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We study resonant response of an underdamped nanomechanical resonator with fluctuating fre-
quency. The fluctuations are due to diffusion of molecules or microparticles along the resonator.
They lead to broadening and change of shape of the oscillator spectrum. The spectrum is found
for the diffusion confined to a small part of the resonator and where it occurs along the whole
nanobeam. The analysis is based on extending to the continuous limit, and appropriately modify-
ing, the method of interfering partial spectra. We establish the conditions of applicability of the
fluctuation-dissipation relations between the susceptibility and the power spectrum. We also find
where the effect of frequency fluctuations can be described by a convolution of the spectra without
these fluctuations and with them as the only source of the spectral broadening.
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I. INTRODUCTION

Nano-mechanical resonators are attracting interest in
various areas of physics. Because they are small and their
vibrations can be strongly underdamped, even a small
perturbation can lead to a detectable change of their fre-
quency. This can be used for charge1–3 and mass4–8 sens-
ing, high resolution magnetic force microscopy,9,10 and
other measurements, see Refs. 11–15 and papers cited
therein. The analysis of the frequency change usually re-
lies on the assumption that the properties of the system
do not change during the measurement. For example,
in mass sensing it is assumed that the massive particle
attached to the resonator does not move. The motion
would lead to variations of the vibration frequency in
time. This is because the resonator displacement in the
vibrational mode depends on coordinates, for example,
for the fundamental mode of a doubly clamped nanobeam
it is maximal at the center, whereas for a cantilever it is
maximal at the apex. The larger the displacement at the
particle location the stronger is the particle-induced fre-
quency change.16 If the motion is random, there emerge
frequency fluctuations, which broaden the spectrum of
the resonant response.

The effect of frequency fluctuations on the spectrum of
an oscillator has been well understood in the limit where
the correlation time of such fluctuations tc is small. In
the limit tc → 0, if the fluctuations are Gaussian, they
lead to diffusion of the oscillator phase, keeping the oscil-
lator power spectrum Lorentzian, cf. Ref. 17. The effect
of Gaussian fluctuations with a finite correlation time
has been also discussed in the literature, see Ref. 18–
20 and references therein. In the context of nanores-
onators, an important role can be played also by ran-
dom frequency jumps due to molecule attachment and
detachment.4,21–23

In the present paper we consider the effect of phase
fluctuations due to continuous in time random frequency
variations, which are generally non-Gaussian. A simple
physical mechanism of such variations is diffusion of a

massive particle along a nanoresonator. We develop a
general method for describing the susceptibility of the
oscillator with continuously fluctuating frequency. One
might think that this susceptibility could be described
by weighting a partial susceptibility for a given frequency
(with the imaginary part described by a Lorentzian) with
the probability density to have such frequency. How-
ever, susceptibilities with close frequencies interfere; in
other words, to find the susceptibility one should add
the amplitudes rather than the cross-sections of the cor-
responding transitions. We develop a method that takes
this interference into account. We then apply the results
to models of interest for particles diffusing along nano-
resonators.

Another question of interest is the interrelation be-
tween the power spectra and the susceptibilities of under-
damped oscillators in the presence of nonequilibrium fre-
quency fluctuations. We provide the conditions of appli-
cability of the standard fluctuation-dissipation relation,
including the case of oscillators with weakly nonlinear
restoring force and nonlinear friction. We also address
the question of where the effects of oscillator decay and
thermal fluctuations, on the one side, and of its frequency
fluctuations, on the other side, can be considered inde-
pendently. This analysis provides a link to the classical
work on the lineshape of magnetic resonance in the pres-
ence of transition frequency fluctuations, where different
methods were developed.24–26

In Sec. II we describe the model, a single mode res-
onator with a massive particle diffusing along it. We as-
sume that the vibrations do not affect the diffusion, that
is, there is no back-action. We introduce the concept of
partial susceptibility density (PSD) for a given particle
position and find it in the limiting cases of slow and fast
frequency fluctuations. In Sec. III we derive an equation
for the PSD of an underdamped oscillator. This equation
is solved in explicit form in Sec. IV for diffusion confined
to a small part of the nanoresonator. In Sec. V the PSD
is found in the form of a continued fraction for diffusion
along a doubly-clamped nanobeam. In Sec. VI we study



2

the connection between the susceptibility and the power
spectrum and find the conditions where the averaging
over frequency fluctuations can be done separately from
the averaging over thermal fluctuations of the oscillator.
In Sec. VII we provide a summary of the results.

II. UNDERDAMPED OSCILLATOR WITH A
DIFFUSION-MODULATED FREQUENCY

Mechanical nanoresonators typically have a well-
separated fundamental mode with eigenfrequency ω0 that
largely exceeds the decay rate Γ, with the Q factor
Q = ω0/2Γ ∼ 103 − 105, see2,3,7,8 and references therein.
Forced vibrations of such mode can be described by the
model of a driven oscillator, and for not too strong driv-
ing the oscillator can be assumed harmonic. We can then
write the equation of motion for the oscillator coordinate
q in the form

q̈ + 2Γq̇ + [ω0 + ∆D(x)]2q = 2
F

M
cosωt+ ξT (t). (1)

Here, F and ω are the amplitude and frequency of the
driving force. The term ξT (t) represents thermal noise,
and M is the oscillator mass.

