines
the binding energy of any possible bound states that might form from the massless quasiparticles, analogous to
hadrons in QCD. In fact,1–4 argue that the theory is quite similar to QCD in that when the coupling is strong enough
one creates a nonzero “chiral” condensate 〈ψ̄αψβ〉 6= 0, so that the theory is in a Mott insulator phase. (Properly
speaking, chirality does not exist in 2+1 dimensions. It is, rather, a flavor symmetry that is being spontaneously
broken in the 2+1 dimensional effective theory.)

B. Symmetries

The three-dimensional SO(3) ≃ SU(2) rotation group acting on the spinors has generators Sij = 1
2σij ⊗ 1 where

σij = −(i/2)[γi, γj ] = ǫijk diag (σk, σk) (8)

and the 1 factor in 1
2σij ⊗ 1 acts on the two dimensional flavor space. The action (2) has a U(4) flavor symmetry,

with 16 generators that commute with those of the rotation group, (8):

1⊗ 1, 1⊗ σi, γ4γ5 ⊗ 1, γ4γ5 ⊗ σi (9)

γ4 ⊗ 1, γ4 ⊗ σi, γ5 ⊗ 1, γ5 ⊗ σi (10)

where γ4,5 are given by

γ4 =

(

0 1
1 0

)

, γ5 =

(

−1 0
0 1

)

(11)

when we choose the Dirac matrices (2). A mass term m
∑

α ψ̄αψα reduces the symmetry to U(2) ⊗ U(2) since the
generators (10) are broken. However, we still expect a four-fold degeneracy in the spectrum of the Dirac operator

M = γ0D0 +
∑

i=1,2

γi∂i +
mc2

~vF
(12)

because the 4 representation of U(4) decomposes to a (2,2) representation of the subgroup SU(2)⊗ SU(2). (In spin
language, this is the (j1, j2) = (1/2, 1/2) representation of SU(2)1 ⊗SU(2)2.) This is important in our considerations
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below because the Monte Carlo simulations are done at a nonzero mass, in order to avoid numerical difficulties
(inversion of a poorly conditioned Dirac matrix). We will examine the spectrum of the Dirac operator on the lattice
and compare to this four-fold degeneracy of the continuum theory with a mass term.

The formation of a “chiral” condensate 〈ψ̄αψβ〉 6= 0 in the m→ 0 limit would signal a spontaneous breaking of the
U(4) symmetry. In the case 〈ψ̄αψβ〉 ∝ δαβ the symmetry is reduced to U(2) ⊗ U(2) and in the massless limit m→ 0
there will be eight massless Goldstone pseudoscalar modes, parameterizing the coset U(4)/U(2) ⊗ U(2), with a low
energy dynamics described by the corresponding chiral perturbation theory. The formation of the chiral condensate
requires a sufficiently strong value of g, so there is a phase boundary at which the condensation “turns on.” The
works1–4 have located this phase boundary using lattice Monte Carlo methods.

III. DISCRETIZATION

The fermionic part of the action (1) is easily discretized using the staggered fermion formulation10. The gauge field
part of the action can be discretized in two ways, compact and noncompact, both of which will be described and used
here. From this point on we work in units where ~ = c = 1, and use a lattice spacing at in the time direction and
as in the spatial directions. Thus we have lattice fields at the sites t = atn0, xi = asni (i = 1, 2, 3) where n0, . . . , n3

are integers. We are permitting as 6= at because the anisotropy parameter as/at will provide us with the handle to
remove the Fermi velocity vF from the lattice action, so that the only parameters that will appear are the coupling
(6) and the fermion mass (which must eventually be taken to zero). This mirrors the continuum redefinition x0 = vF t
which appears in (4). The lattice action takes the form

S =
1

2

∑

n0n1n2

ata
2
s

{

1

at
(χ̄(n)U(n)χ(n+ 0̂) − χ̄(n)U(n− 0̂)χ(n− 0̂))

