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We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions
by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general
4-leg vertex has a power law behavior with the exponent going from real to complex as the coupling
constant is increased. This change of behavior is manifested in the antisymmetric response, which
displays power law behavior at small wavevectors reminiscent of a critical state, and a change in
this power law from real to complex that is accompanied by poles in the response function for finite
size systems, suggesting a phase transition for strong enough interactions. The density-density
response is also calculated, for which no critical behavior is found. We demonstrate that exciton
correlations enhance the cusp in the irreducible polarizability at 2kF , leading to a strong increase
in the amplitude of Friedel oscillations around a charged impurity.

PACS numbers: 71.45.Gm,73.22.Pr,71.10.-w

I. INTRODUCTION

Graphene is a two-dimensional honeycomb lattice of carbon atoms. Near zero doping, the low energy quasiparticle
states are well-described by two-dimensional massless Dirac fermions (MDF’s). Graphene supports two species of
these, centered at the two inequivalent corners of the Brillouin zone. At low or zero doping, the properties of
graphene are in many ways quite different than those of a doped semiconductor, in large part because of the unusual
properties of MDF’s1,2.

One interesting class of questions about graphene involve Coulomb interactions. In a seminal study, Gonzalez,
Guinea and Vozmediano3 demonstrated that weak Coulomb interactions in undoped graphene are marginally irrele-
vant, invalidating the basic premise of strong screening that underlies the standard treatment of an electron gas as
a weakly interacting Fermi liquid. Moreover, simple estimates of the strength of Coulomb interactions, characterized
by an effective fine structure constant β = e2/ǫ~vF , where vF is the speed of electrons near a Dirac point and ǫ is
the effective dielectric constant due to a substrate upon which the graphene may be adsorbed, suggest that Coulomb
interactions are effectively large (β > 1) if ǫ ∼ 1. This suggests that properties of graphene near zero doping should
be rather different than those of non-interacting MDF’s; for example, a gap may open in the quasiparticle spectrum4,
so that rather than behaving as a metal the system would be insulating. In real experiments there is little evidence for
such dramatic effects of interactions, most likely because disorder effects overwhelm those of Coulomb interactions2.
If so, one may suppose that interaction effects could become apparent if sufficiently clean graphene samples can be
created. In this work, we study this theoretical clean limit, and focus on unusual properties which can emerge in linear
response functions for two-dimensional MDF’s due to Coulomb interactions. As we shall see, these have important
consequences for the induced charge distribution around an impurity, and suggest that the MDF description breaks
down even before a gap opens in the spectrum.

The unusual effects of a Coulomb potential for MDF’s are already apparent in their response to a Coulomb charge
Ze, even when there are no interactions among the electrons themselves. The wavefunctions for this problem are
essentially exactly calculable5–10. One finds that the m-th circular component of an electron wavefunction has the

short distance form ψm(r) ∼ r
√

(m+1/2)2−Z2β2−1/2 at a distance r from the impurity. This is an unusual situation in
that the exponent is a function of the impurity charge, so that the wavefunctions have a non-analytic dependence on the
potential strength at short distances. This cannot be reproduced at any finite order in perturbation theory. When Zβ
is above a critical value, the short distance exponent becomes complex, corresponding to a maximal penetration of the
centrifugal barrier (the effective potential due to the angular momentum in the radial equation for the wavefunction)
by the electrons. We refer to this phenomenon as “Coulomb implosion”, and it is analogous5 to the breakdown of
the vacuum in the vicinity of a highly charged nucleus in QED11. In graphene, this breakdown is accompanied by
the formation of a charge cloud around the impurity with density falling off as 1/r2, which is absent for Zβ below
its critical value. The propagation of a short distance effect (penetration of the centrifugal barrier) to long distances
(appearance of the charge cloud) is one of the special properties of MDF’s, and it reflects the absence of any length
scale in the Dirac equation itself. As we shall see, there are many-body analogs of these phenomena which become
apparent in some of the linear response functions.
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To address the many-body problem, it is preferable to assess the non-analytic content of a linear response function
as a function of momentum rather than position. To see how this might be done, we revisit the problem of non-
interacting MDF’s in the presence of a Coulomb impurity, and analyze how the short distance behavior described
above is manifested in a momentum representation. Not surprisingly, we find that the scattering wavefunctions, when
expressed in a momentum representation, display power law behavior at large momentum, with an exponent that
changes from real to complex for Zβ exceeding the same critical value found in the real space analysis. The momentum
space analysis in terms of scattering states naturally suggests that one might find similar behavior in vertex functions
evaluated in the ladder approximation12. Ladder diagrams play an important role in interacting systems because they
allow one to incorporate excitonic correlations in virtual particle-hole pairs that are generated by the interaction. We
analyze this approximation for a generic four-point vertex function of MDF’s with Coulomb interactions, and find
both the non-analytic power law behavior at large momentum and a change from real to complex exponent, in this
case when β exceeds some critical value. The analysis suggests the system undergoes a quantum phase transition
at this critical value, since the exponent necessarily behaves in a non-analytic way as a function of the parameter
β13. Interestingly, we shall see that the equations for the vertex function suggest that this transition is infinite order,
suggesting the transition may be in the same universality class as classical two dimensional systems undergoing a
Kosterlitz-Thouless (KT) transition14.

To relate the four point vertex function to measurable quantities, we use it to form three-point vertex functions which
can then be used to directly compute linear response functions. Two are of particular interest. The density response
function (equivalently, the density-density correlation function) expresses the screening response of the system to an
external potential, including due to impurities or inhomogeneities in the system. We find that the non-analyticity
of the four-leg vertex does not present itself in this particular quantity. Nevertheless, we demonstrate that exciton
effects, as expressed in the ladder diagrams, have important quantitative effects for for doped systems, where we find
a strong enhancement of Friedel oscillations around a charged impurity relative to the non-interacting case.

The other important response function involves the charge imbalance between the two sublattices, the antisymmetric
response function. (Some results on this were reported by us previously15.) Here we indeed find non-analytic behavior
analogous to the Coulomb impurity problem for non-interacting MDF’s. Although this non-analyticity is apparent
at large wavevectors in the four-leg vertex, the absence of length scale in the problem leads to power law behavior
emerging at small wavevectors in the response function. In particular this applies to an impurity placed asymmetrically
with respect to the graphene sublattices, which is known to induce very different charge responses on them16–19. The
sublattice-antisymmetric component of this acquires a power law tail, with exponent that changes from real to complex
above a critical value of β. Interestingly, when a finite size cutoff is included in the calculation, we find poles in the
response function, suggesting a quantum phase transition to a state with different charge densities on the sublattices,
and hence a state with spontaneously broken chiral symmetry20,21. These poles however merge together into a branch
cut in the thermodynamic limit15, suggesting a state fluctuating among ones with the chiral symmetry broken in
different possible ways, and no mean-field mass gap. This may represent a phase transition that is a precursor to one
in which a real gap develops in the spectrum4.

