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In earlier work, we showed that exponential (Urbach) band edge states were localized on connected
sub-networks of short bonds for the valence tail and long bonds for the conduction tail for high quality
continuous random network models of amorphous silicon. Here, we study size effects by computing
the electronic density of states for a 105-atom model of a-Si due to Barkema and Mousseau, and
show that the model indeed possesses exponential tails, consistent with earlier calculations on a
4096-atom system. Next, we study the structure of the network near the shortest bonds. These
bonds consistently create a slightly densified region, and we discuss the strain field associated with
these defects. The dynamics of the short-bond clusters is briefly examined next. We show that
there are significant fluctuations in the atoms with instantaneous short bonds, even at 300K and
compared the electronic density of states and valence edges between models with filaments and
without filaments. We close with speculations on how to determine if the connected sub-network
hypothesis is unique in its ability to produce exponential tails.

PACS numbers: 72.10.Bg,72.20.Ee,72.20.My.

1. INTRODUCTION

One of the long-standing research programs for amor-
phous semiconductors is comprehending the linkage of
structural features to electronic or optical characteris-
tics of the material. The classic example is the struc-
tural origin of the midgap state in a-Si or a-Si:H. As re-
cently as the nineties, there was a lively debate between
proponents of the view that three-coordinated sp3 dan-
gling bonds were the structural origin or the ”floating”
(five-fold) bonds. The current prevailing view is that the
midgap states are due to dangling bonds1.

A more subtle but equally important problem is the
structural origin of the exponential or Urbach tails in dis-
ordered systems2, including a-Si. Diverse models yield-
ing exponential tails have been advanced, as discussed
elsewhere3. Recently, we have shown that for a-Si, the
structural features giving rise to the tails in the best avail-
able models of the material is a sub-network of connected
short bonds (for the valence tail) and long bonds (for the
conduction tail)4–7. We have shown that the short and
long bonds are spatially self-correlated: thus, for exam-
ple, given a short bond in a network, the likelihood that
its neighbors possess a short bond is much higher than
random. Also, there is little if any cross-correlation (long
to short). The clustered short bonds form a characteristic
network – a 3D structure with short bonds surrounding
a particularly short bond6. Long bonds form ’wispy’ or
filamentary 1D structures, again, with a high degree of
connectivity. We have shown that analogous structures
account for the band tails in a-SiO2 and other systems6.
For the sake of convenience, we generically dub connected
networks of short bonds or long bonds ”filaments” in the
rest of this paper.

A feature of all high quality continuous random net-
work models of a-Si is that they possess the structural
correlations described above. The best models of a-Si
are made with the Wooten-Weaire-Winer method8, and

to our knowledge are not in significant contradiction with
any experiments (structural, vibrational or optical). To
extend our understanding of these points, we investigate
the following four topics in this paper: (1) the role of fi-
nite size effects: to date models with up to 10,000 atoms
have been explored with tight-binding in 3D. We extend
this to 100,000 atom models in this paper and show that
a well made model of this size produces highly exponen-
tial tails; (2) the character of the strain field centered on
particularly short bonds; (3) the role of thermal disorder:
how thermal fluctuation affect the band tails and how the
filaments are affected by thermal disorder; (4) we specu-
late on the question of the necessity vs. sufficiency of the
filaments for generating the Urbach tail.

Finally, we observe that the tails are not of mere aca-
demic interest. In particular, the broad valence tail in
a-Si:H is a particular culprit in reducing the efficiency
of a-Si:H photovoltaic devices by virtue of reduced hole
mobility9.

2. CALCULATIONS ON A LARGE SYSTEM

By carefully exploiting locality of interactions and
implementing various clever computational tricks,
Mousseau and Barkema11 have proposed genuinely enor-
mous, but nevertheless high quality models of a-Si, the
largest to date being 100,000 atoms. These models are
cubic and periodic boundary conditions are applied. To
determine whether the Urbach edges are a property of a
large system, we compute the density of states for this
model. We show that both tails are quite exponential and
indeed very close to an earlier calculation10 on a smaller
(4096 atom) model due to Djordjevic12 and coworkers.

In recent years there have been significant advances
in obtaining the electronic structure of large systems.
While the roots of these approaches extend back at least
to Haydock and Heine’s recursion method13, conceptual
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advances in the nineties showed how to compute total
energies and forces in a fashion that scales linearly with
system size – the so-called order-N methods14. For the
present topic, we are concerned primarily with the spec-
tral density of states for a single-particle Hamiltonian in
a local basis (orthogonal tight-binding) representation.