+vF
1

as

2
∑

i=1

ηi(n)(χ̄(n)χ(n+ ı̂) − χ̄(n)χ(n− ı̂)) +mχ̄(n)χ(n)

}

+
∑

n0...n3

ata
3
s

ǫ0
2

3
∑

i=1

(

θ(n) − θ(n− ı̂)

as

)2

(13)

The notation employs four-vectors n = (n0, n1, n2, n3) and unit vectors 0̂ = (1, 0, 0, 0) etc. Here χ, χ̄ are 1-component
fermions and as site dependent coefficients one has the staggered phase factors η1(n) = (−1)n0 and η2(n) = (−1)n0+n1 .
The reason that one-component fermions can be used is because staggered fermions “suffer” from doubling, so that
in three dimensions there are eight continuum modes, which organize themselves into two four-component fermions
under a change of basis.1 The link fields are defined as U(n) = exp(ieatθ(n)), where θ(n) is the lattice version of the
scalar potential A0(x). Here we have used the noncompact form of the gauge action in the last term. The compact
form will be discussed at a later point below.

We next rescale to dimensionless fields, χ→ χ/as and θ → θ/ate to obtain:

S =
1

2

∑

n0n1n2

{

χ̄(n)U(n)χ(n+ 0̂) − χ̄(n)U(n− 0̂)χ(n− 0̂)

+vF
at

as

2
∑

i=1

ηi(n)(χ̄(n)χ(n+ ı̂) − χ̄(n)χ(n− ı̂)) +matχ̄(n)χ(n)

}

+
∑

n0...n3

as

at

ǫ0
2

3
∑

i=1

(θ(n) − θ(n− ı̂))2 (14)

Finally, we can absorb the Fermi speed vF into the anisotropy parameter, choosing as/at = vF , to obtain the lattice

1 This is analogous to the four flavors that appear in the 3+1 dimensional staggered formulation of lattice quantum chromodynamics.
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action in its most convenient form,

S =
1

2

∑

n0n1n2

{

χ̄(n)U(n)χ(n+ 0̂) − χ̄(n)U(n− 0̂)χ(n− 0̂)

+

2
∑

i=1

ηi(n)(χ̄(n)χ(n+ ı̂) − χ̄(n)χ(n− ı̂)) + m̂χ̄(n)χ(n)

}

+
∑

n0...n3

β

2

3
∑

i=1

(θ(n) − θ(n− ı̂))2 (15)

where

β =
1

g2
=
vF ǫ0
e2

, m̂ = mat. (16)

A slightly different choice for the anisotropy parameter as/at will be made below when we come to tadpole improve-
ment.

We also consider the case of a compact gauge action, where the last term in (15) is replaced by

−β
∑

n0...n3

3
∑

i=1

Re U(n)U∗(n− ı̂) (17)

In the weak field limit (small θ(n)), which corresponds to large β, the two formulations are equivalent. However, at
small β it is expected that there will be qualitative differences.

IV. FLAVOR SYMMETRY VIOLATION

As stated above, a single staggered fermion automatically yields two flavors, since the staggered formulation does
not fully solve the doubling problem. In the continuum, the massless theory with two flavors has a U(4) flavor
symmetry, which is reflected in a degeneracy of the spectrum of the Dirac operator. On the other hand, it is known
that the leading order spectral degeneracies of the lattice Dirac operator are broken by flavor violating higher order
terms (in the lattice spacings at, as). In the massless limit but at nonzero lattice spacing only a U(1) ⊗ U(1) flavor
symmetry remains (in addition to some discrete symmetries)11. Long ago it was shown in the 3+1 dimensional case
that the flavor symmetry breaking can be seen by going to the “flavor basis”12. For 2+1 dimensions, see for example13