This article is organized as follows. We begin with a study of the single impurity problem in the momentum
representation in Section II and identify the signatures for the short-distance power law behavior and Coulomb
implosion. With this simpler example to guide us, in Section III we study the ladder approximation to the Bethe-
Salpeter equation for the 4-leg vertex. This approximation is the many-body analog of the Lippmann-Schwinger
equation studied in Section II. We show that the vertex function has a power law behavior in momentum, and the
exponent changes from real to complex above a certain value of coupling constant β. The interesting properties
of the antisymmetric response are discussed in Section IV. Finally, in Section V we focus on the density-density
response function in the ladder approximation, and demonstrate the important quantitative effects caused by excitonic
correlations.

II. IMPURITY PROBLEM IN THE MOMENTUM REPRESENTATION

We begin by discussing the problem of MDF’s in the presence of a Coulomb impurity in terms of scattering states.
The standard (Lippmann-Schwinger) equation for scattering states22 takes the form

ψ(+)(~x) = ψ(0)(~x) +

∫

d2~yGDE(~x− ~y)V (~y)ψ(+)(~y), (1)

where GDE is the (matrix) Green’s function determined by the differential equation (DE) (−~vF~σ · p̂+ ε11)GDE(~x) =
δ(2)(~x), V (~y) = Ze2/ǫ|~y| is the impurity potential and ψ(0) is an eigenstate for V = 0. Fourier transforming Eq. (1),
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we have

ψ(+)(~p) = ψ(0)(~p) +GDE(~p)

∫

d2p′

(2π)2
V (~p− ~p ′)ψ(+)(~p ′). (2)

It is convenient to express the Lippmann-Schwinger equation in terms of angular momentum states. Introducing the
angular components

ψm(p) =

∫ 2π

0

dθp

2π
e−imθpψ(~p), (3)

V (|~p− ~p ′|) = −Ze2
∑

n

e−in(θ~p−θ~p ′ )fn(p/p′)/p′, (4)

fn(x) =

∫ 2π

0

dθ

2π

e−inθ

[1 + x2 − 2x cos(θ)]1/2
, (5)

where θ~p is the angle between the vector ~p and the x̂ axis, and using

GDE(~p) =
1

ε2 − (~vF p2)
[ε11 + ~vF (pxσ

x + pyσ
y)], (6)

where σx and σy are the Pauli matrices, Eq. (2) may be written in the form

ψ
(+)
1,m = ψ

(0)
1,m(p) (7)

− Ze2p

ε2 − (~vF p)2
[ε

∫ ∞

0

xf−m(x)ψ
(+)
1,m(xp)dx

+~vF p

∫ ∞

0

xf−(m+1)(x)ψ
(+)
2,m+1(xp)dx],

ψ
(+)
2,m+1 = ψ

(0)
2,m+1(p) (8)

− Ze2p

ε2 − (~vF p)2
[~vF p

∫ ∞

0

xf−m(x)ψ
(+)
1,m(xp)dx

+ε

∫ ∞

0

xf−(m+1)(x)ψ
(+)
2,m+1(xp)dx].

Motivated by the observation that power law behavior emerges in the wavefunctions at small distances, we search for
power law solutions at large wavevector. Using the ansatz

ψ(+)
α,m(p) =

cα,m

ps
for p→ ∞, (9)

and neglecting terms of lower order of p, Eqs. 7 may be written as
(

1 −ZβIm+1(s)
ZβIm(s) −1

)(

c1,m

c2,m+1

)

= 0 (10)

where

Im(s) =

∫ ∞

0

x1−sf−m(x)dx. (11)

Eqs. 10 will have non-vanishing solutions provided

1 − (Zβ)2Im(s)Im+1(s) = 0. (12)

One may easily show that Im(s) has a minimum at s = 3/2 for any integer m, so for Zβ larger than a critical (Zβ)c,
the solution s to Eq. 12 becomes complex. For m = 0, (Zβ)c = 1/2; for m = 1, (Zβ)c = 3/2, etc. This change of
behavior corresponds to that found in the real space analysis of the Coulomb impurity problem5. For Zβ > (Zβ)c

(for a given m), the complex values of s cause ψ
(+)
α,m(p) to oscillate at small r, with no well-defined value of ψ

(+)
α,m(r)

as r → 0. This leads to an ill-defined problem unless a boundary condition for small but finite r is imposed5. This
suggests that some quantities are sensitive to the short scale cutoff in the problem, a behavior which we will see holds
true as well for some response response functions when Coulomb interactions are included. Using the above analysis
as a guide, we now turn to this more complicated problem.
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FIG. 1: Ladder approximation to the Bethe-Salpeter equation.

III. GENERAL 4-LEG VERTEX

As we saw in the last section, the signature of Coulomb implosion in the momentum representation is that the
exponent of the power law of the wavefunction becomes complex. The basic physics in Eq. (1) is clear: in a perturbative
expansion in V , the electron can be scattered arbitrarily many times by the impurity, and the non-analytic, power
law behavior emerges from a superposition of all these possibilities. If we substitute the electron-impurity scattering
with electron-hole scattering due to Coulomb interactions, we may expect a many-body analog of both the power law
behavior and of Coulomb implosion. The signature of these should be contained in the general 4-leg vertex function
in the electron-hole channel.

To compute this, we note12 that the ladder approximation to the 4-leg vertex (Fig. 1) has the same structure of
multiple scattering of an electron from a hole as does an expansion of Eq. 1 in powers of V . The Bethe-Salpeter
equation resulting from this ladder sum has the form12

Γαβ,γδ(p1, p2; p3, p4) = U(p1 − p3)δαγδβδ (13)

+
i

~

∫

d3q

(2π)3
U(q)G(0)

αµ(p1 − q)G
(0)
νβ (p2 − q)Γµν,γδ(q),

where Γ is the vertex function whose arguments are three momenta [spatial components (momentum) ~p and time
component (frequency) p0 ], U(p) = 2πe2/ǫ|~p| is the Coulomb interaction, and

G(0)(p0, ~p) = (14)

p0 + µ/~ + vF ~p · ~σ
(p0 + µ/~)2 − (vF ~p)2 + iδ · sgn(p0)(p0 + µ/~)

is the time-ordered Green’s function for non-interacting Dirac fermions, and we have allowed the possibility of a
non-zero chemical potential µ.