The term ∆D describes frequency fluctuations. They
can have different physical origin. In this paper we are
interested in fluctuations which are continuous in time,
but are not necessarily Gaussian and have a finite cor-
relation time. As mentioned above, for concreteness we
assume that they are caused by a particle absorbed on
the vibrating nanobeam or trapped in the microchan-
nel inside the vibrating cantilever and diffusing along the
nanoresonator. Such diffusion changes the mass distri-
bution and therefore causes a frequency shift. If x is the
particle position along the nanoresonator, we can write

∆D(x) = ω0(m/M)R(x), (2)

where m is the mass of the particle, and R(x) can be
called mass responsivity function; it arises because the
frequency change depends on the relative amplitude of
the vibrational mode at the location of the particle16.

The particle diffusion is described by the Langevin
equation

ẋ = −∂xU(x) + ξD(t). (3)

Here, U(x) is the trapping potential and ξ(t) is a white
Gaussian noise, 〈ξD(t1)ξD(t2)〉 = 2Dδ(t1 − t2), where D
is the diffusion coefficient; 〈. . .〉 indicates ensemble aver-
aging. The potential U(x) can be created by a droplet
of a “glue” that confines the attached particle to a small
region on the nanobeam (a functionalized target area);
alternatively, we will also consider the case where the
particle is allowed to freely diffuse along the nanobeam.

We will be interested in the parameter range where the
reciprocal correlation time t−1

c and the standard devia-
tion ∆ of the fluctuations of ∆D(x) are comparable,

∆ = 〈[∆D(x)− 〈∆D(x)〉]2〉1/2.

We assume that ω0 is the largest frequency in the system,

Γ,∆, tc, |δω| � ω, δω = ω − ω0. (4)

Conditions (4) have been essentially used in writing
Eq. (1) where we ignored the effect of the mass change
due to particle diffusion on the appropriately scaled de-
cay rate of the resonator and the field amplitude.

Other types of frequency fluctuations and their effect
on the oscillator spectrum have been studied in several
contexts.18–20,23,27,28 We will assume that, even though
the fluctuations are small on average compared to ω0, cf.
Eq. (4), the interrelation between ∆ and Γ can be arbi-
trary. Our results are not limited to Gaussian frequency
fluctuations. We note that our formulation ignores the
backaction of the oscillator on diffusion. This backaction
may lead to nontrivial effects like bistability of forced
vibrations, which will be studied elsewhere.

A. Resonant susceptibility in the limiting cases

We will be interested in the oscillator susceptibility
X (ω), which relates the average value of the coordinate
to the field,

〈q(t)〉 = X (ω)Fe−iωt + c.c.; (5)

we assume that 〈q〉 = 0 in the absence of driving. We
note that the ensemble averaging in Eq. (5) should be
taken with care in the case of a single oscillator. In the
experiment, the system is usually assumed to be ergodic.
However, the ergodicity is established over the correla-
tion time of frequency fluctuations tc, and for the mea-
surement time shorter than tc the system may be noner-
godic.

The shape of X (ω) near resonance, |ω−ω0| � ω, is de-
termined by the interrelation between the oscillator decay
rate Γ, the typical frequency dispersion ∆, and the cor-
relation time tc. Frequency fluctuations can significantly
affect the spectrum for Γ, t−1

c . ∆.
The susceptibility takes a simple form for compara-

tively large fluctuational frequency spread, t−1
c � ∆. In

this case ∆ gives the typical width of the spectrum. The
limit tc →∞ corresponds to inhomogeneous broadening,
where there is no averaging of the eigenfrequency due to
motion of the particle, there is just a probability for the
oscillator to have different values of the eigenfrequency.

To zeroth order in t−1
c , the susceptibility is a superposi-

tion of what can be called partial susceptibilities χ(x;ω),
the susceptibilities for instantaneous fixed positions x.
More precisely, given the continuous character of the un-
derlying diffusion, χ(x;ω) should be called the partial
susceptibility density (PSD). For tc → ∞, Im χ(x;ω) is
a Lorentzian centered at frequency ω0 + ∆D(x),

X (ω) = (2Mω)−1χ(ω); χ(ω) =
∫
dxχ(x;ω), (6)

χ(x;ω) = iP (x) {Γ− i[δω −∆D(x)]}−1 (tc →∞).
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Here, P (x) is the probability density for the diffusing
particle to be at point x. The overall spectrum Im χ(ω)
in this limit is typically non-Lorentzian. It becomes par-
ticularly simple in the limit Γ→ 0, in which case

Im χ(ω) = π
∑

xω

P (xω)/|∆′D(xω)|

with xω given by equation ∆D(xω) = δω; ∆′D(x) ≡
∂x∆D(x).

In the opposite limit, t−1
c � ∆, the oscillator can-

not “resolve” frequency variations, they are averaged
out. This is similar to the motional narrowing effect in
NMR. To zeroth order in tc∆ we expect Im χ(ω) to be a
Lorentzian curve centered at frequency ω0 + 〈∆D〉 with
halfwidth Γ, where

〈∆D〉 =
∫
dxP (x)∆D(x).

Clearly, the shape of χ(ω) is qualitatively different in
the opposite limits of tc∆. In what follows we will de-
velop an approach that allows one to find the suscepti-
bility for an arbitrary tc∆. We will also relate the results
to the analysis of dephasing developed by Anderson24

and Kubo and Tomita25,26 in the context of resonant ab-
sorption by two-level systems. For diffusion described by
Eq. (3), the system has detailed balance in the absence of
periodic driving (again, we disregard the effect of back-
action on the diffusion), and therefore the susceptibility
can be obtained from the power spectrum of the oscilla-
tor calculated for F = 0.29 However, we will calculate the
susceptibility directly, since our approach applies also to
systems without detailed balance.