where staggered fermion flavor breaking terms were previously considered in the context of the Thirring model. Thus
in the present article we are reiterating concerns that were raised already in13, though here our principal concern is
the effect in the context of graphene effective lattice field theory. Although the flavor symmetry breaking terms are
irrelevant operators (i.e., they are suppressed by at, as), at one loop and at finite lattice spacing they have important
effects on the self energy of the fermions11. The effect of this flavor symmetry violation on the order parameter
〈ψ̄ψ〉 that is used to distinguish the semi-metal versus insulator phases is not known, though in our Conclusions we
will make a conjecture for what might occur. The flavor changing interactions are a lattice artifact that is known
to disappear in the continuum limit. Hence, if one could send the lattice spacings at, as of the discretized effective
theory (not to be confused with the lattice constant of the graphene system itself) to zero, one would recover the full
U(4) symmetry11. However, the Monte Carlo simulations are performed at finite at, as, and so this lattice artifact
must be taken into account. Thus it is not quite accurate to say that one is simulating the effective theory with
two (1+3)-dimensional Dirac fermions constrained to a plane, equivalent to four massless (1+2)-dimensional Dirac
fermions. An extrapolation in the lattice spacing or suppression of the lattice artifacts is needed. One would like a
systematic way to remove these lattice artifacts. This motivates the present study.

We determine the size of the flavor-splitting by studying the eigenvalues of the lattice Dirac operator, which is the
discretization of (12) corresponding to the lattice action (15). In Fig. 1 the “unimproved” data shows the average
spectrum of the staggered Dirac operator, for the lowest lying modes. Here a Monte Carlo simulation was performed
with β = 0.11, and eigenvalues were obtained for each configuration of the gauge field. The error bars in the figure
indicate the standard deviation in the eigenvalues. It can be seen that there is a linear rise in eigenvalues, with no
degeneracies whatsoever. Thus at strong coupling the flavor symmetry of the continuum is badly broken.

Next we consider the case of weak coupling, β = 4.0. In Fig. 3 the unimproved data does show evidence of
approximate degeneracies. The weaker coupling leads to smoother configurations of the gauge field. Rough gauge
fields are farther away from the continuum limit, so that the O(at, as) flavor symmetry violations is more pronounced.
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We have examined the spectrum for other values of β. The general pattern is that for strong coupling the flavor
symmetry is badly broken. Our next task is to attempt to restore it, since the β corresponding to graphene and the
phase transition of the effective theory is at a strong coupling value.

V. IMPROVEMENT

In fact, some time ago the lattice QCD community set aside unimproved staggered fermions due to unwanted
lattice artifacts. Modern staggered fermions are improved in various ways in order to suppress these effects17,18.
So-called AsqTad staggered fermions were popular for several years for the study of K and B physics (e.g.19). Further
improvements have been introduced to produce HISQ staggered fermions20. Detailed studies of the low lying eigenvalue
spectrum of various staggered Dirac operators have for instance been conducted in21. In each case, an important effect
is to restore the flavor degeneracy by suppressing flavor changing interactions. The present work represents a first
attempt in that direction; however, we will find that improvement of staggered fermions in the present context is more
difficult. The reason is that for the study of graphene and the phase transition of the effective theory the coupling is
strong, where the flavor symmetry is badly broken.

In lattice QCD it is known that flavor symmetry breaking can be ameliorated by making improvements to the lattice
action that reduce lattice artifacts. An expansion in the lattice spacing a (or at, as in our case) and gauge coupling
g allows for coefficients of various improvement terms to be determined in perturbation theory. However, asymptotic
freedom should be important, since in that case it is clear how one makes these coefficients small in matching onto
the desired continuum theory. It is then an important question whether for the strongly coupled theory of graphene,
where there is no asymptotic freedom, the lattice action can be improved so as to reduce the flavor symmetry breaking
effects. Certainly perturbative improvement is out of the question.