Following Ref. 12, we introduce two new functions Q and χ via the relations

Γαβ,γδ(p1, p2; p3, p4) = (15)
∫

d3q

(2π)3
U(q)Qαβ,γδ(p1 − q, p2 − q; p3, p4),

χαβ,γδ(~p, ~p
′;P ) = (16)

∫

dp0

2π
Qαβ,γδ(p+

1

2
P, p− 1

2
P ; p′ +

1

2
P, p′ − 1

2
P ).

In these expressions, P represents the four-momentum of the particle-hole pair, which may be understood as entering
the vertex at the bottom of the diagrams in Fig. 1 and exiting at the top. In this interpretation, p then represents the
relative momentum of the pair before the collision, and p′ the momentum afterwards. These equations allow Eq. (13)
to take the form

χαβ,γδ(~p, ~p
′; ~P ) = δαγδβδ(2π)2δ(2)(~p ′ − ~p) (17)

+Kαβ,µν(~p, ~P )

∫

d2q

(2π)2
U(~q)χµν,γδ(~p− ~q, ~p ′; ~P ),

where

Kαβ,µν(~p, ~P ) ≡ i

~

∫

dp0

2π
G(0)

αµ(p+
1

2
P )G

(0)
νβ (p− 1

2
P ). (18)
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Note that because we have integrated over p0, there is no frequency dependence in K or χ12. The quantity χ can be
used to directly to construct static response functions, as we shall see below.

In the case of the Dirac particle colliding with a Coulomb impurity we found power law behavior for large momenta,
specifically from collisions involving a large change in momentum (|~p| >> |~p′| in Eq. 2.) Since in the two-body
problem, the particle and hole scatter from one another, we search for analogous behavior in the vertex functions at
large momentum difference |~p − ~p ′|. For example, for fixed P and ~p ′, when |~p | → ∞, the equations for χ11,γδ and
χ22,γδ become

χ11,γδ(~p ) = (19)

1

4~vF |~p |

∫

d2q

(2π)2
U(~p− ~q)[χ11,γδ(~q) − χ22,γδ(~q)],

χ22,γδ(~p ) = (20)

1

4~vF |~p |

∫

d2q

(2π)2
U(~p− ~q)[−χ11,γδ(~q) + χ22,γδ(~q)].

Note in these expressions terms of order P/p, p ′/p have been dropped, and ~p and P are suppressed in the arguments
of χ.

Introducing circular moments as before, i.e.

χ(m) =

∫ 2π

0

dθp

2π
e−imθpχ(~p), (21)

and using the ansatz

χ
(m)
11,γδ(p) =

C
(m)
11,γδ

ps
, (22)

χ
(m)
22,γδ(p) =

C
(m)
22,γδ

ps
, (23)

the m-th angular component of the above coupled equations reduces to

( 4
β − Im(s) Im(s)

Im(s) 4
β − Im(s)

)

(

C
(m)
11,γδ

C
(m)
22,γδ

)

= 0. (24)

Nontrivial solutions to this set of homogeneous linear equations may be found if

2/β = Im(s), (25)

which determines the exponent s for a given β. The critical β where the exponent of the power law becomes complex
is βc = 2/Im(3/2). We thus see the many-body problem has a Coulomb implosion instability analogous to what is
found in the Coulomb impurity problem for non-interacting MDF’s. A natural interpretation for this instability is
that it indicates a transition to a gapped, excitonic insulator state20,21. However, as we shall see below, when analyzed
in terms of the appropriate linear response function, such an interpretation is only consistent when considering a finite
size system15; in the thermodynamic limit the transition is likely to a state with a fluctuating mass gap.

χ
(m)
11,γδ and χ

(m)
22,γδ are not the only components of the vertex function which display instabilities. An analogous

instability appears for χ12,γδ and χ21,γδ, which are governed by the equations

χ12,γδ(~p) = (26)

1

4~vF |~p|

∫

d2q

(2π)2
U(~p− ~q)[χ12,γδ(~q) − e−2iθ~pχ21,γδ(~q)],

χ21,γδ(~p) = (27)

1

4~vF |~p|

∫

d2q

(2π)2
U(~p− ~q)[−e2iθ~pχ12,γδ(~q) + χ21,γδ(~q)].

The equations for the coefficients in the power law ansatz are

( 4
β − Im(s) Im+2(s)

Im(s) 4
β − Im+2(s)

)

(

C
(m)
12,γδ

C
(m+2)
21,γδ

)

= 0, (28)
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so that the equation for s is

4/β = Im(s) + Im+2(s). (29)

The critical β for the 12 and 21 components of χ is β′
c = 4/[Im(3/2) + Im+2(3/2)] > βc. This suggests that χ

(m)
11,γδ

and χ
(m)
22,γδ can develop complex exponents before χ

(m)
12,γδ and χ

(m)
21,γδ as β is increased from small values. We will see

more generally that certain combinations of the vertex functions do not appear to develop power law behavior at all;
most importantly this appears to be the case for the vertex function relevant to the density-density response function.

In this context, we note that the coefficients satisfy the conditions C
(m)
11,γδ = −C(m)

22,γδ and C
(m)
12,γδ = −C(m+2)

21,γδ , so that

χ11,γδ(~p) = −χ22,γδ(~p) and χ12,γδ(~p) = −χ21,γδ(~p). These relations among the components of χαβ,γδ can also be seen
from Eqs. 17 and 18 when expressed in terms of circular moments. The density-density response turns out to involve
χαα,γγ (repeated indices here are summed), so that the power law behavior is canceled away.

We have verified our analysis by numerically solving the Bethe-Salpeter equation in the form of Eq. (17). We use
polar coordinates for the integration and change each dimension of the integration to a discrete sum, independent of
the other dimension, i.e.

∫ 2π

0

dθ

∫ Λ

0

dqf(θ, q) →
Nθ
∑

i=1

wi

Nq
∑

j=1

wjf(θi, qj), (30)

where Λ is the momentum cutoff and f denotes a general integrand, and the discretization in each dimension is done
according to the Gauss-Legendre rule23. Now the integral equation is changed to a set of linear equations and can
be solved using any existing subroutine, e.g. the appropriate routine in the Lapack package. Some examples of our
results are shown in Fig. 2. As can be seen, the vertex functions follow power law forms, and the exponents are close
to those expected from our asymptotic analysis, both below and above the critical value of β.

An interesting aspect of these results is that the change of the exponent s = s′ + is′′ from real to complex at a finite
value of β (i.e., s′′ is zero for β < βc but is non-vanishing for β > βc) suggests that quantities calculated from it will
have a non-analyticity at βc. However, any such singularity must be of infinite order. For example, if there is a cusp
in χ at β = βc, then there would be a contribution of the form Bαβ,γδ(~p, ~p

′;P )δ(β − βc) in ∂2χ/∂β2. Differentiating
Eq. (17) with respect to β twice, and requiring that the coefficients of δ(β − βc) on both sides of the equation are the
same, we find an equation for B,

Bαβ,γδ(~p, ~p
′;P ) = (31)

+Kαβ,µν(~p, ~P )

∫

d2q

(2π)2
[U(~q)|β=βc

]Bµν,γδ(~p− ~q, ~p ′;P ).