III. EQUATION FOR THE PARTIAL
SUSCEPTIBILITY DENSITY

It is convenient to analyze resonant response of the
oscillator using the standard method of averaging. This is
done by changing from q(t), q̇ to slow variables u(t), u∗(t),

q(t) = ueiωt + u∗e−iωt, q̇ = iω
(
ueiωt − u∗e−iωt

)
.

(7)
The Langevin equations of motion for slow variable u(t)
in the rotating wave approximation (RWA) is

u̇ = −[Γ + i(δω −∆D(x))]u+
F

2iMω
+ ξT ;u(t) (8)

where ξT ;u(t) = (2iω)−1ξT (t) exp(−iωt) is the random
force. Equation for u∗ can be obtained from Eq. (8)
by complex conjugation. We note that, in fact, the
Markovian equations of motion for u, u∗ have a much
broader range of applicability than the original equation
(1). They apply even where relaxation of the oscillator
is not described by a simple viscous friction force, as in
Eq. (1), but is delayed. Quite generally, the delay disap-
pears on the slow time scale ∼ 1/Γ. The random forces
ξT ;u(t) and ξ∗T ;u(t) are also δ correlated on the slow time

scale rather than in the “fast” time, see Refs. 30 and 31
and papers cited therein.

The probability distribution of the oscillator in slow
time ρ(u, u∗, x; t) is described by the Fokker-Planck
equation,32 which follows from Eqs. (3) and (8)

∂tρ = ∂u ([Γ + i(δω −∆D(x))]uρ)− F

2iMω
∂uρ+

∂u∗ ([Γ− i(δω −∆D(x))]u∗ρ) +
F

2iMω
∂u∗ρ+

+
ΓkBT
Mω2

0

∂2
uu∗ρ+ LD[ρ]. (9)

Here, T is the bath temperature and LD is the diffusion
operator,

LD[ρ] = ∂x(ρ∂xU) +D∂2
xρ. (10)

The scaled susceptibility χ(ω) for ω close to ω0 is given
by the expectation value (2Mω/F )〈u∗〉. It is convenient
to write it in the form of an integral over x of the PSD
χ(x;ω), see Eq. (6). Using Eqs. (5) and (6) one can write
the PSD in the form

χ(x;ω) =
2Mω

F

∫
du du∗ u∗ρst(u, u∗, x), (11)

where ρst(u, u∗, x) is the stationary solution of Eq. (9).
Multiplying Eq. (9) by u∗ and integrating over u and u∗
one obtains

[Γ− i(δω −∆D(x))]χ(x;ω)− LD[χ(x;ω)] = iP (x),

P (x) =
∫
du du∗ρst(u, u∗, x) = Z−1e−U(x)/D (12)

with Z =
∫
dx exp[−U(x)/D].

Equations (6) and (12) reduce the problem of the spec-
trum of the oscillator to solving a diffusion equation for
the PSD χ(x;ω). They show also that the values of the
PSD for different particle positions x are coupled to each
other. This coupling becomes small for large ∆, i.e., for
the case where the actual range of ∆D(x) in Eq. (12)
is large. If the drift and diffusion operator LD[χ] in
Eq. (12) is disregarded, one immediately obtains Eq. (6)
for χ(x;ω). The (minus) reciprocal correlation time t−1

c

is given by the lowest eigenvalue of LD, and disregarding
LD is justified provided tc∆� 1.

In the opposite limit where the variation of ∆D(x) with
x can be disregarded in Eq. (12),

χ(x;ω) ≈ iP (x)/[Γ− i(δω − 〈∆D〉)].

Formally, one can think that the PSDs have the same
shape in this case, but it is more correct to say that
they are strongly coupled by the operator LD and the
contributions to χ(ω) of the PSDs from different ranges
of x cannot be identified.

The solution of Eq. (12) can be written in the form
of a convolution of the “complex Lorentzian” suscepti-
bility π−1(Γ− iδω)−1 and the PSD χph(x;ω) calculated
in the absence of the oscillator decay and determined
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by phase fluctuations only. This form applies also in a
more complicated case of a nonlinear oscillator as long as
∆D is independent of the oscillator amplitude, see Sec-
tion VI. For a nonlinear oscillator, the additive thermal
noise ξT (t) affects the susceptibility, in contrast to the
case of a linear oscillator.

In the general case of an arbitrary tc∆D, an arbitrary
form of the frequency shift ∆D(x), and an arbitrary po-
tential U(x), Eq. (12) can be solved numerically. How-
ever, there are important situations where an analytical
solution can be obtained. They are discussed in the next
Section.

IV. HARMONIC CONFINING POTENTIAL

The susceptibility χ(ω) can be found in an explicit
form if the diffusing particle is confined to a small region
of the nanobeam. A simple and important form of the
confinement is described by a parabolic potential U(x) =
k(x− x0)2/2. Such potential models confinement due to
a small droplet of a polymer “glue” on a nanobeam or
to centrifugal forces created in a suspended nanochannel
by additional driving.8 We will assume that the potential
minimum x0 is far from the ends of the resonator and that
the typical displacement of the particle from the potential
minimum (D/k)1/2 � L. Then the shift ∆D(x) can be
expanded about the value ∆D(x0) which we will set equal
to zero (it can be incorporated into ω0),

∆D(x) ≈ α(x− x0) + β(x− x0)2. (13)

For small x − x0 the linear in x − x0 term in Eq. (13)
generally dominates and the quadratic term can be dis-
regarded. However, if the linear term is small, it is nec-
essary to keep the quadratic term. This is the case,
for example, if x0 is at the center of a double-clamped
nanobeam. For diffusion in a parabolic potential, the
correlation time of x(t), and thus of ∆D, is tc = 1/k.