A. Tadpole improvement

Tadpoles arise from 〈A2
0(x)〉 ∼ 〈θ2(n)〉 ∼ 1/a2

t , where the estimate is made on dimensional grounds. As mentioned
above, we study both the compact and noncompact gauge actions. In the noncompact case, gauge field tadpoles only
enter the perturbation series through the gauge links U(n) = exp(iateθ(n)) that are contained within the fermion
action. In the compact case there are additional multiphoton vertices coming from expansion of the gauge action
(17). Consider the following example in the fermion time-like hopping terms. In this, we reintroduce dimensions and
canonical kinetic term for θ(n) through θ(n) → atgθ(n). Then expanding the link U(n) = exp[iatgθ(n)] and focusing

on the contribution to the fermion self-energy, we obtain a term atg
2〈θ2(n)〉χ̄(n)χ(n+ 0̂) ∼ (g2/at)χ̄(n)χ(n+ 0̂). I.e.,

there is a large correction to the hopping term, even though the θ2χ̄χ vertex is irrelevant by power counting. There
is also a large effect on the marginal θχ̄χ vertex:

igθ(n)

(

1 − 1

2
a2

t g
2〈θ2(n)〉 + · · ·

)

χ̄(n)χ(n+ 0̂)

= igθ(n)
(

1 + O(g2)
)

χ̄(n)χ(n+ 0̂) (18)

Here again, the correction is O(g2) rather than O(g2a2
t ), due to the tadpole 〈θ2(n)〉 ∼ 1/a2

t . The tadpoles associated
with the irrelevant fermion vertices thus give significant contributions to the renormalization of g, causing the matching
onto continuum perturbation theory to be problematic. This can be circumvented through a change in renormalization
scheme, known as tadpole improvement15. In fact, since for graphene the value of g is large, the tadpoles corrections
are out of perturbative control and must be evaluated nonperturbatively.

We will now show that the translation between the bare lattice β = 1/g2 (i.e., the parameter that appears in
the action that is simulated) and its tadpole improved value βTI is somewhat different depending on whether the
compact or noncompact form of the gauge action is used, more so at stronger values of the coupling. From this,
the physical coupling—as estimated by the tadpole improved value βTI—is different from the bare coupling, due to
radiative effects. In fact, we will reproduce the results of3 regarding the relationships between βTI and β.

We begin with the expectation value 〈P 〉 of the plaquette operator P = U(n)U∗(n+ ı̂), i = 1 or 2, which is related
to 〈A2

0(x)〉. The average link u0 is defined through this quantity:

u0 = 〈P 〉1/2
(19)

Note that the square root is used here, in contrast to the fourth root that appears in QCD applications, since the
plaquette operator is quadratic in the links that are allowed to fluctuate in the present, nonrelativistic formulation.
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Tadpole improvement15 can be understood as integrating out ultraviolet modes of the link operator U(x), to obtain
an effective infrared link operator. The quantity u0 represents the ultraviolet divergent effects of tadpoles 〈A2

0〉. Thus,
the link is related to an infrared (IR) field V (n) or θIR(n):

U(n) ≡ u0V (n) ≈ u0(1 + iateθ
IR(n)) (20)

When the lattice is formulated using instead the V (n) = U(n)/u0 links, one has

S =
∑

n0n1n2

{

a2
s

u0
(χ̄(n)U(n)χ(n+ 0̂) − χ̄(n)U(n− 0̂)χ(n− 0̂))

+vFatas

2
∑

i=1

ηi(n)(χ̄(n)χ(n+ ı̂) − χ̄(n)χ(n− ı̂)) +mata
2
sχ̄(n)χ(n)

}

+
∑

n0...n3

atas
ǫ0
2

3
∑

i=1

(θ(n) − θ(n− ı̂))2 (21)

The redefinition of variables is now

χ =

√
u0

as
χ′, θ =

1

ate
θ′ (22)

One finds that as/at = vFu0 simplifies the spatial derivative term and that the result is equation (15) except that β
and m̂ are replaced by