This is nothing but a homogeneous version of Eq. (17), with β [in U(~q)] set to βc. If Eq. (31) has a non-vanishing
solution, then Eq. (17) would also have a contribution from such a solution, and we would expect χ to be divergent
at β = βc. Our explicit solutions, both in the asymptotic and the numerical analysis, show that this is not the case,
so that no cusp can be present. Similarly, higher order derivatives of χ also cannot have cusps. It follows that the
singular behavior at β = βc – and any phase transition it may represent – is of infinite order, a property it shares
with KT transitions14. In our analysis of the antisymmetric response below we shall see further hints of a connection
to the KT universality class in this system.

The symmetries of the components of χ discussed above led to a cancellation of the power law behavior in the
density-density response function. This same symmetry suggests that in a response function of the form σz

αβχαβ,γδ,
with σz the Pauli matrix, the power law should be retained. This represents the response of the density difference
between the A and B sublattices due to a potential that is antisymmetric in sublattice index. Any potential that
breaks sublattice symmetry will have a component of this antisymmetric response, so that it is in principle physically
accessible. As we shall show next, the antisymmetric response does capture the power law as well as the Coulomb
implosion physics.

IV. ANTISYMMETRIC RESPONSE

We define the antisymmetric response as

M(~q) = − i

A

∫ ∞

0

dt 〈[m̂z(−~q, t), m̂z(~q, 0)]〉 , (32)

m̂z(~q) = σz
αβ ρ̂αβ(~q), ρ̂αβ ≡

∑

~k

a†~k+~q,α
a~k,β , (33)
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FIG. 2: (Color online) Some examples of power laws from solving Eq. (17) numerically. P = 0 and p ′ = kF /2. (a) β = 0.1 < βc,

the solid lines are fits with the model C/p̃s, where p̃ ≡ p/kF . For ℜχ
(0)
1111 we get s = 2.02 from fitting, s = 1.95 from solving

Eq. (25). For ℜχ
(1)
1212 we get s = 3.09 from fitting, s = 3.05 from solving Eq. (29). (b) β = 1 > βc. The solid line is a fit with

C cos (s′′ log p̃ + δ) /p̃s′ . The fitting gives s′ = 1.57 and s′′ = 0.78, while Eq. (25) gives s′ = 1.5, s′′ = 0.60.
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FIG. 3: (Color online) (a) Diagrammatical equation for the 3-leg vertex Γ̃M
αβ(~k, ~q) with σz as the zeroth order vertex (the

shaded cross in the figure). (b) Diagram for M(~q).

where A is the area of the sample, repeated indices are summed, and henceforward we will set ~ = 1. In principle M(~q)
can be determined experimentally by measuring the screening charge induced by an impurity placed asymmetrically
with respect to the two sublattices, i.e. anywhere except in the center of a hexagon, or at the middle point of a
carbon-carbon bond. The difference between densities on the two sublattices m̂z is an interesting operator because
when < m̂z(~q) > is non-vanishing, there is a dynamically generated Dirac mass20,21.

A. Diagrammatic Expansion and Ladder Approximation

The diagrammatic representation for M(~q) is illustrated in Fig. 3(b), along with the summation of ladder diagrams,
Fig. 3(a), representing our approximation for the vertex function. Notice there are no bubble diagrams in the
diagrammatic expansion of M(~q); there are only irreducible diagrams. Reducible diagrams for this quantity turn out
to vanish, as we now show. Any reducible diagram will have at its end an insertion of the form illustrated in Fig. 4(a),

in which there is a Coulomb vertex Γ̃. This insertion represents a multiplicative contribution to the diagram of the
form

i

∫

d3k

(2π)3
σz

α1β1
G(0)

α2α1
(k + q)G

(0)
β1β2

(k)Γ̃α2β2
(~k, q) (34)

≡
∫

d2k

(2π)2
σz

α1β1
K̃α1β1α2β2

(~k, ~q)Γ̃α2β2
(~k, ~q)

≡
∫

d2k

(2π)2
σz

α1β1
χ̃α1β1

(~k, ~q)

In these expressions the overhead tilde denotes quantities pertaining to 3-leg vertex. Note also that we have set q0 = 0
in the second line. Assuming the Coulomb vertex is given by a ladder sum, the equation determining χ̃ is [Fig. 4(b)]

Γ̃α2β2
(~k, ~q) = δα2β2

+ (35)
∫

d2q′

(2π)2
U(|~q′|)K̃α2β2γ1γ2

(~k − ~q′, ~q)Γ̃γ1γ2
(~k − ~q′, ~q),

so that χ̃ satisfies

χ̃αβ(~k, ~q) = K̃αβα2α2
(~k, ~q) (36)

+K̃αβα2β2
(~k, ~q)

∫

d2q′

(2π)2
U(|~q′|)χ̃α2β2

(~k − ~q′, ~q).

More explicitly, the 11 and 22 components of Eq. 36, in the undoped case (µ = 0), are

χ̃11(~k, ~q) =
1 − e−i(θk−θ+)

2(k + |~k + ~q|)
+

1

2(k + |~k + ~q|)
(37)

∫

d2k′

(2π)2
U(~k − ~k′)

[

χ̃11(~k
′, ~q) − e−i(θk−θ+)χ̃22(~k

′, ~q)
]

,

χ̃22(~k, ~q) =
1 − ei(θk−θ+)

2(k + |~k + ~q|)
+

1

2(k + |~k + ~q|)
(38)

∫

d2q′

(2π)2
U(~k − ~k′)

[

−ei(θk−θ+)χ̃11(~k
′, ~q) + χ̃22(~k

′, ~q)
]

,
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FIG. 4: (Color online) (a) An insertion for the reducible diagram for M(~q). (b) The diagram equation for the 3-leg Coulomb

vertex Γ̃α2β2
(~k, q).

where θk and θ+ are the angular coordinates of the two-dimensional momenta ~k and ~k + ~q respectively. Without
loss of generality, we can set qy = 0, from which it is easy to see that χ̃22(kx,−ky; ~q) = χ̃11(kx, ky; ~q). When this is
substituted into the last of Eqs. 34 one readily sees that this insertion vanishes. Thus our approximation for M(~q)
includes only the irreducible ladder diagrams.