We seek the susceptibility as

χ(x;ω) =
∫ ∞

0

dt eit δωχ̃(x; t), (14)

χ̃(x; 0) = iP (x) = i(k/2πD)1/2 exp[−k(x− x0)2/2D].

From Eqs. (12) and (14) we obtain an equation for func-
tion χ̃(x; t) of the form

∂tχ̃+ [Γ + i∆D(x)]χ̃− LD[χ̃] = 0 (15)

with χ̃(x; 0) given by Eq. (14).
Equations (13) and (15) have a solution

χ̃(x; t) = i exp
[
A(t)(x− x0)2 +B(t)(x− x0) + C(t)

]
(16)

where functions A,B,C are given by a set of ordinary
differential equations

Ȧ = 4DA2 + 2kA− iβ, Ḃ = kB + 4DAB − iα,
Ċ = D(B2 + 2A) + k − Γ (17)

with initial conditions

A(0) = −k/2D, B(0) = 0, C(0) =
1
2

ln(k/2πD).

Equations (17) can be easily solved, and the solution is
expressed in elementary functions. It allows finding the
function χ̃(t) =

∫
dxχ̃(x; t),

χ̃(t) = i

[
−π
A(t)

]1/2

exp
[
−B

2(t)
4A(t)

+ C(t)
]
.

χ(ω) =
∫ ∞

0

dteit δωχ̃(t). (18)

Since the general solution is somewhat cumbersome, we
will consider the cases where only one of the coefficients
α and β is nonzero.

A. Frequency change linear in the particle
displacement

We start with the case ∆D(x) = α(x−x0). For U(x) =
kx2/2 this case corresponds to the oscillator frequency
being modulated by the Ornstein-Uhlenbeck noise, which
is an exponentially correlated Gaussian noise. Indeed,
from Eq. (3) x is Gaussian, and thus ∆D(x) ∝ x− x0 is
Gaussian, too, with 〈∆D〉 = 0 and

〈∆D

(
x(t)

)
∆D

(
x(t′)

)
〉 = ∆2e−k|t−t

′| (19)

with ∆ = (α2D/k)1/2.
From Eqs. (17) and (18) for β = 0 we obtain

χ̃(t) = i exp
[
−Γt− ∆2

k
t+

∆2

k2

(
1− e−kt

)]
. (20)

As explained in Section VI below, this result could be
also obtained from the expression for the power spectrum
of the oscillator without driving by using the cumulant
expansion. Equation (20) is equivalent to the result of
Ref. 18.

It is interesting to compare Eq. (20) with the asymp-
totic results for small and large tc∆ ≡ ∆/k. For tc∆� 1,
one can expand the exponent in Eq. (20) in kt, getting
χ̃(t) ∝ exp(−Γt −∆2t2/2). Substituting this expression
into Eq. (18) one obtains an expression that coincides
with Eq. (6) with the corresponding P (x) and ∆D(x).
Specifically, Im χ(ω) is a convolution of a Lorentzian with
halfwidth Γ and a Γ-independent Gaussian distribution
∝ exp(−δω2/2∆2). In the opposite limit, tc∆ � 1, the
peak of Im χ(ω) is Lorentzian, with halfwidth Γ + tc∆2.
As a whole, the spectrum of Im χ(ω) is symmetric, with
maximum at ω = ω0.

B. Frequency change quadratic in the particle
displacement

We now consider the case where ∆D(x) = β(x −
x0)2. As mentioned before, this case is interesting if



5

the equilibrium position of the particle is at an antin-
ode of the vibrational mode of the nanomechanical res-
onator. The value of β is easy to estimate using the
standard analysis.16 For example, for the fundamental
mode of a doubly clamped beam of length L we have
β = ω0mπ

2/4L2M . Frequency fluctuations due to dif-
fusion are non-Gaussian, with 〈∆D〉 = βD/k and ∆ ≡√
〈∆2

D〉 − 〈∆D〉2 =
√

2|β|D/k. The correlation time is
the same as for the linear in x frequency change, tc = 1/k.

From Eqs. (17) and (18) we find

χ̃(t) = 2ia1/2
β exp

[
−Γt− 1

2
k(aβ − 1)t

]
×
[
(aβ + 1)2 − (aβ − 1)2 exp(−2aβkt)

]−1/2
, (21)

aβ = (1 + 4iβD/k2)1/2 (Re aβ > 0)

This expression shows that, for the frequency shift
quadratic in the particle displacement, decay of χ̃(t) is
non-exponential in time, which means that the spectrum
of Im χ(ω) is non-Lorentzian. As expected from the gen-
eral arguments, except for the trivial factor exp(−Γt)
that describes decay of the vibration amplitude, χ̃(t) is a
function of the scaled time kt ≡ t/tc and one dimension-
less parameter aβ = (1 + 4i〈∆D〉/k)1/2; this parameter,
in turn is given by the ratio of the standard deviation of
the fluctuating frequency ∆ =

√
2|〈∆D〉| to the recipro-

cal correlation time of fluctuations k.
From Eqs. (18) and (21), for ∆� k, the major effect of

diffusion is the shift of the peak of Im χ(ω) by ≈ 〈∆D〉;
to the first order in ∆/k the peak of Im χ(ω) remains
symmetric and Lorentzian. However, for large ∆/k the
peak becomes strongly asymmetric. For arbitrary ∆/k
one can write χ(ω) as

χ(ω) = 2a1/2
β

∞∑
n=0

(2n− 1)!!
2nn!