β = u0
vF ǫ0
e2

= u0β
nc
TI, m̂ = u0m̂TI (23)

Note that βnc
TI and m̂TI are what would have appeared in the lattice action had we not included u0 in the redefinition

(22). Hence these are the inverse coupling and dimensionless mass of the tadpole improved action. By contrast, β
and m̂ are the inverse coupling and mass that are used in the simulation after going to the redefined variables where
the action takes its simplest form (i.e., u0 does not appear explicitly). Thus in the massless limit, for the noncompact
gauge action, the entire effect of the tadpole improvement is to rescale the inverse coupling according to this equation.
Something similar occurs in the compact gauge action case. There we have in addition a factor 1/u2

0 in front of the
gauge term,

∑

n0...n3

1

u2
0

as

at

ǫ0
2e2

3
∑

i=1

U(n)U∗(n+ î) (24)

Here then the result is

β =
1

u0
βc

TI (25)

These rescalings of β agree with those found recently in3.

B. Naik improvement

The Naik16 fermion action improvement reduces discretization errors and when the tadpole improvement is also
performed it is given by:

SN = a2
s

∑

n0n1n2

χ̄(n)
1

2

{

c1
u0

[U(n)χ(n+ 0̂) − U∗(n− 0̂)χ(n− 0̂)]

+
c2
u3

0

[U(x)U(n+ 0̂)U(n+ 20̂)χ(n+ 30̂)

−U∗(n− 0̂)U∗(n− 20̂)U∗(n− 30̂)χ(n− 30̂)]

}

+vFasat

∑

i,n0n1n2

ηi(n)χ̄(n)
1

2

{

c1[χ(n+ ı̂) − χ(n− ı̂)] + c2[χ(n+ 3ı̂) − χ(n− 3ı̂)]

}

+a2
satm

∑

n0n1n2

χ̄(n)χ(n) (26)
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Tree level improvement makes the action O(a2) accurate by setting c1 = 9/8, c2 = −1/24.
Next we make the redefinitions (22), together with setting as/at = vFu0 as before, to obtain:

SN =
∑

n0n1n2

χ̄′(n)
1

2

{

c1[U(n)χ′(n+ 0̂) − U∗(n− 0̂)χ′(n− 0̂)]

+
c2
u2

0

[U(x)U(n+ 0̂)U(n+ 2 0̂)χ′(n+ 3 0̂)

−U∗(n− 0̂)U∗(n− 2 0̂)U∗(n− 3 0̂)χ′(n− 3 0̂)]

}

+
∑

i,n0n1n2

ηi(n)χ̄′(n)
1

2

{

c1[χ
′(n+ ı̂) − χ(n− ı̂)] + c2[χ

′(n+ 3ı̂) − χ′(n− 3ı̂)]

}

+m̂
∑

n0n1n2

χ̄′(n)χ′(n) (27)

where again, m̂ = matu0. This is the “Naik-tadpole improvement;” note that u0 appears explicitly in this action. To
obtain just the Naik improvement, one can set u0 = 1 in the previous expressions.

C. Spectrum results

We have computed the low lying eigenvalues of the spectrum of the Dirac operator on dynamical configurations
at various values of β, in order to see the size of the flavor symmetry violating effect. Fig. 1 shows the spectrum of
average eigenvalues for β = 0.11, m̂ = 0.01 on 123 × 8 lattices, with compact gauge action, as well as the standard
deviation (by error bars). Fig. 2 shows the same thing except that the noncompact gauge action was used. In either
case, one can see that there is no hint of the four-fold degeneracy of the continuum theory and that the splitting
is of the order 0.02. By comparison, the explicit mass in the simulations of1 ranged from 0.0025 to 0.02. Thus the
flavor changing interactions split the spectrum at the order of the mass or greater, and one is far from the desired
theory. Since according the to Banks-Casher relation24 the condensate on the lattice is determined by the density of
near-zero modes, a significant systematic error will be introduced by the flavor splitting that we observe. We note
that for the “improved” Dirac operators the splitting is not at all improved. This would seem to indicate that the
lattice is actually quite coarse, so that suppressing lattice artifacts cannot be achieved by simple power-counting in
the lattice spacings at, as, such as is done in the Naik improvement. It is also worth mentioning that large scaling
violations were seen in1 for strong coupling (very small values of β) which would be a further indication that lattice
artifacts are playing a dominant role. However, the fact that1 observe scaling in a regime where we see large flavor
violations is interesting, as it suggests that there is a universal description but that it is one with less flavor symmetry
than the U(4) of the target graphene effective theory.

