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We study transport properties of weakly interacting spinless electrons in one-dimensional single
channel quantum wires. The effects of interaction manifest as three-particle collisions due to the
severe constraints imposed by the conservation laws on the two-body processes. We focus on short
wires where the effects of equilibration on the distribution function can be neglected and collision
integral can be treated in perturbation theory. We find that interaction-induced corrections to
conductance and thermopower rely on the scattering processes that change number of right- and
left-moving electrons. The latter requires transition at the bottom of the band which is exponentially
suppressed at low temperatures. Our theory is based on the scattering approach that is beyond the
Luttinger-liquid limit. We emphasize the crucial role of the exchange terms in the three-particle
scattering amplitude that was not discussed in the previous studies.
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Introduction.– The quest for fundamental theory of
interacting low-dimensional many-body quantum liq-
uids and solids continues.1–10 Over the past several
decades the traditional framework for discussing one-
dimensional (1D) systems was provided by the Luttinger-
liquid (LL) theory.11 It exploits an approximation of lin-
earized fermionic dispersion relation which makes this
model exactly solvable. While being extremely fruitful
in many cases an ideal LL model, however, possesses cer-
tain deficiency. For example, elementary bosonic exci-
tations (plasmons) of the LL have infinite life time so
that there is no relaxation toward the equilibrium within
this description regardless of the strength of interaction.
The effects of interaction show no sign in application to
the dc transport coefficients of clean, single channel short
quantum wires. Indeed, it has been shown12 that within
LL model the interactions inside the wire do not affect
conductance which is simply given by its noninteracting
value. Clearly, a model with the linearized spectrum is an
idealized one. It is really the delicate interplay between
the dispersion nonlinearity and interactions in reduced
dimensions that bring new insights. Thus, current in-
terest in the properties of 1D systems is focused on the
physics that lies beyond the Luttinger-liquid limit.

In support of this general interest a number of re-
cent experiments in the low-density quantum wires re-
vealed deviations from the perfect conductance quan-
tization,13 a lower value of the thermal conductance
than predicted by the Wiedemann-Franz law,14 and en-
hanced thermopower.15 Although there is no consensus
on the theoretical interpretation of these observations it
is widely accepted that interaction effects are crucial in
understanding of these features. The goal of this paper
is to elucidate the role of inelastic scattering processes
(i.e. processes which change the number and energy of,
say, right-moving electrons), not captured by the LL the-
ory, for the description of transport properties of one-

dimensional quantum wires. We evaluate the interaction-
induced corrections to conductance and thermopower in
a particularly interesting case of spinless (spin-polarized)
electrons. Unlike the recent work, see Ref. 2, where the
model of interacting electrons with sharp momentum cut-
off was used, we consider more generic situation which re-
quires to account for both the direct and exchange terms
in the three-particle scattering rate.

Formalism.– We consider a clean single channel quan-
tum wire connected adiabatically to the bulk noninter-
acting leads, and biased by a small voltage V and temper-
ature difference ∆T , see Fig. 1. The distribution function
of noninteracting electrons is purely determined by the
leads and has the form

fp =
θ(p)

e
εp−µL

TL + 1
+

θ(−p)

e
εp−µR

TR + 1
(1)

where the chemical potentials and temperatures in the
leads are µL = µ + eV , TL = T and µR = µ, TR =
T + ∆T . The energy of an electron with momentum p is
εp = p2/2m, and θ(p) is the unit step function.

In the general interacting case even weak processes of
electron scattering will modify nonequilibrium distribu-
tion Eq. (1). Indeed, some right-moving electrons will
backscatter thus become left-movers. In that way elec-

TL = T

µL = µ + eV

TR = T + ∆T
µR = µ

L

ṄR

FIG. 1: [Color online] Quantum wire of length L in the regime
of small voltage µL−µR = eV and/or temperature TR−TL =
∆T bias. The interaction-induced backscattering changes the
number of right-moving electrons, ṄR 6= 0, thus affecting
electrical conductance G and thermopower S.
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trons lose the memory of the lead the originated from
and tend to equilibrate. To what extent the equilibra-
tion occurs depends on the strength of interaction and
length of the wire.8