(aβ − 1)2n

(aβ + 1)2n+1
χn(ω),

χn(ω) = i

{
Γ +

1
2
k [(4n+ 1)aβ − 1]− iδω

}−1

. (22)

Equation (22) presents the susceptibility in the form of
a sum of the spectra χn(ω). Functions Im χn(ω) have
peaks at equally spaced frequencies ω0+(4n+1)kIm aβ/2,
with halfwidth Γ + [(4n + 1)Re aβ − 1]k/2 that lin-
early increases with n. We note that these spectra
should not be called partial spectra of the oscillator; even
in the limit ∆ � k the distance between their peaks
≈ 25/4(k∆)1/2 is generally smaller than their halfwidth
≈ 2−3/4(4n+ 1)(k∆)1/2 + Γ. Moreover, functions χn(ω)
enter the expression for χ(ω) with complex weighting fac-
tors, so that Im χ(ω) is determined by the both real and
imaginary parts of χn(ω).

Equation (22) is convenient for a numerical evaluation
of χ(ω). It also allows establishing the connection with
the limit tc∆ ≡ ∆/k � 1, Eq. (6). To do this one no-
tices that |aβ | � 1 for ∆ � k. Typical values of δω
within the peak of Im χ(ω) are ∼ βD/k = 〈∆D〉 [see
Eq. (23) below]. Since |β|D/k2 ≈ |aβ |2/4 � |aβ |, the
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FIG. 1. The scaled susceptibility Im χ(ω) for the case of
dephasing due to a particle diffusing about the antinode of
a nanoresonator, with the frequency shift quadratic in the
particle displacement. The data refer to the resonator energy
decay rate Γ = 0. The frequency δω = ω − ω0 is scaled
by the standard deviation of the oscillator frequency due to
the massive particle ∆. Curves 1 through 5 refer to tc∆ =
100, 40, 3, 0.05, and 0.005 respectively.

major contribution to the sum over n in Eq. (22) comes
from n � 1 and one can replace summation over n by
integration. The integrand has a singularity for n = np,
where np = iδω/2kaβ for Γ = 0, |np| � 1 for typical
δω. Integration over n can be done by lifting or lowering,
depending on the sign of β, the integration contour up
to Im np, which gives for Γ = 0

Im χ(ω) ≈ (πk/2βDδω)1/2e−kδω/2βDΘ(βδω), (23)

where Θ(x) is the step function. Equation (23) applies
for

∆� k,Γ, |δω| � (k∆)1/2.

The spectrum (23) has a very specific shape that makes
it possible to identify the corresponding mechanism. It
is profoundly asymmetric, with a square-root divergence
near the maximum in the neglect of corrections ∝ k/∆
and with an exponential tail.

The evolution of the spectrum Im χ(ω) with varying
∆/k is seen in Fig. 1. For convenience, the figure is
plotted for Γ = 0; to allow for Γ the spectra should be
convoluted with the Lorentzian distribution. The sus-
ceptibility as a function of dimensionless frequency δω/k
depends on the single dimensionless parameter ∆/k. It
is seen from Fig. 1 that, with increasing ∆/k, the spec-
trum shape changes from an almost symmetric peak cen-
tered close to 〈∆D〉 with width ∝ ∆2/k for small ∆/k
to the strongly asymmetric distribution that approaches
Eq. (23) for large ∆/k.

V. UNCONFINED DIFFUSION ALONG A
NANOMECHANICAL RESONATOR

We now consider dephasing due to a particle that freely
diffuses along a nanoresonator, but does not leave it. We



6

assume that the nanoresonator is a one-dimensional dou-
bly clamped beam, and we are interested in its funda-
mental mode. The change of the mode frequency due
to a particle at a point x is determined by the squared
vibration amplitude at x.16 For a beam of length L this
gives ∆D(x) = −γ cos2(πx/L), where γ = ω0m/M : x is
counted off from the center of the beam. The stationary
probability distribution of the particle along the beam is
uniform, P (x) = 1/L.

The average frequency shift and the standard fre-
quency deviation are, respectively, 〈∆D〉 = −γ/2 and
∆ = γ/

√
8. The correlation time of frequency fluctu-

ations can be found by calculating the time correlation
function of ∆D

(
x(t)

)
, which can be done following the

standard prescription32 (the classical analog of the quan-
tum regression theorem). It involves evaluating the prob-
ability density ρ∆ of a transition (x0, t = 0) → (x, t)
integrated over x0 with the appropriate weight. Func-
tion ρ∆ is given by the solution of diffusion equation
ρ̇∆(x; t) = −D∂2

xρ∆(x; t). The boundary conditions fol-
low from the absence of current, ∂xρ∆ = 0 for x = ±L/2,
and the initial condition for the correlation function of
∆D is ρ∆(x; t = 0) = [∆D(x)− 〈∆D〉]/L. This gives〈

∆D

(
x(t)

)
[∆D

(
x(0)

)
− 〈∆D〉]

〉
≡
∫
dx∆D(x)ρ∆(x; t)

= ∆2 exp(−t/tc), t−1
c = D(2π/L)2. (24)

The oscillator susceptibility is given by Eq. (12) with
U(x) = 0 and with boundary conditions ∂xχ(x;ω) = 0
for x = ±L/2. It is clear from the structure of Eq. (12)
and the expression for ∆D(x) that the solution can be
sought in the form

χ(x;ω) =
∑
n≥0

bn(ω) cos(2πnx/L).

Equation (12) is then reduced to a tri-diagonal system of
linear equations for coefficients bn, which can be solved
by the method of continued fractions. This gives for χ(ω)

χ(ω) =
i

V0 +
∆2

V1 +
∆2/2

V2 +
∆2/2
V3 + · · ·

, (25)

where Vn = Γ + n2t−1
c − i(δω − 〈∆D〉). We note that,

alternatively, χ(ω) can be also expressed in terms of the
Mathieu functions.