As a further check, we have also computed the spectrum from a simulation at the weak coupling β = 4 where
the flavor violation is expected to be small due to weak interactions. We also note that at this weak value of the
coupling the compact and noncompact formulations of the gauge action are completely equivalent. Thus the flavor
symmetry breaking that we next describe is universal. At large β the fluctuations in the gauge field strength are
suppressed and a perturbative expansion of the link operators U0(x) ≈ 1 + iagAµ(x) should be valid. Results for the
low lying eigenvalues of the three types of Dirac operators are shown in Figs. 3 and 4, and these certainly show a
closer approximation to the four-fold degeneracy. However, the improved Dirac operators do not show any superiority
to the unimproved one. This somewhat surprising result suggests that a further improvement may be needed, such
as smearing, something which we explore in the next section.

It is also interesting to have a statistical measure for what happens to flavor symmetry over an ensemble. For this
purpose we have computed

RFSV =
λ̄4 − λ̄1

1
4 (λ̄1 + λ̄2 + λ̄3 + λ̄4)

(28)

where λ̄i is the average value of the ith eigenvalue. This measures the relative flavor symmetry breaking in the first
four eigenvalues. On the β = 0.11 (compact) lattice we obtain RFSV ≈ 1.4(1). On the β = 4.0 (compact) lattice we
obtain RFSV ≈ 0.18(2). These results are independent of the improvement, which is curious at the larger β.
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FIG. 1: Spectrum of lowest lying modes of the three massless Dirac operators we consider, for compact gauge action. The
configurations of gauge fields were dynamically generated at β = 0.11 and m = 0.01 on a 123 × 8 lattice with the unimproved
staggered fermion action and plaquette gauge term. The tadpole improvement of the Naik Dirac operators used u0 = 0.256.
Average eigenvalues are shown, and the error bars represent standard deviations.

FIG. 2: Same as Fig. 1 except that here we use the noncompact gauge action.

FIG. 3: Similar to Fig. 1 (compact gauge action) except that β = 4.0 and u0 = 0.974.
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FIG. 4: Similar to Fig. 2 (noncompact gauge action) except that β = 4.0 and u0 = 0.974.

β 〈P 〉 u0 βc

TI

0.037 0.0306(40) 0.175(11) 0.00647(42)

0.058 0.034(3) 0.183(7) 0.01061(41)

0.11 0.066(4) 0.256(8) 0.02816(88)

0.15 0.0901(44) 0.3002(73) 0.0450(11)

0.25 0.1492(43) 0.3863(56) 0.0965(15)

0.5 0.504(6) 0.710(4) 0.355(2)

1.0 0.814(3) 0.9023(14) 0.9023(14)

2.0 0.9120(13) 0.9550(7) 1.91(14)

4.0 0.949(2) 0.974(1) 3.896(4)

TABLE I: The average plaquette 〈P 〉 and the tadpole correction factor u0 that is derived from it, as a function of β, for the
compact gauge action. This then gives a value for tadpole improved inverse coupling β = βc

TI. For instance, for graphene we
want βc

TI = 0.037 and the inverse coupling that should be used in the simulation is β ≈ 0.12.