Relying only on the very general basis of particle num-
ber conservation, one may show that the electric current
I flowing through the wire is ultimately related to the
electron backscattering2,4

GV = I − eṄR (2)

where ṄR is the rate of change in the number of right-
moving electrons, see Fig. 1. The physical meaning of
Eq. (2) is clear: without interaction ṄR = 0 and one
then finds the Landauer conductance of noninteracting
electrons, G = I/V = (e2/h)(1 + e−µ/T )−1, which coin-
cides with the conductance quantum, e2/h, up to an ex-
ponentially small correction, ∼ e−µ/T , due to the states
at the bottom of the band. In the presence of interaction
some right-moving electrons are backscattered reducing
the current. Therefore, the interaction-induced correc-
tion to conductance is δG ∝ ṄR and Eq. (2) can be
considered as the generalization of Landauer formula.

Apart from the conductance we are interested also in
the thermopower, S, which relates induced voltage across
the wire to applied temperature difference. For the non-
interacting electrons S = V/∆T |I=0 ≃ (µ/eT )e−µ/T , to
the leading order at low temperatures T/µ ≪ 1. Within
the LL model S = 0 due to particle-hole symmetry. The
reason for such strong suppression of thermopower is
the partial cancelation between heat currents carried by
electron-like and hole-like excitations. Only the absence
of electronic states below the bottom of the band pre-
vents thermopower from vanishing exactly. Knowing S
one can also find the Peltier coefficient Π via the Onsager
relation Π = ST . As we discuss below the interaction-
induced corrections to thermopower also result from the
electron backscattering, so that δS ∝ ṄR.

Within the Luttinger-liquid model we have ṄR = 0. It
is because the constraints imposed by the energy and mo-
mentum conservations allow either zero-momentum ex-
change or an interchange of the momenta for two collid-
ing particles. In either case fp given by Eq. (1) remains
unchanged. Thus, the transport coefficients G and S re-
main intact by two-body interactions. Therefore, one can
conclude then that the leading backscattering mechanism
is due to three-particle collisions.2,4,8,10

Rather than working within the LL model with nonlin-
ear dispersion, that would include the anharmonic inter-
action of plasmons and thus, in principle, contain equili-
bration and backscattering processes, we consider simpler
situation of weakly interacting electrons, e2/~vF κ . 1,
where vF is Fermi velocity while κ dielectric constant.
We account for the three-particle collisions within the
Boltzmann equation (BE) formalism. The evolution of
the distribution function of an interacting many-body
system is governed by the BE, ḟp = I{fp}, where the

collision integral is given by

I{fp1
} = −

∑

p2p3
p
1′

p
2′

p
3′

W 1′2′3′

123 [fp1
fp2

fp3
(1 − fp1′

)(1 − fp2′
)

×(1 − fp3′
) − fp1′

fp2′
fp3′

(1 − fp1
)(1 − fp2

)(1 − fp3
)](3)

In general collision integral is a nonlinear functional of
fp which we assumed here to be local in space. A
particular combination of the distribution functions in
Eq. (3) conventionally accounts for the probability to
find filled fpi

and empty 1 − fpi′
states before and af-

ter the collision. The key element of the theory is the
scattering rate W 1′2′3′

123 = (2π/~)|A1′2′3′

123 |2δ(E − E′)δP,P ′

from the set of initial states {p1, p2, p3} into the final

states {p1′ , p2′ , p3′}. The delta-functions in W 1′2′3′

123 im-
pose conservation of total energy E(E′) =

∑

i εpi(pi′ )
and

total momentum P (P ′) =
∑

i pi(i′) in a collision, and

A1′2′3′

123 is corresponding scattering amplitude. For the
electrons with the bare pair-interaction potential three-
particle amplitude can be found via generalized Fermi
golden rule by iterating interaction to the second order.
The result of such calculation gives2

A1′2′3′

123 =
∑

π(1′2′3′)

sign(1′2′3′)A(11′, 22′, 33′) (4)

where A(11′, 22′, 33′) is an amplitude of a particular scat-
tering process, see Fig. 2, which reads explicitly