The calculation of the M(~q) follows steps very analogous to those described for the 4-leg vertex, and were outlined
in Ref. 15. The equation for the 3-leg antisymmetric vertex [Fig. 3(a)] is

Γ̃M
αβ(~k, ~q) =σz

αβ +

∫

d2q′

(2π)2
U(|~q′|)K̃αβγδ(~k − ~q′, ~q)

× Γ̃M
γδ(
~k − ~q′, ~q). (39)

Defining χ̃M
αβ(~k, ~q) = K̃αβγδ(~k, ~q)Γ̃

M
γδ(
~k, ~q), one finds

χ̃M
αβ(~k, ~q) = K̃αβγδ(~k, ~q)σ

z
γδ + K̃αβγδ(~k, ~q)

×
∫

d2q′

(2π)2
U(|~q′|)χ̃M

γδ(
~k − ~q′, ~q). (40)

This quantity is related to the susceptibility by

M(~q) =

∫

d2k

(2π)2
σz

ααχ̃
M
αα(~k, ~q). (41)

B. Solutions at Long Wavelengths

In what follows we focus on the long wavelength limit (small q), so we drop all terms of O(q2) and higher. Using a
circular moment expansion one finds

χ̃M(0)
αα (k, ~q) = K̃

(0)
ααββσ

z
ββ + K̃

(0)
ααββ(k, ~q)

β

k

×
∫ Λ

k0

k′dk′f0

(

k′

k

)

χ̃
M(0)
ββ (k′, ~q). (42)

Here we used the superscript (0) to denote the circular component m = 0, and the underlined indices are not summed
over. Note that we have introduced both an ultraviolet cutoff (Λ ∼ 2π/a, a = lattice spacing) and an infrared cutoff
(k0 ∼ 2π/L, L = linear size of system).

Defining χ̃M(0)(k, ~q) ≡ σz
ββχ̃

M(0)
ββ (k, ~q), in the limit q → 0 the solution to Eq. (42) may be written in the form

χ̃M(0)(k, 0) = 1
vF kF

(

k
Λ

)

, where F obeys the integral equation

F

(

k

Λ

)

= 1 +
β

2k

∫ Λ

k0

dk′f0

(

k′

k

)

F

(

k′

Λ

)

. (43)

Note that F depends on the ratio k/Λ, a reflection of the fact that the original Hamiltonian has no intrinsic length
scale, so (in the limit k0 → 0) k can enter only in this ratio. For k/Λ ≪ 1, one easily confirms that Eq. (43) is
solved by a power law F

(

k
Λ

)

∼ (Λ/k)s, with s going from real to complex above some critical β. This is precisely the
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FIG. 5: Solutions of Eq. (43) with k0/Λ = 10−10. (a) β = 0.5. Because the plotted is |F |, the oscillations appear as cusps.

Note the amplitude of the oscillation scales roughly as 1/
√

k. Inset: F for β = 0.3. It is clearly a power law except for k close
to k0. (b) The antisymmetric response M as a function of the interaction strength β.

0.0 0.1 0.2 0.3 0.4

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Β

d
ln
H-
D

M
L�

d
ln

q

-
v F
D

M
�L

q�L
10-6 10-4 10-2

10-5
10-4
10-3
10-2

FIG. 6: The exponent in ∆M(q) as a funciton of β. Inset: ∆M(q) for β = 0.3.

behavior we identified in the 4-leg vertex; unlike what one finds in the density-density response case, the power law
is not canceled upon forming the 3-leg vertex from the 4-leg vertex.

Eq. (43) may be readily solved numerically. For small β, the solution is indeed a power law, provided k ≫ k0 [see
Fig. 5(a) inset]. For large enough β, the solution is consistent with a power law of complex exponent, such that F

becomes oscillatory with a power law envelope [Fig. 5(a)]. Interestingly, M(~q → 0) =
∫

d2k
(2π)2 χ̃(k, ~q → 0) also has a

series of divergences [Fig. 5(b)]. Formally, one may understand the occurrence of these poles by thinking of the solution

in terms of the inverse of 1 − βL̂, where L̂ is the integral operator on the right hand side of Eq. (43). Divergences

then occur as 1
β crosses successive eigenvalues of L̂. The presence of such poles suggests a phase transition into a

state with a spontaneously generated M(q → 0) becoming a Dirac mass, i.e., chiral symmetry breaking. However, the
positions and weights of these poles are sensitive to k0, the infrared cutoff due to the finite system size, and merge
together in the L → ∞ limit to introduce a branch cut in F as a function of β. We discuss the significance of this
below.

For small but nonzero q, it is interesting to compute the correction ∆M(q) = M(q) −M(0). The equation for the
corresponding ∆F has a form very similar to Eq. (43), with only the “1” replaced by an inhomogeneous term, which
is proportional to q2/k2 for k ≫ q. The ∆M(q) resulting from this then vanishes with an exponent that varies with
β. The inset of Fig. 6 illustrates a typical result for β not too large; the exponent as a function of β is illustrated
in the main panel of Fig. 6. One physical consequence of this is that the difference in charge between sublattices for
an impurity placed asymmetrically with respect to the sublattices will fall off with a β-dependent power law at large
distances, behavior which may be observable with a local scanning probe.

The result illustrated in Figs. 5 and 6 have a number of interesting consequences for interacting electrons in
undoped graphene. For β < βc, we see that there are indeed power law correlations at long distances in quantities
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that are in principle measurable, with an exponent varying continuously with β. This means that the weak-coupling
many-body groundstate possesses a basic property of a critical phase. For β > βc the exponent becomes complex, as
in the noninteracting Coulomb implosion problem. In the interacting many-body case, the susceptibility M(q) of Eq.
(33) diverges for k0 > 0. This strongly suggests a quantum phase transition to broken symmetry state with staggered
charge order20,21.

The evolution of this system, from a state with power law correlations to one in which a transition occurs when
this power reaches some limiting value, is highly reminiscent of the phenomenology of systems which undergo a KT
transition14. In such systems the transition indicates the appearance of a correlation length, which equivalently
indicates that a gap develops in the excitation spectrum. This behavior in general should be signaled by a divergence
in an appropriate response function. However, the presence of many such divergences as a function of β suggests
there are different ways to break the symmetry. For a system with finite system size, we expect this chiral symmetry-
breaking to occur as β increases from small values in a way that is consistent with the first such pole. As we show
below, the separation between neighboring poles vanishes only logarithmically as k0 → 0, so that finite size may in
fact be important for realistic system sizes.

Nevertheless, the merging of these poles suggests that something else must happen in the thermodynamic limit24.
The merging of these poles as k0 → 0 results in a a continuous function with a branch point at βc. We interpret this
latter non-analytic behavior as the signal of a phase transition. Since it is a result of the merging poles, a natural
interpretation is that the instability is into a state involving fluctuations among different realizations of a chiral order
parameter which, if quiescent, would produce a gapped exciton phase20,21. We speculate that with further increase
in β, one of these orderings could be favored over the others, resulting in a true condensed phase. This would be
consistent with results of quantum Monte Carlo calculations4.

C. An Analytical Model

A fuller understanding of Eq. (43) may be arrived at with a model kernel of the form

f̃0(x) = θ(1 − x) +
1

x
θ(x − 1). (44)

This has the same behavior as the real kernel at large and small x, and is simple enough to allow analytic solutions25.
We have verified numerically that the results for F and M are qualitatively very similar to those obtained with the
correct f0.