D. Relation between β’s

Above, we found that the value of βTI in the tadpole improved action can be related to another value β obtained
after redefinitions, given by Eqs. (23) and (25). The latter should be used in the simulation with an action that is
equivalent to one without tadpole improvement (or only a factor 1/u2

0 on the temporal Naik term). We are therefore
interested in the effective value βTI as a function of β so that we know how to interpret simulations done at β in
terms of the underlying βTI . For instance, Drut and Lähde find a critical value of the coupling for which a condensate
forms, and this should be interpreted as a value of β at which the simulation is done (i.e., in an action without u0

appearing explicitly). To see what this physically corresponds to, one must translate back to βnc
TI in order to find the

value of the coupling in the tadpole improved action, where ultraviolet artifacts are minimized.
Results for the compact action are summarized in Table I and for the noncompact action in Table II. Thus to

simulate graphene, which has βTI ≈ 0.037, we should choose the modified values β given in the first rows of Tables
I or II, depending on the form of the gauge action. This gives β ≈ 0.12 for compact and β ≈ 0.004 for noncompact.
The simulation coupling where Drut and Lähde have found a phase transition is βc ≈ 0.074. The physical value of
the inverse coupling is then approximately βnc

TI ≈ 0.21, which is at a coupling significantly weaker than graphene,
βTI ≈ 0.037. Thus the appearance of the condensate 〈ψ̄ψ〉 occurs for a weaker value of the coupling, and will persist
at the stronger value of graphene. One concludes that the lattice simulation is indicative of an insulator phase. This
is in agreement with the findings of3.

We also mention in passing that the value of 〈P 〉 and hence u0 turned out to be essentially independent of which
fermion action (unimproved, Naik improved or Naik-tadpole improved) we used in the simulation. We also changed
the mass to 0.02 and find the same value of u0.
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β 〈P 〉 u0 βnc

TI

0.002 0.0131(37) 0.114(16) 0.0175(25)

0.004 0.0108(54) 0.104(26) 0.0385(96)

0.005 0.0121(41) 0.110(19) 0.0455(78)

0.01 0.0121(27) 0.110(12) 0.091(10)

0.02 0.0118(42) 0.108(19) 0.184(33)

0.037 0.0272(46) 0.165(14) 0.224(19)

0.058 0.0757(40) 0.2751(73) 0.2108(56)

0.11 0.2392(45) 0.4891(46) 0.2249(21)

0.25 0.5228(40) 0.7230(27) 0.3458(13)

0.5 0.7192(29) 0.8481(17) 0.5896(12)

1.0 0.8466(20) 0.9201(11) 1.0868(13)

2.0 0.9195(11) 0.9589(6) 2.0857(13)

4.0 0.94(2) 0.97(1) 4.124(43)

TABLE II: The average plaquette 〈P 〉 and the tadpole correction factor u0 that is derived from it, as a function of β, for the
noncompact gauge action. This then gives a value for tadpole improved inverse coupling β = βnc

TI. For instance, for graphene
βnc

TI = 0.037 and the inverse coupling that should be used in the simulation is β ≈ 0.004.

VI. STOUT LINK SMEARING

We have seen that at weak coupling (large β), the spectrum degeneracies start to appear. This is the result of the
fact that in this regime the gauge fields are smooth, whereas at strong coupling the gauge fields are rough. Clearly
what is needed at strong coupling is a way to smooth out the short distance (unphysical) roughness without destroying
the long distance (physical) fluctuations of the gauge field. The way that this can be done is to use smeared links
in the fermion action. Here we will study stout link smearing25 and will find that it successfully restores the level
degeneracies for moderate to weak coupling, but that it fails at couplings as strong as graphene, βTI = 0.037.