From Eq. (25), for Γ = 0 the reduced susceptibility
χ(ω)/tc is a function of dimensionless frequency tcδω that
depends on the single parameter, tc∆. For tc∆ � 1, to
find the peak of Im χ(ω) one can ignore in Eq. (25) frac-
tions that contain Vn with n ≥ 2. This gives a Lorentzian
peak,

Im χ(ω) ≈ ∆2tc/[(δω − 〈∆D〉)2 + (∆2tc)2]

−3 −2 −1 0
0

1.5

3

/

Im
 

(
)

−1.6 −1.4 −1.2
0

100

200

4

5

32

1

FIG. 2. The scaled susceptibility Im χ(ω) for the fundamental
mode of a doubly clamped resonator with a particle freely
diffusing along it. The data refer to the resonator energy
decay rate Γ = 0. The frequency δω = ω−ω0 is scaled by the
standard frequency deviation ∆. Curves 1 through 5 refer to
tc∆ = 50, 5, 0.5, 0.05 and 0.005, respectively.

for Γ = 0. The halfwidth of the peak ∆2tc has a typi-
cal form of the width of the spectral peak for motional
narrowing in NMR, see Sec. VI.

In the opposite limit, tc∆� 1, we obtain from Eq. (6)
or Eq. (25) for Γ = 0

Im χ(ω) ≈ π

2
[
〈∆D〉2 − (δω − 〈∆D〉)2

]−1/2
.

This spectrum as a function of ω has two inverse square-
root peaks symmetrically spaced around frequency ω0 +
〈∆D〉.

Expression (25) is convenient for a numerical evalua-
tion of the susceptibility in the general case of arbitrary
tc∆. The evolution of the shape of Im χ(ω) with varying
tc∆ for Γ = 0 is illustrated in Fig. 2. The spectrum re-
mains symmetric, but as expected from the asymptotic
expressions, can have a single peak or two peaks.

VI. FLUCTUATION-DISSIPATION RELATION
AND THE SEPARATION OF PHASE

AVERAGING

Along with the susceptibility, the power spectra of
nano- or micromechanical resonators are also often stud-
ied in the experiment.33 For systems in thermal equi-
librium, the two spectra are simply related by the
fluctuation-dissipation theorem. However, frequency
modulation by an attached diffusing particle (or by an-
other external source) can drive the system away from
equilibrium. Here we derive the conditions where the
fluctuation-dissipation relations apply in the presence of
frequency modulation. Another important issue that we
address is whether it is possible to perform averaging over
thermal fluctuations and over the externally imposed fre-
quency fluctuations independently.

We will be interested in an underdamped oscillator. It
is characterized by slow variables u, u∗, Eq. (7). Fluctu-
ations of these variables in slow time are usually Marko-
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vian, in the RWA, and can be described by the Fokker-
Planck equation, cf. Eq. (9). If the restoring force of
the oscillator is weakly nonlinear, i.e., the oscillator po-
tential is weakly nonparabolic, the major effect of this
nonlinearity is that the oscillator frequency depends on
the vibration amplitude. Also, if the friction force is non-
linear, the friction coefficient is amplitude-dependent; in
this latter case the form of the operator that describes
the effect of the thermal noise associated with friction
changes compared to Eq. (9).

In the absence of diffusion of an attached particle the
Fokker-Planck equation for a weakly nonlinear oscillator
in slow variables was derived earlier for both microscopic
and phenomenological models.30,31 Because of the diffu-
sion the oscillator parameters slowly vary in time. On
the other hand, the diffusion itself may depend on the
vibration amplitude.

For the analysis below it is convenient to introduce the
slow variables in such a way that they are independent
of the drive frequency,

q(t) = u0 exp(iω0t) + u∗0 exp(−iω0t),
q̇ = iω0 [u0 exp(iω0t)− u∗0 exp(−iω0t)] . (26)

In these variables the Fokker-Planck equation reads

∂tρ = LFP [ρ]−
[
(F/2iMω)eitδω∂u0ρ+ c.c.

]
, (27)

where

LFP [ρ] =
[
∂u0

(
K(|u0|2, x)u0ρ

)
+ c.c.

]
+
kBT

Mω2
0

∂2
u0u∗0

[
Γnl(|u0|2, x)ρ

]
+ LD[ρ] (28)

In the RWA, functions K and Γnl depend only on the
scaled squared vibration amplitude |u0|2, but not on u0

and u∗0 taken separately.30,31 This can be understood
from Eq. (26): prior to averaging over the period 2π/ω0

in the RWA, the corresponding terms would be propor-
tional to fast oscillating factors exp(±iω0t), and therefore
in the RWA they average to zero. The real part of K
describes dissipation due to coupling to a thermal reser-
voir, whereas the term ∝ kBTΓnl describes fluctuations
induced by the reservoir.

Functions K and Γnl can also parametrically depend
on the particle position x. We assume that this depen-
dence is such that the fluctuation-dissipation relation be-
tween K and Γnl holds for any x,

Re K(r, x)− Γnl(r, x) +
kBT

2Mω2
0

∂rΓnl = 0, (29)

where r = |u0|2.
The diffusion operator LD can depend on the |u0|2. We

note that in Eq. (27), in contrast to the Fokker-Planck
equation (9), K does not depend on ω, but the term ∝ F
has a time-dependent factor. Respectively, the solutions
of Eqs. (9) and (27) for ρ are also different even if we use
the same model of the oscillator as in Eq. (9); however,
they are connected by a simple canonical transformation.