Within a tight-binding approach, the electronic Hamil-
tonian matrix H of a large model of a-Si is readily com-
puted because it is extremely sparse (meaning that the
overwhelming majority of the matrix elements vanish).
Using the Hamiltonian of Kwon et al.15 (with four or-
bitals per site and a cutoff between second and third
neighbors for Si) we find that about 54 million matrix
elements are non-zero, out of 400,0002 matrix elements
in total, so that only about one in 2800 entries in the ma-
trix is non vanishing. As such, one can take advantage of
sparse matrix methods, formulated to carry out all ma-
trix operations using only the nonzero matrix elements.

The principle of maximum entropy (maxent) provides
a successful recipe for solving missing information prob-
lems associated with spectral densities, such as the elec-
tronic (or vibrational) density of states16. Let ρ be the
maximum entropy estimate for this density. The max-
ent framework prescribes that we maximize the entropy
functional:

S[ρ] = −

∫
dǫρ(ǫ)log[ρ(ǫ)], (1)

subject to the condition that ρ(ǫ) satisfies all known in-
formation about ρ, and with implied integration limits
over the support of ρ. As discussed elsewhere17, it is
easy to get accurate estimates of the power moments

µi =
∫ b

a
dǫǫiρ(ǫ); i = 1, N . By using simple tricks, one

can generate hundreds of power moments in seconds for
systems with 105 or more atoms (this is because the only
operations involving H are of the form matrix applied
to vector). Then maximizing Eq. 1 (solving the Euler
equation) subject to the moment data leads to:

ρ(ǫ) = exp [

N∑
i=0

Λiǫ
i]. (2)

From a computational point of view, the maxent mo-
ment problem is solved by finding the Lagrange multipli-
ers Λ that satisfy the moment conditions. This system
of equations presents a dreary non-linear problem, but
by using orthogonal polynomials rather than raw powers
and converting the calculation into a convex optimization
problem, practical solutions are available for more than
100 moments17–19.

In Fig. 1 we reproduce the electronic density of states
for the 105 atom model. We carry out the maxent re-
construction for 107 and 150 moments; the results are
nearly identical, implying that the density of states is
converged with respect to moment information for of or-
der 100 moments. We show the global density of states,
including a state-free optical gap. In Fig. 2, we show

FIG. 1: Electronic density of states for 100,000-atom a-Si
model from maxent reconstruction based on 107 and 150 mo-
ments. As the curves are nearly identical, ca. 100 moments
appears to be sufficient to accurately reproduce the state den-
sity. The Fermi level is in the middle of the gap.

a blowup of the gap region. By fitting the tails to an
exponential exp(−|E − Et|/EU ), where Et indicates the
valence or conduction edge, we obtain Urbach energies
of EU = 200meV for the valence tail and EU = 96meV
for the conduction edge. Semilog plots of the density of
states for tail energies (not reproduced here) exhibit the
expected linear behavior. These Urbach decay param-
eters are very close to earlier calculations on somewhat
smaller systems10,20. The small spikes near -16.0eV are
“real”: the moment data and maxent technique produce
respectable δ functions for isolated states with extremal
energies.

We have also determined that the exponential edges
are not limited to the valence and conduction tails. The
“extremal tails” (near -15 eV and +8 eV) are also highly
exponential. The high energy edge has an Urbach param-
eter EU = 130meV . The low energy tail is much sharper
than the other three, but still plausibly exponential when
plotted on a log scale. It is not possible to access these
extremal tails optically or electronically, being so far re-
moved from the Fermi level, yet they do contribute to
quantities like the total energy and forces.

We make two additional points. First, the exponential
form is in no way due to the maxent approach, which is
non-biased. While the identical calculation has not been
published on diamond Si, there are published calculations
on very large fullerenes (with up to 3840 atoms, asymp-
totically approaching graphene) that shows a sharp band
edge as in crystals, not an exponential, an edge that is es-
sentially identical to an exact calculation of the graphene
electronic density of states obtained from Brillouin-zone
integration21. From a mathematical point of view, it is no
mean feat for the maxent form (Eq. 2) to produce simple
exponential tails in the gap. In effect, the network struc-
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FIG. 2: Least-squares fits to exponentials for valence and con-
duction tails for maxent reconstruction of the density of elec-
tron states for 100,000 atom model, based on 107 moments.

ture of connected filaments (and the consequent elec-

tronic Hamiltonian matrix) causes
∑N

i=0 Λiǫ
i ≈ λǫ for

ǫ ∈ E , E defines a spectral energy range including the
two band tails, and λ is characteristic of the decay of
the valence or conduction tail. Other illustrations can
be found in the theory of magnetic resonance22. Finally,
calculations with more sophisticated (density functional)
Hamiltonians (and necessarily smaller models that re-
quire Brillouin zone integrations) show exponential tails
for topologically similar models4,5.