Stout link smearing in the present context introduces the definitions

C(n) = ρ

3
∑

i=1

[U(n+ ı̂) + U(n− ı̂)], Ω(n) = C(n)U∗(n), Q(x) =
i

2
[Ω∗(n) − Ω(n)] (29)

and U (k)(n) at smearing step k are mapped into U (k+1)(n) according to

U (k+1)(n) = exp[iQ(k)(n)]U (k)(n) (30)

It can be seen in Fig. 5 that smearing works very well at weak coupling. The smeared eigenvalue data has 10
smearing iterations with smearing parameter ρ = 1/6, where the latter was found to be optimal based on trial and
error. Less smearing iterations obviously results in less degeneracy. Unfortunately, as the coupling is made stronger,
the smearing becomes progressively less effective, as can be seen in Fig. 1.

By contrast for the noncompact gauge action, even at the relatively small value of β = 0.11, one finds a significant
improvement from smearing; see Fig. 6. Since the phase transition occurs at β ≈ 0.07 we expect smearing to be quite
useful for reducing flavor symmetry breaking in the vicinity of this point. On the other hand from Table II we found
that graphene with βnc

TI = 0.037 corresponds to β ≈ 0.004 which is far too strong for smearing to help. Indeed we
have found that there is no restoration of degeneracy in this case.

VII. CONCLUSIONS

We have found that at β <∼ 1 both the unimproved action, and the tadpole-improved action with a Naik term
show significant flavor symmetry breaking. We have also measured the average plaquette term used for tadpole
improvement and have described how it calls for a reinterpretation of previous lattice simulation results. Importantly,
it indicates that the insulator/semi-metal phase transition observed on the lattice occurs at a physical coupling that
is significantly weaker to the one that appears in suspended graphene. It follows that the lattice simulations predict
that the chiral symmetry is spontaneously broken and that suspended graphene would be in the insulating phase.
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FIG. 5: β = 4.0, compact gauge action, 10 stout link smearings with ρ = 1/6.

FIG. 6: β = 0.11, noncompact gauge action, 10 stout link smearings with ρ = 1/6.

On the other hand, conjectured phase diagrams in the g versus Nf plane would indicate that the critical g decreases
as Nf is decreased. So, if the staggered formulation really simulates effectively less that Nf = 2 due to the flavor
symmetry breaking, the lattice simulations would predict a critical g that is weaker than that of graphene. Restoration
of the U(2Nf ) flavor symmetry would tend to increase the value of the critical g. Thus it is still possible, though
unlikely, that lattice simulations would predict that suspended graphene is in the semi-metal phase, provided the
full flavor symmetry is intact. We think that it is unlikely since the critical βc would have to shift all the way from
β = 0.07 to β = 0.004 as a result of restoring the flavor symmetries. Still, a study with overlap fermions is of interest
to settle the question.

We have conducted studies with both the compact and noncompact formulation in their gauge action. In 1+3
dimensional quantum electrodynamics, the compact formulation has difficulties with a bulk phase transition in the
strong coupling regime, separating it from the continuum theory (see for example22 and recent work in23). On the
other hand, with the nonrelativistic constraint Ui(x) ≡ 1, i = 1, 2, 3 that we impose, the phase structure of the
compact theory will be quite different since, for instance, magnetic monopoles will not exist. However, the presence
of vortices requires further investigations of the compact theory, which we will leave to future work. At present what
is known from3 is that the compact theory has a first order phase transition in contrast to the second order transition
of the noncompact case. This very different phase structure indicates that nonperturbative features, such as vortices,
are having a significant effect in distinguishing the two theories at strong coupling. In the present article we show
results for both compact and noncompact gauge action. We find that the qualitative features do not change: the
large flavor violations are present in either formulation at strong coupling.
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Appendix A: Simulation details

All of our results were obtained using hybrid Monte Carlo simulations with dynamical staggered fermions. This
simulation method has been reviewed in the present context in2. The mass in our simulations was ma = 0.01, where
a is the lattice spacing. We have simulated on various sizes of lattices (63 × 8, 83 × 8, 123 × 8, 163 × 8 and 243 × 8).
We checked that the configurations were fully thermalized by comparing ordered and disordered starts.
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