A(11′, 22′, 33′) = a1′2′

12 + a1′3′

13 + a2′3′

23 (5)

a1′2′

12 ≡ ap1′p2′

p1p2
=

1

L2
Vp1′−p1

Vp2′−p2
× (6)

[

1

E−εp1
−εp2′

−εP−p2−p1′

+
1

E−εp1′
−εp2

−εP−p2′−p1

]

Here π(. . .) and sign(. . .) denote permutations of the final
momenta and parity of a particular permutation, finally
Vp is the Fourier component of the bare two-body inter-
action potential.

In the following we calculate ṄR from the BE, hav-
ing in mind that the distribution function at the ends
of the wire are Fermi functions determined by the leads,
Eq. (1). The rate of change in the number of right-moving

electrons is defined as ṄR =
∑

p>0 ḟp =
∑

p>0 I{fp}.
Since we restrict our analysis to very short wires in
which three-particle collisions are rare and thus effect
of relaxation on the distribution function can be ne-
glected, we can treat collision integral [Eq. (3)] in per-
turbation theory. Expanding the distribution function
in Eq. (1) to the linear order in V and ∆T as fp ≃
f0

p + f0
p (1 − f0

p )
[

eV
T θ(p) +

(εp−µ)∆T
T 2 θ(−p)

]

, where f0
p =

[e(εp−µ)/T + 1]−1 is equilibrium Fermi function, we get
with the help of Eq. (3)

ṄR = 3
∑

++−

+−−

W1′2′3′

123

[

∆T

T 2
(εp3′

− εp3
+ εp2′

− µ) − eV

T

]

(7)
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FIG. 2: [Color online] Three-particle collision processes that
sum up into the full amplitude in Eq. (4) for a scattering
which involves one particle at the bottom of the band and
the other two near the opposite Fermi points. The upper-
most left figure-(a) represents the direct term in the scattering
amplitude while the other five (b)–(f) are the exchange con-
tributions. These are the dominant three-particle processes
that contribute to ṄR and thus renormalize conductance and
thermopower.

where W1′2′3′

123 =W 1′2′3′

123 f0
p1

f0
p2

f0
p3

(1−f0
p1′

)(1−f0
p2′

)(1−f0
p3′

).

The notation
∑

++−

+−−

means
∑

p1>0,p2>0,p3<0

p
1′

>0,p
2′

<0,p
3′

<0

, etc. In

deriving Eq. (7) we have used the symmetry of the scat-
tering rate under: (i) the interchange of all primed and
unprimed indices; (ii) a pairwise exchange and (iii) the
inversion of all momenta pi → −pi. In the course of the
derivation one can see that in order to have ṄR 6= 0
the number of right-moving electrons must change after
the collision. In Eq. (7) we have kept only the leading

contribution to ṄR, namely an electron backscattered by
one right mover and one left mover which preserve their
direction of motion after the collision. This particular
scattering process is compatible with the conservation
laws, it involves only a single state at the bottom of the
band, and it has all final scattering states in the vicin-
ity of the initial ones. At low temperatures we expect
ṄR ∝ e−µ/T which stems from the Fermi occupation
factors for the particle at the bottom of the band.

Scattering amplitudes.– Let us look closer at the kine-
matics of backscattering processes. In general three-
particle scattering amplitude [Eq. (4)] depends on all pi

and pi′ . However, for the momentum configuration un-
der consideration [see Fig. 2] p2(2′) lies near the bottom of
the band, while p1(1′) and p3(3′) lie near the right and left
Fermi points, all within a small range |pi − pi′ | ∼ T/vF

set by temperature T ≪ µ. We thus argue that, up
to small corrections in δp ∼ T/vF ≪ pF , one can re-
place p1 ≃ +pF , p2 ≃ 0 and p3 ≃ −pF in the expres-
sions of Eqs. (4)–(6), which then becomes a function of

qi = pi′ − pi only A1′2′3′

123 → A(q1, q2, q3), with qi being
momenta transferred in a collision. Furthermore, using
the approximate forms of dispersion relation near Fermi
points εp1′