3. STRAIN RECOVERY FOR SHORT BONDS

We have shown in earlier work that if a particularly
short bond appears in the network, it will tend to be con-
nected to other short bonds, which tend to be connected
to additional short bonds etc. Let us name the central
short bond a “defect nucleus”. As one progresses away
from the nucleus, the bond lengths must asymptotically
return to the mean bond length of the network. In ef-
fect, there is a strain field induced by the anomalous short
bond. In Fig. 3, we illustrate this strain field. There is a
reasonably consistent form to the curves, which are plot-
ted for the shortest few bonds in the 512-atom model.
By fitting a power law δr = Arγ , (or alternatively, ex-
amining a log-log plot), we find that γ = −1.86 ± 0.52 .
For several reasons (poor statistics, only a small range of
r contributing meaningful information, etc) this number
is not to be taken too seriously. In fact, we are inclined
to wonder if a more refined attempt will not yield a 1/r
law, as predicted for a point deformation for a continuum
model by Lord Kelvin23.

Despite these uncertainties, the consistency of this de-
cay between the different short bond centers is interest-
ing. It seems that to a significant degree, anomalous

FIG. 3: Strain recovery in 512-atom model of a-Si: shortest
few bonds. ∆r is difference in bond length from the mean, r

is distance from short bond defect nucleus.

bonds determine their local topology. Bond length de-
fects have a characteristic spatial range associated with
them, and the range is quite predictable for short bond
defects, at least. The main point is that one must be care-
ful about thinking in overly local terms – one anomaly
affects many atoms. For the case of short bonds, this dis-
cussion is salient to the valence tail. In a-Si, the valence
tail is known to be broad and mainly due to static (not
thermal) disorder24. In other terms, an individual point
defect can introduce density fluctuations on a scale of or-
der 5-7Å3. Since short bonds beget short bonds (always
with electronic signature at the valence edge), there is
a cumulative electronic consequence at the valence edge.
Presumably it is this non-locality and the tendency of
the network to locally density that makes the valence
tail broad (as in experiment in a-Si:H9). As we pointed
out in the introduction, for hydrogenated material, the
broad valence tail impedes hole mobility. Thus, our cal-
culations suggest that a maximally homogeneous mate-
rial is ideal for applications. How homogeneous this can
be, either in the experimental material or in models is
not clear, though we know that the WWW-class models
are exceptionally uniform compared to models made in
other ways25.

Where long bonds are concerned, the pattern is less
clear because there is a basic asymmetry – sufficiently
long bonds are not bonds! Clearly there is no pattern
so clear as Fig. 3 for long bonds (since it is silly to
imagine that very long (eg. nonexistent) bonds could in-
duce slightly shorter long bonds etc.) The experimental
observation that the valence tail is much broader than
the conduction tail is presumably connected to this basic
asymmetry. Bond length distribution is almost symmet-
ric about long and short in good model. Conduction
wave function lies on atoms, when feel less disordered
potential, tail is less broadened.
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FIG. 4: Comparison of electronic density of states between
512-atom model and 100,000-atom model.

4. SIZE EFFECTS AND HAMILTONIANS

Because we cannot perform MD simulations on the
100,000- or even 4096-atom models, we are led to in-
vestigate the effects of thermal motion on the filaments
and associated electronic structure at the tails. First, we
consider the possible importance of size artifacts on the
energy spectrum by comparing the 100,000-atom model
with a 512-atom model made in a similar way12, and
show the result around gap in Fig.4. Both plots have
similar general features, though the electronic density of
states (EDOS) of the 100,000-atom model is of course
smoother than the 512-atom model. Within finite size
artifacts, the 512-atom model is producing a fairly ex-
ponential tail which indicates that 512-atom model is an
appropriate basis to study some aspects of the tails in
a-Si.

Next, we compare the EDOS of one a-Si 512-atom
model obtained via different Hamiltonians and plot the
result in Fig.5. The electronic density of states of a 512-
atom model are computed by SIESTA self-consistent cal-
culation with single-zeta and single-zeta-polarized basis
set, by tight-binding method and by SIESTA using a Har-
ris functional calculation with single zeta basis. We point
out that the Harris functional calculation gives a signif-
icantly bigger HOMO-LUMO gap and, as expected, the
more complete the basis the smaller the gap. Though the
shape of EDOS are different for different basis sets, we
observe that different basis sets all produce qualitatively
exponential tail at least within the finite size effects for
the small 512-atom model.

5. FILAMENT DYNAMICS

Total yield photoelectron spectroscopy measurements
have shown interesting behavior in the band tails of a-
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FIG. 5: Electronic density of states of 512-models obtained by
SIESTA self-consistent calculation with single-zeta and single-
zeta-polarized basis set, by tight-binding method and by Har-
ris functional calculation with a single zeta basis.