1. Solution by Wiener-Hopf Method

With this model kernel, assuming that the integral converges as q → 0, which will be checked after the solution is
found, we obtain, in the k0 → 0 limit, the integral equation

F

(

k

Λ

)

− β

2k

Λ
∫

0

dk′f̃0

(

k′

k

)

F

(

k′

Λ

)

= 1. (45)

Let us change to more convenient variables via

k

Λ
= e−t,

k′

Λ
= e−t′ (46)

and rename the function for which we are solving, as well as the kernel,

F

(

k

Λ

)

= g(t), f̃0

(

k′

k

)

= K(t− t′), (47)

to obtain the rewritten integral equation

g(t) − β

2

∞
∫

0

dt′et−t′K(t− t′)g(t′) = 1. (48)
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Note that physically meaningful values of t are nonnegative. An important point is that if the limits of integration
over t′ had been (−∞,∞) one could have solved the equation trivially by Fourier transformation. Since it is over the
half-line one has to use the more sophisticated Wiener-Hopf method26.

One first extends the definition of g so that it has the entire real line for its domain, defining

g(t) = g+(t) + g−(t), (49)

where g+(t) is nonzero only when t ≥ 0 and g−(t) is nonzero only for t ≤ 0. As part of the solution one obtains
both g+ and g−. Defining R(t) = etK(t) we can now extend the range of integration over (−∞,∞) as long as one
integrates only g+:

g+(t) − β

2

∞
∫

−∞

dt′R(t− t′)g+(t′) = 1 − g−(t) = r+(t) + r−(t) (50)

where r+(t) = Θ(t) and r−(t) = [1 − g−(t)] Θ(−t).
One can now solve the equation by Fourier transformation. The crucial point is that since g+ is nonzero only for

nonnegative values, if it vanishes as t → ∞, its Fourier transform has poles only in the lower half-plane of complex
ω, while g− has poles only in the upper half-plane. This gives us the extra information needed to solve for both g+
and g−. In general, there is no need for g+ to vanish as t → ∞, which would correspond to the original function F
vanishing as k → 0. In fact, one expects F to diverge with a power law as k → 0. To incorporate this expectation,
we define g+(t) = esth+(t), with h+ vanishing as t → ∞. The new function h+ satisfies an integral equation with a
modified kernel Rs(t) = e−stR(t)

h+(t) − β

2

∞
∫

−∞

dt′Rs(t− t′)h+(t′) = e−st(r+(t) + r−(t)). (51)

We now take the Fourier transform of both sides, using the explicit form of f̃0, which corresponds to

Rs(t) = e(1−s)tΘ(−t) + e−stΘ(t). (52)

We will abuse notation slightly by using the same name for the function and its Fourier transform, the argument
and context serving to distinguish them. Thus, Rs(t) has the Fourier transform

Rs(ω) =

∞
∫

−∞

dteiωtRs(t) =
1

iω + 1 − s
+

1

−iω + s
. (53)

The existence of the Fourier transform implies 0 ≤ s ≤ 1, but does not choose s uniquely. In general, the choice of
s determines the class of functions which are allowed as solutions, as we will see explicitly below. Now the equation
becomes

(

(iω)2+iω(1−2s)+β/2−s(1−s)
(iω−s)(iω+1−s)

)

h+(ω)

= − 1
iω−s + r−(ω + is). (54)

To proceed further we separate the prefactor of h+ on the left hand side [call it P (ω)] into a product P (ω) =
P+(ω)P−(ω), where, by construction, P+(ω) has zeroes and poles only in the lower half-plane and P−(ω) has zeroes
and poles only in the upper half-plane. We denote the roots of the numerator of P (as a function of iω) as

x± = s− 1

2
± 1

2

√

1 − 2β. (55)

One possible choice of s is to make x+ ≥ 0, x− ≤ 0. Let us analyze this case first. This allows us to determine P±
uniquely.

P+(ω) =
iω − x+

iω − s
, P−(ω) =

iω − x−
iω + 1 − s

. (56)
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Now divide through Eq. (54) by P−(ω) to obtain

P+(ω)h+(ω) = − iω + 1 − s

(iω − x−)(iω − s)
+
r−(ω + is)(iω + 1 − s)

iω − x−
. (57)

The first term on the right hand side has poles in both half-planes, and we separate them by partial fractions

P+(ω)h+(ω) = − 1
(s−x−)(iω−s)

+
1 + x− − s

(s− x−)(iω − x−)
+ r−(ω+is)(iω+1−s)

iω−x−

. (58)

Since the product P+h+ is guaranteed by construction to have poles only in the lower half-plane the terms with the
poles in the upper half-plane on the right hand side must separately vanish, and we obtain

h+(ω) = − 1

(s− x−)(iω − x+)
(59)

Going back to the fictitious “time” variable t and using g+(t) = esth+(t), we obtain

g+(t) =
Θ(t)e(s−x+)t

(s− x−)
(60)

Note that with the definitions of x±, s drops out of this expression. Translating back to the original variables, we see

that F ∝
(

k
Λ

)− 1
2
+ 1

2

√
1−2β

. It is easily verified that, as assumed in Eq. (45), the integral converges as k → 0. Thus,
the Wiener-Hopf method demonstrates the power law behavior of the solution to the integral equation.

Another choice of s would be to make both x± > 0, yielding a solution which diverges more slowly as k → 0.
The general solution is a linear combination of both these solutions, and interestingly we see that the equation in
its present form does not uniquely specify a particular combination. This ambiguity is lifted by introducing a lower
cutoff k0 in momentum, corresponding to a finite system size. We show below using an alternate method how this
leads to a unique solution.

2. Solution of Equivalent Differential Equation

Eq. (43) can also be solved with the model kernel by converting it into a differential equation.
Differentiating Eq. (43) we get

F ′(k) =
β

2
[− 1

k2

∫ 1

k0

dk′f̃0

(

k′

k

)

F (k′)

+
1

k

∫ 1

k

dk′
1

k′
F (k′)]. (61)

Differentiating this equation, we get

F ′′(k) =
β

2
[
2

k3

∫ 1

k0

dk′f̃0

(

k′

k

)

F (k′) − 2

k2

∫ 1

k

dk′
1

k′
F (k′)

− 1

k2
F (k)], (62)

but from Eq. (61), the first 2 terms in the square brackets are simply − 2
k

2F ′(k)
β . Therefore the differential equation

corresponding to Eq. (43) is

F ′′(k) +
2

k
F ′(k) +

β

2k2
F (k) = 0, (63)
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which has general solutions of the form

F (k̃) = A+k̃
λ+ +A−k̃

λ− , (64)

with k̃ = k/Λ, λ± = −1±γ
2 , and γ =

√
1 − 2β. The coefficients A± are determined by substituting Eq. 64 back into

the integral equation. This results in power law behavior for k ≫ k0, with exponent λ+, which goes from real to
complex when β exceeds 1/2. Moreover, M(q → 0) may be evaluated, yielding

M(0) =
Λ

vF

2 − 2k̃γ
0

1 + γ − β + k̃γ
0 (−1 + γ + β)

. (65)

This has poles for β > 1/2 when

√

2β − 1 ln k̃0 = 2 arctan

√
2β − 1

1 − β
+ 2πn, (66)

with integer n and 0 < arctan (x) < π. Note that the distance between poles vanishes logarithmically as k̃0 → 0, as

discussed above. Furthermore, for β > 1/2, k̃γ
0 becomes ill-defined unless an infinitesimal imaginary part is introduced

in β, so that β = 1/2 becomes a branch point for M(0). We interpret this as the signal of a phase transition in the
thermodynamic limit, since M(0) need not be real and positive beyond this point.