− εp1
≈ vF q1 and εp3′

− εp3
≈ −vF q3 the con-

servation laws allow one to express q1 and q3 in terms of

p2 and p2′ as q1,3 = p2−p2′

2 ∓ εp
2′

−εp2

2vF
. One readily sees

that q1 ≃ q3 ≃ −q2/2 up to small contributions of order
p2/pF ≪ 1, such that amplitude effectively depends on
a single momentum, A(q2) ≡ A(−q2/2, q2,−q2/2). Ap-
plying these observations to Eq. (4) we can expand am-
plitude for |q2| ∼ T/vF ≪ pF to the leading order and
obtain

A(q2) =
1

2µL2

{

VpF
[Vq2/2 − V2pF

] − V2pF
[Vq2

− V2pF
]

−Vq2/2[Vq2/2 − Vq2
] + 2pF V ′

2pF
[Vq2

− VpF
]

−2pF V ′

pF
[Vq2/2 − VpF

] + pF V ′

pF
[Vq2/2 − V2pF

]
}

(8)

There are several useful checks we can make at this
point. It is known from the context of integrable quantum
many-body problems16 that for some two-body poten-
tials, scattering of the particles of N -body system factor-
izes into a sequence of two-body collisions. In the context
of this work, it means that three-particle scattering for
the integrable potentials may result only in permutations
within the group of three momenta of the colliding par-
ticles; all other three-particle scattering amplitudes must
be exactly zero for such potentials. We have checked
explicitly that the three-particle scattering amplitude in
Eq. (4) nullifies for the several special potentials: for
the contact interaction, Vp ∝ const, for the Calogero-
Suthreland model, Vp ∝ |p|, and for the fermionic equiv-
alent of the Lieb-Liniger model, Vp ∝ 1 − p2/p2

0. Of
course, the simplified version of the amplitude [Eq. (8)]
obtained for a specific scattering process that we need
[Fig. 2] also vanishes for these potentials. For generic
non-integrable models the three-particle amplitude is not
expected to be zero. In the following we take regular-
ized Coulomb potential 1/|x| → 1/

√
x2 + 4Λ2 where cut-

off Λ = d is distance to the screening gate at large x
while Λ = w is the wire width at small x. Thus, the
Fourier transformed component of the interaction reads
Vp = (2e2/κ)[K0(2|p|w/~) − K0(2|p|d/~)], where K0(z)
is Bessel function. In particular, for the case of screened
Coulomb interaction, when p ≪ ~/d ≪ ~/w, we find
from Eq. (8)

A(q2) = −3(ln 4 − 1)(2e2/κ)2λs(kF d)/µL2 (9)

where λs(x) = x4 ln(1/x), while for the unscreened case,
when ~/d ≪ p ≪ ~/w, we obtain

A(q2) = (3/4)(2e2/κ)2λu(kF w) ln(pF /|q2|)/µL2 (10)

where λu(x) = x2 ln(1/x). Note, these forms of the am-
plitude require to keep all the exchange terms in Eq. (4).
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Unlike in the the previous studies2,8, which assumed in-
teraction with sharp momentum cut-off, keeping only di-
rect term in the amplitude would give sub-leading contri-
bution, namely Adir(q2) ∝ q2

2 ln |q2|. Indeed, comparing
this to the exchange contribution in Eq. (10) and using
q2 ∼ T/vF one estimates |Adir|/|Aex| ∼ (T/µ)2 ≪ 1.