Si:H and related materials1,24. In the experiments of
Aljishi et al.24 it was found that the valence tail was
due primarily to structural disorder, and that the con-
duction tail was much more temperature dependent, and
thus linked to thermal disorder. MD simulations have
been applied to model these effects26.

As another step toward understanding the effect of a
dynamic lattice on the band tails, we have created anima-
tions of the dynamics of the short bonds in the 512-atom
cell12 using the local orbital ab initio code SIESTA27 for
temperatures from 20K to 700K (in each case using con-
stant temperature dynamics). In Figures 6 and 7 we
show instantaneous snapshots of the shortest bonds at
two different times at 300K. As inspection of the ani-
mation suggests, there is considerable fluctuation in the
identity of the shortest bonds. While it is not easy to
infer from our figures, there is a clear (and expected)
tendency for short bonds to occur in the denser volumes
near a defect nucleus than in other parts of the network.
Moreover, we computed the EDOS for a “non-filament”
model and tried to relate it with Urbach tail. We have
also made similar animations for long bonds, and see ex-
tended, highly connected filaments fluctuate into and out
of existence. We illustrate the case of short bonds here,
as there is less ambiguity in definition. Thus, we note
that the filaments persist at room temperature at least4,
though not by retaining a static form, but with consid-
erable temporal fluctuation. We illustrate these points
with animations elsewhere.28

We end this section by comparing the EDOS of models
with and without filaments. Two 512-atom a-Si models
are presented: one with short and long filaments; the
other without filaments29. We used the tight binding
method to compute the electronic density of states, and
plot the results in Fig.8. A clear band gap exists for the
configuration with filaments but a smaller gap is revealed
for the model without filaments. Furthermore, we sought
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FIG. 6: Instantaneous snapshot of short bonds in 512-atom
model at 300K. Only bonds less than 2.3Å are shown. A bar
connecting the spheres indicates a chemical bond.

FIG. 7: Another instantaneous snapshot of short bonds in
512-atom model at 300K. Bonds less than 2.3Å are shown.

to understand the differences by performing exponential
fits to tails in both models. Because of the incomplete-
ness of the basis set for states above the Fermi level, we
only fit the valence tail and report the outcome in Fig.9.
We found that the exponential fit for the valence tail of
the filament model is better than the model without fil-
aments. The Urbach energy, EU ≈ 193meV , essentially
the same as for the 100,000-atom model, for the model
including filaments and ≈ 99meV for the model without
filaments. Modification of the filaments leads to signifi-
cant changes in the Urbach tail.
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FIG. 8: Electronic density of states for 512-atom models with
and without filaments.
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FIG. 9: Exponential fitting for valence edges of 512-atom
models with and without filaments.

6. NECESSITY AND SUFFICIENCY:

FILAMENT LOGIC

In this paper and elsewhere5, we have shown that fil-
aments ⇒ Urbach edges. But what of necessity: that
is, do we know whether Urbach edges ⇒ filaments? The
difficulty is that we have to consider how an asymptot-
ically exponential tail constrains the Hamiltonian ma-
trix elements, and ultimately what such correlations im-
ply about the topology/connectivity of the a-Si network
in space. We think that it may be useful to approach
this with a centro-symmetric single orbital Hamiltonian.
With such a simple beginning, the asymptotic form of
the moments is easily computed for exponential tails,
and one could then begin to infer the necessary non-
randomness in the Hamiltonian matrix and continue to
work backward to models. It is altogether likely that
this will not result in a unique structural solution; rather
various kinds of configurations probably can lead to ex-
ponential tails. A serious constraint must be applied at
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the end (namely that the structure must agree with ex-
periments, and must be near a local energy minimum for
an acceptable interatomic potential, empirical or ab ini-

tio). Perhaps one concludes with filaments alone at the
end of this analysis, but this is uncertain at this point.

An alternative that is perhaps more practical, would be
to undertake a Monte Carlo simulation with an objective
function (or penalty function) which is optimized when
a structural model possesses exponential band edges.
Atoms might be moved at random to optimize this func-
tion according to the conventional Metropolis recipe. If

such a stochastic calculation revealed a proclivity for
making filaments, necessity might be a reasonable infer-
ence.

7. CONCLUSION

We have explored some relevant points on the origin of
the Urbach tails in a-Si. The key results are that (1) all of
the band tails, not just those associated with the optical
gap are exponential; (2) Very large systems (a 105-atom
model) possess clearly exponential tails that are highly
consistent with smaller models made in a similar way;
(3) We find that a power-law provides a reasonable fit to
the decay of the strain field associated with a short bond
defect, and (4) We observe that the filaments persist at
finite temperatures, but that they are highly dynamic,
even at room temperature.
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