We close this section with a brief discussion of some recent results. Gamayun et al.27 have studied the possibility
of a gap opening in the spectrum by computing a self-consistent anomalous self-energy in the fermion propagator.
This analysis yields finite values above a critical coupling, albeit one different than that predicted from the stability
analysis of the gapless Dirac equation with (marginally irrelevant) Coulomb interactions13. This suggests that the
ultimate fate of this system at strong enough coupling is to become a gapped, excitonic insulator. However it remains
unclear from these studies whether a fluctuating state such as we suggest above may intervene between the two states.
It has also been noted that in the presence of a high momentum cutoff, one may need to add a short-range component
to the electron-electron interaction, which introduces a length scale explicitly into the Hamiltonian of the system. In
particular several studies have concluded that this will take the form of a Gross-Neveu interaction27,28, which when
strong enough leads to a more standard second order phase transition. Clearly such short-range interactions may
become critical before the long-range Coulomb does and change the character of the transition. While the question of
whether this scenario applies to pristine graphene remains a subject of further research, it is interesting to note that
recent Monte Carlo simulation results4 can be explained in this way. Finally, we note that an intermediate distance
length scale naturally occurs in double layer graphene , the interlayer separation, leading to a very unusual anomalous
order parameter for the ground state29.

V. DENSITY RESPONSE

In this final section we return to another measurable quantity, the density response function. To be concrete we
will use our result to compute the induced charge around a Coulomb impurity, which generates the potential Ze/ǫr,
where e ≡ |e|. Our procedure is to first solve Eq. (35) numerically, from which we compute the (static) irreducible
polarizability

Π(~q) = i

∫

d2k

(2π)2
K̃β2β1ααΓ̃β1β2

(~k, ~q). (67)

The density response function is then computed by an RPA sum12, except that instead of using the non-interacting
polarizability we use our irreducible polarizability, which includes excitonic corrections via the ladder diagrams. The
result of this takes the form

D(q) =
−Π(q)

1 + Π(q)UC(q)
, (68)

where UC(q) = 2πβvF /q is the Coulomb interaction. Finally, the Fourier transform of the induced electron density is
given by

δn(q) = D(q)φext(q). (69)

In the Coulomb impurity case, the external potential φext(q) = −ZUC(q).
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To find numerical solutions to Eq. (35), we discretize the allowed values of momentum ~k and ~q, and replace
integrations by sums over the grid of allowed momenta. In doing this, some subtleties arise. Since we cannot retain
an infinite number of momentum points, we must confine the sums to a finite region, most conveniently taken to be
square. If we use the MDF spectrum and wavefunctions (needed to construct K̃) in Eq. 35 in this “Brillouin zone”,
the former will be periodic but not the latter. The discontinuity in wavefunctions leads to spurious oscillations in the
final result. In principle this can be overcome by simulating the system on a honeycomb lattice and using the full
tight-binding spectrum and wavefunctions for graphene. However, this is numerically costly and unnecessary, because
the low energy physics is almost entirely determined by the wavefunctions and spectra near the Dirac cones. Moveover,
since Coulomb interactions are relatively weak at short wavelengths, one can neglect the intervalley scattering, so
that it should be sufficient to consider only one Dirac cone, whereas a simulation of a honeycomb lattice would force
us to include two due to fermion doubling1.

As a compromise we consider models that have simpler bandstructures than graphene but still have a Dirac cone.
One such model arises in the theory of the surface of a topological insulator30,31, and has the form (~vF = 1)

H =
∑

n

[

~c†n
σz − iσx

2
~cn+x̂ + ~c†n

σz − iσy

2
~cn+ŷ + h.c.

]

(70)

+m
∑

n

~c†nσz~cn

=
∑

~k

~c†~kh(
~k)~c~k, (71)

where

h(~k) = (sin kx)σx + (sin ky)σy + (m+ cos kx + cos ky) σz. (72)

This is a model defined on a square lattice, with each site supporting a two-component vector of localized orbitals
combined into annihilation operators ~cn, and with the sum over n running through all the lattice sites. The crystal

momentum ~k is measured in units of 1/a, with a the lattice constant. For m = 2, there is a single Dirac point at
the center of the BZ, and the spinor structure in the vicinity of this point is the same as near the Dirac points in
graphene. Thus we expect this model to reproduce the low-energy behavior of graphene. We adopt this model for
our numerical solution of Eq. (35).

A second subtlety arises in the doped case. For example, when the chemical potential µ > 0, the quantity K̃ in
Eq. (35) takes the form

K̃µ>0
α1β1,α2β2

(~k, ~q) = (73)
[

θ(ε~k − µ) − θ(ε~k+~q − µ)
]

g+
β1β2

(~k)g+
α2α1

(~k + ~q)

ε~k − ε~k+~q

+
θ(ε~k − µ)g+

β1β2
(~k)g−α2α1

(~k + ~q)

ε~k + ε~k+~q

+
θ(ε~k+~q − µ)g−β1β2

(~k)g+
α2α1

(~k + ~q)

ε~k + ε~k+~q

,

where ε~k is the positive eigenvalue of h(~k) and g±αβ(~k) = (η±~k
)α(η±~k

)∗β , with η±~k
being the eigenvectors of h(~k) corre-

sponding to ±ε~k respectively.
Because of the step functions, a naive numerical integration by a discrete summation works poorly, because the

function being integrated is not smooth on the scale of the grid. This problem may be overcome using the Triangular
Linear Analytic (TLA) method32,33. We divide the square Brillouin zone into small squares, and each small square is
further subdivided into two right trangles along one of the diagonals. Weights for the integrand can then be assigned
at the corners of the triangles employing the parameterization formulas in Ref. 3334. Using this weighting scheme to
approximate the integrals gives far better results than a naive lattice sum.

Finally, we note that U(q) in Eq. (35) is better represented by the RPA screened Coulomb interaction than the
bare Coulomb interaction, i.e.,

U(q) =
UC(q)

1 + ΠRPA(q)UC(q)
. (74)
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FIG. 7: (Color online) Total induced electron number density divided by Z in the undoped case.