In the absence of modulation the power spectrum of
the oscillator near resonance (ω ≈ ω0) is31,32

Q(ω) ≡ π−1Re
∫ ∞

0

dteiωt〈q(t)q(0)〉F=0

≈ π−1Re
∫ ∞

0

dteitδω
∫
du0 du

∗
0 dxu

∗
0ρu0(t). (30)

Here, δω = ω − ω0, ρu0(t) ≡ ρu0(u0, u
∗
0, x; t). Func-

tion ρu0(t) is given by Eq. (27) with F = 0. The
initial condition is ρu0(t = 0) = u0ρeq, where ρeq ≡
ρeq(u0, u

∗
0, x) is the equilibrium distribution for F = 0.

Formally, from Eq. (27) one can write

ρu0(t) = exp(LFP t)u0ρeq, LFP [ρeq] = 0, (31)

with operator LFP given by Eq. (28). This, combined
with Eq. (30), provides a formal expression for the oscil-
lator power spectrum.

On the other hand, from Eqs. (5), (6), and (27), res-
onant susceptibility χ(ω) is determined by the average
value of u∗0(t) which, to first order in F , is given by the
linearized solution of Eq. (27),

χ(ω) = −i
∫ ∞

0

dt eitδω
∫
du0du

∗
0dxu

∗
0

× exp(LFP t)∂u∗0ρeq. (32)

The fluctuation dissipation relation for the scaled sus-
ceptibility means that, near resonance, there should hold

Im χ(ω) = (2πMω2
0/kBT )Re Q(ω).

A comparison of Eqs. (30) and (31), on the one side, and
Eq. (32), on the other side, shows that this relation ap-
plies if ∂u∗0ρeq = −CTu0ρeq, with CT = 2Mω2

0/kBT . In
turn, this condition holds if functions Re K and Γnl are
related by the fluctuation-dissipation theorem Eq. (29)
and operator LD is independent of |u0|2. Indeed, from
Eq. (29) it follows that, for fixed x, the equilibrium dis-
tribution of the oscillator over u0, u

∗
0 is of the Boltzmann

form, ρeq ∝ ρB(u0, u
∗
0),

ρB(u0, u
∗
0) =

Mω2
0

πkBT
exp(−2Mω2

0 |u0|2/kBT ). (33)

Here, 2Mω2
0 |u0|2 = 1

2

(
Mω2

0q
2 +Mq̇2

)
is just the oscilla-

tor energy, neglecting small nonlinear corrections. When
LD is independent of |u0|2, the equilibrium distribution
over x is determined by a factor P (x), LD[P ] = 0; for
the model of diffusion used in this paper P (x) is given
by Eq. (12). The whole equilibrium distribution is multi-
plicative, it is a product of functions P (x) and ρB(u0, u

∗
0)

that depend on x and u0, u
∗
0 separately .

A. Convolution representation

The calculation is significantly simplified in the im-
portant case where the susceptibility can be written as a
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convolution,

χ(ω) =
∫
dω′χosc(ω′)χD(ω − ω′),

χD(ω) =
∫
dxχD(x;ω). (34)

Here, χosc(ω) is the susceptibility in the absence of diffu-
sion and χD(x;ω) is the susceptibility that describes the
effect of diffusion independently from the oscillator dy-
namics. This representation applies, in particular, for the
models of frequency fluctuations discussed in this paper,
with χosc(ω) = (ω − ω0 − iΓ)−1 and with χD calculated
from Eq. (12) for Γ = 0.

The representation (34) is particularly helpful if there
holds the fluctuation-dissipation relation between χ(ω)
and Q(ω), which allows using the power spectrum to
find the susceptibility. Still, the very applicability of the
fluctuation-dissipation relations does not guarantee that
Eq. (34) would apply. We now provide the sufficient con-
dition.

Finding Q(ω) requires solving the Fokker-Planck equa-
tion ∂tρu0 = LFP [ρu0 ]. From Eq. (28) one can see that
the solution can be sought in the form

ρu0(u0, u
∗
0, x; t) = u0ρ̄(|u0|2, x; t).

Equation (34) will apply if function ρ̄ is a product,

ρ̄(|u0|2, x; t) = ρ̄osc(|u0|2; t)ρ̄D(x; t), (35)

i.e., in the equation that follows from the Fokker-Planck
equation for ρ̄ one can separate variables |u0|2 and x. A
straightforward analysis shows that this happens if

∂xΓnl = Re ∂xK = 0, Im ∂2
rxK(r, x) = 0. (36)

In other terms, Γnl and Re K should be independent of x,
whereas Im K should be a sum of terms that depend on
x and |u0|2 separately, Im K = Im Kosc(|u0|2)−∆D(x).
These conditions hold in the model discussed in the main
part of the paper. We note that, for a nonlinear oscillator,
χosc(ω) is non-Lorentzian and can be asymmetric.31

B. Relation to dephasing in two-level systems

In the case where the oscillator dynamical variables
separate from the coordinate of the diffusing parti-
cle, function ρ̄D(x; t) is given by equation ∂tρ̄D =
−i∆D(x)ρ̄D+LD[ρ̄D]. A formal solution of this equation
is

ρ̄D(x; t) =
∫
dxiP (xi)ρ̃D

(
x; t|xi; 0

)
(37)

ρ̃D
(
x; t|x(0); 0

)
=
〈
e−i

R t
0 dt
′∆D

(
x(t′)

)
δ(x(t)− x)

〉
ξD

,

where x(t) is given by the Langevin equation (3) and the
averaging is done over realizations of the noise ξD(t) that
drives the diffusing particle.