Results and discussions.– Having determined scatter-
ing amplitude we are prepared to compute the rate of
change in the number of right-movers due to electron
backscattering. In accordance with our earlier kine-
matic observations we approximate conservation laws
implicit in the scattering rate W 1′2′3′

123 of Eq. (7) as
δ(E − E′)δP,P ′ ≃ 1

vF
δ(q1 − q3)δ2q1+q2=0, which removes

q2,3 integrals. We can also complete p1,3 integrals exactly

∑

p

f0
p (1 − f0

p+q) =
L

2h

q

sinh vF q
2T

e±vF q/2T (11)

for p near ±pF . This gives all together

ṄR =− 3L3

16π2~4vF

[

µ∆T

T 2
+

eV

T

]

∑

p2>0,q1

q2
1 |A|2M(p2, q1)

sinh2 vF q1

2T

(12)

where M(p2, q1) = θ(−p2 + 2q1)f
0
p2

(1 − f0
p2−2q1

). Since
characteristic p2 lies at the bottom of the band we can
also approximate f0

p2
(1−f0

p2−2q1
) ≈ e−µ/T

[

1+
εp2−2q1

2mT

]

to

the leading order at small temperatures, since
εp2−2q1

2mT ∼
(T/vF )2

mT ∼ (T/µ) ≪ 1. Then, p2 summation gives fac-

tor of (2Lq1θ(q1)/h)e−µ/T and remaining q1 integration
in Eq. (12) is straightforward. As a result, we find

from δG = eṄR/V for the case of screened Coulomb
interaction with the amplitude taken from Eq. (9), the
interaction-induced correction to conductance

δG = −c(e2/h)(kF L)r4
sλ2

s(kF d)(T/µ)3e−µ/T (13)

where rs = e2/~vF κ and c = 324ζ(3)
π3 ln2(4/e), while from

δS = −hṄR/e∆T correction to thermopower (restoring
Boltzmann constant kB)

δS = c(kB/e)(kF L)r4
sλ2

s(kF d)(T/µ)2e−µ/T (14)

Completely equivalent calculation for the unscreened
case, with the amplitude taken from Eq. (10), gives ad-
ditional logarithmic factor for conductance correction
δG ≃ (kF L)r4

sλ
2
u(kF w)(T/µ)3 ln2(µ/T )e−µ/T as com-

pared to Eq. (13), and similar for the thermopower.
So far we have considered short wires when electrons

propagate ballistically and experience rare backscatter-
ing. For longer wires three-particle collisions become
more frequent and simplistic treatment of the collision
integral in perturbation theory by iterations is not ap-
propriate. For such longer wires electrons reach the state
of partial equilibration where backscattering is achieved
by means of multiple collisions at the bottom of the
band.8,10 While traversing form the right to left Fermi
points electrons perform a random walk in momentum
space with small momentum step δp ∼ T/vF ≪ pF

at every collision. For such diffusive type motion col-
lision integral of the BE can be reduced to much sim-
pler differential Fokker-Planck form. Corresponding cal-
culation8 in this regime shows that interaction correc-
tions to conductance and thermopower remain exponen-
tially suppressed, namely δG = −(e2/h)(L/ℓ1)e

−µ/T ,

where ℓ1 =
√

8πmT 3/B and B ∝ r4
sλ2

s(T/µ)5kF pF µ
is diffusion coefficient in momentum space. For even
longer wires, L & ℓeq ∝ eµ/T , small probability of scat-
tering at the bottom of the band is compensated by
the large phase space and effects of electronic equili-
bration in a wire are nonperturbative. When electrons
are fully equilibrated then wire conductance saturates to
the length and interaction strength independent univer-

sal value δG = −(e2/h)(π2T 2/12µ2), while thermopower
grows from being exponentially small ∝ e−µ/T to a power
law S = π2kBT/6eµ, see Refs. 4,8,10 for details.18

Summary.– We have calculated the leading order inter-
action corrections to the transport coefficients of a clean
single-mode short 1D quantum wire. Our main results
are Eqs. (13)–(14) for conductance and thermopower.
The dominant scattering mechanism is three-particle col-
lisions which are not captured by the ideal LL model.
Note however that in the multi-mode case already two-
particle inter-channel scattering gives correction to con-
ductance.17 We have also emphasized crucial role of ex-
change terms in the three-particle amplitude Eq. (4)
which was not discussed in the previous studies.2,8 Fi-
nally, our work also points on the open questions. First,
it is interesting to explore the consequences of the ex-
change contributions in the spinfull case. Second, it is of
great interest to understand the fate of interaction cor-
rections in the limit of strong interactions which must
simultaneously coped with the nonequilibrium effects.
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