From Eqs. (34), (35), (37), and the fluctuation-
dissipation relation we obtain

χD(ω) =
∫ ∞

0

dteitδω
〈
e−i

R t
0 dt
′∆D

(
x(t′)

)〉
, (38)

where the averaging is now done both over the realiza-
tions of ξD(t) and over the stationary distribution of x(0).

Equation (38) has the same form as the expression for
the susceptibility of a two-level system with fluctuating
frequency that was studied in the celebrated papers by
Anderson24 and Kubo and Tomita25,26 assuming that the
system was in thermal equilibrium. In particular, the av-
eraging in Eq. (38) is simplified if frequency fluctuations
are Gaussian, in which case one can use the cumulant ex-
pansion. This is the case for diffusion in a parabolic po-
tential with d∆D/dx = const, where the frequency fluc-
tuations correspond to the Ornstein-Uhlenbeck noise.18.
The methods of Refs. 18, 24–26 (see also Refs. 34) do not
immediately apply to other cases studied in this paper.
As we showed in Secs. II–V, in all cases of interest the
solution is naturally obtained using the method of cou-
pled partial susceptibilities. We note that this method
applies also if the system is far from thermal equilibrium
and the fluctuation-dissipation relation between the sus-
ceptibility and the power spectrum does not hold.

VII. CONCLUSIONS

We have studied resonant susceptibility of an un-
derdamped oscillator whose eigenfrequency continuously
fluctuates in time. The analysis is based on the method
of partial spectral density. Such density corresponds to
a given eigenfrequency value in the limit of very slow
eigenfrequency variations. The variations lead, on the
one hand, to the finite lifetime of states with different
eigenfrequencies, and, on the other hand, to the interfer-
ence of the spectral densities for close eigenfrequencies.
The resulting overall spectrum depends on the interre-
lation between the bandwidth ∆ of the eigenfrequency
variations and the correlation time of these variations tc.

We have developed a method that allowed us to study
the susceptibility for an arbitrary tc∆. It involves de-
riving and solving a differential equation for the partial
spectral density. The specific results are formulated for
nano-mechanical resonators whose frequency can fluctu-
ate if they have particles diffusing along them and thus
changing their effective mass.

Explicit results have been obtained for three models:
(i) a particle diffusing in a small region centered at a
general position on the nanoresonator; (ii) a particle dif-
fusing about the antinode of the vibrational node, and
(iii) a particle uniformly diffusing along the nanobeam.
The shape of the absorption peak Im χ(ω) is different in
all these cases, varying from symmetric non-Lorentzian
in (i), to asymmetric in (ii), to symmetric but possi-
bly double-peaked in (iii). In all these cases the shape
strongly depends on the interrelation between ∆ and t−1

c .
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Another general result refers to the interrelation be-
tween the oscillator susceptibility and the power spec-
trum. We have found the conditions where the standard
fluctuation-dissipation relation applies in the presence
of phase fluctuations even where these fluctuations are
nonequilibrium. In addition, we have established where
the spectrum of a generally nonlinear underdamped os-
cillator is a convolution of the spectrum in the absence
of phase fluctuations and the spectrum broadened by
phase fluctuations only. The latter broadening can be
also described, at least in principle, using the methods
developed by Anderson24 and Kubo and Tomita25,26 for
two-level systems with a fluctuating transition frequency.
These methods are particularly convenient where the fre-
quency fluctuations are Gaussian, and our results for
the case (i) above are equivalent to those obtained us-
ing them.18 The fluctuations discussed in the cases (ii)
and (iii) are non-Gaussian and have not been previously
studied, to the best of our knowledge, nor the method of
coupled partial spectral densities has been used.

The results of the paper have immediate relation to
mass sensing with nanoresonators. For the particle that
is being analyzed and that diffuses along a nanoresonator,
parameter ∆ is proportional to the particle mass, whereas
tc is determined by either the particle confinement, as in
cases (i) and (ii) above, or is inversely proportional to the
diffusion coefficient D, as in case (iii). The shape of the
spectrum provides an important additional information
about the attached particle and its dynamics, compared
to the conventionally considered shift of the spectral line.

Observation of the effects of particle dynamics is possi-
ble for comparatively large diffusion coefficients. Fast dif-
fusion can happen along carbon nanotubes35 or for par-
ticles inside low-viscosity nanochannels embedded into
cantilevers5,8 or on solid-state nanobeams at elevated
temperatures. In particular, for carbon-nanotube based
nanoresonators of length ∼ 1 µm36 we get from Eq. (24)
the correlation time tc < 10−5 s for D ∼ 10−4 cm2/s.
Such D is smaller than the calculated values of the
diffusion coefficients for different simple molecules, see
Refs. 35 and 37. This suggests using spectral measure-
ments of nanoresonators to determine the diffusion coef-
ficient in carbon nanotubes. This makes it also possible
to use temperature as an additional means of the analysis
of diffusion in nanoresonators.

After this paper was completed, we learn of the work
by Yang et al.38 where phase fluctuations due to diffusion
of particles along a nanoresonator were observed already
for T . 80 K (in contrast to the present paper, the dif-
fusion was not confined to the nanoresonator itself, and
there was an influx of particles to keep their mean num-
ber constant). We note that fluctuations of the nanores-
onator frequency can be due to other reasons, for exam-
ple, to fluctuations of the charge on the substrate above
which the nanoresonator is located or to charge fluctua-
tions in the nanoresonator.2,3 The analysis of this paper
can be extended to this case.
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