The irreducible RPA polarizability ΠRPA(q) has been calculated by a number of authors (see, e.g. Refs. 35 and 36).
For the case of undoped graphene there is no qualitative difference between using screened or unscreened Coulomb
interactions in the ladder rungs, because the functional forms of U(q) and UC(q) are the same, and only the effective
value of β is renormalized. When µ 6= 0, however, the Fermi surface introduces a length scale into the problem,
allowing genuine screening of the Coulomb interaction at long distances. This can be modeled by using a contact
interaction on the ladder rungs36,37 although we find this introduces problems at large wavevectors, as we describe
below.

Fig. 7 shows the total induced electron number density in the undoped case, together with the RPA result

δnRPA(q = 0)

Z
=

ΠRPA(q)UC(q)

1 + ΠRPA(q)UC(q)
=

πβ
8

1 + πβ
8

(75)

and the non-interacting result

δnnon(q = 0)

Z
= ΠRPA(q)UC(q) =

πβ

8
(76)

for comparison. It is clear that the non-interacting result exceeds 1 for β > 8/π, while the RPA result approaches 1
as β → ∞. Results for the total induced charge using the RPA and the ladder approximation are not qualitatively
different. The ladder approximation result is larger than the RPA result, and the difference increases with β.

For doped graphene, any charged impurity will induce an equal and opposite screening charge, both in the RPA and
when exciton corrections are included. However, we find in the latter case a strong quantitative difference between
the two in the shape of the screening cloud. This is due to the effect of the exciton corrections on the irreducible
polarizability in the doped case, illustrated in Fig. 8. For small β, Π is close to the RPA result for MDF as expected,
except that the for q < 2kF there is a negative slope, and for q close to the Brillouin zone boundary it is significantly
below the RPA result for MDF, simply because of the presence of the zone boundary. For larger β, the curve is higher
and the deviation from the RPA result for MDF is larger, and for the largest β, an additional “hump” structure
develops just below 2kF , as illustrated in the inset of Fig. 8. We will consider this extra structure in more detail
below.

The cusp in the density response function at q = 2kF is well-known to induce Friedel oscillations38. The change
in shape of the irreducible polarizability near 2kF essentially deepens this cusp, leading to an enhancement of these
oscillations. Fig. 9 shows the induced charge distribution, illustrating this enhancement. We also note that with the
exciton corrections included, the induced charge density falls off somewhat faster than the RPA result.
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FIG. 8: (Color online) The continuous color curves are the irreducible polarizability Π(q) for the model Hamiltonian Eq. (70)
in the doped case, with RPA screened Coulomb interaction as the rungs of the ladders, for β = 0.2, 0.4, . . . , 1.0, with higher
curves corresponding to higher β. The dashed black curve is the RPA result for MDF for comparison. The inset is a blow-up
showing the developing structure just below q = 2kF . For all the numerical results shown in this figure µ = 0.225~vF /a.

We can also carry out the calculation with contact interactions as rungs of the ladders, i.e. U(q) = u0 in Eq. (35),
which then becomes

Γ̃α2β2
(~q) = δα2β2

+ (77)

u0

[
∫

d2q′

(2π)2
K̃α2β2γ1γ2

(~q′, ~q)

]

Γ̃γ1γ2
(~q).

This is a considerable simplification relative to the equation we had to solve for the RPA-screened Coulomb interaction;
we now have a simple set of linear equations for Γ̃α2β2

(~q). The resulting irreducible polarizability is

Π(q) =
1
2π ΠRPA(q)

1 − u0

4π ΠRPA(q)
. (78)

This is plotted in Fig. 10 for the doped case. We see that the simpler contact interaction does not enhance the
cusp at q = 2kF , suggesting that the correct long-distance form of the screened Coulomb potential is an important
ingredient in obtaining this behavior. Note also that because of the minus sign in the denominator of Eq. (78) and the
monotonic increase of ΠRPA(q) at large q, there is a pole at some sufficiently large q for any positive u0, suggesting
an instability in this model which is absent for the more realistic U(q).

We can also obtain results for rungs with contact interactions numerically for our topological insulator surface
model, Eq. (70), illustrated in Fig. 11(a). Comparison between this and the nearly analytic results for MDF’s allow
us to assess which features may be introduced by going from the latter to the former. As we can see, the curves are
very similar in overall scale to those when the interaction is the RPA screened Coulomb interaction (Fig. 8). Note
however that the deepening of the 2kF cusp is absent in both the numerical result and the analytical one, suggesting
that our numerical results are reasonably accurate at small q. However, we note that for the largest values of β, extra
structure near 2kF develops that appears analogous to what we found in the Coulomb case. This structure appears
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FIG. 9: (Color online) Induced electron number density (times r2/Z) as a function of distance r from the impurity in the doped
case. On the far right side, from top to bottom, the curves correspond to β = 0.2, 0.4, . . . , 1.0. For comparison, the dashed line
is the RPA result with β = 0.2.

only in the result for the model Eq. (70), not in the analytical result for MDF’s. It is thus reasonable to assume that
the analogous structure in the RPA screened Coulomb interaction case is peculiar to Eq. (70) as well. It is interesting
to speculate then that one may be able to distinguish the Dirac cone in the graphene system from that of at the
surface of a topological insulator through such structure at very large β.

Finally, in Fig. 11(b) we illustrate that divergent behavior emerges when u0 is sufficiently large, which evolves
into a double pole from the “hump” structure below 2kF . This suggests the system becomes unstable for contact
interactions of sufficiently large magnitude, a behavior that occurs as we observed above for any u0 when MDF’s are
subject to contact interactions. (Note, however, in this case the instability sets in for q < 2kF , whereas for contact
interactions the instability occurs at much larger q when the interaction is weak.) While this behavior is absent in
the screened Coulomb interaction case, it is possible that at very small distances where the atomic orbital physics
becomes relevant such a contact model becomes appropriate. Since this instability appears in the density-density
response function this naively suggests that there is a phase transition into a charge-density wave. However, other
transitions – spin or valley density waves, for example – may preempt this transition. We leave the nature of such an
instability and its applicability to real graphene as open questions39.

VI. CONCLUSION

In this work we have investigated excitonic effects for graphene with Coulomb interactions, as modeled by massless
Dirac fermions. We have shown that there is power law behavior in a general 4-leg vertex function in the particle-hole
channel. The exponent becomes complex as the coupling constant β is increased above a critical value. This is
analogous to what happens in the problem of a single MDF interacting with a charged impurity. This non-analytic
behavior can be canceled away for certain combinations of the vertex function, and we find in particular that it is
absent in the density-density response function. It is however retained in a sublattice antisymmetric response function.
Although the power law behavior originates due to short length scale physics (close approaches of particle-hole pairs),
it impacts the physics at large distances because of the absence of a length scale in the Hamiltonian. For finite size
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FIG. 10: (Color online) Irreducible polarizability in the ladder approximation with contact interaction as the rungs of the
ladders, for MDF in the doped case [Eq. (78)]. ũ0 ≡ u0kF /vF . The inset is the same plot with a larger range of q.

systems the transition appears to be one with broken chiral symmetry, inducing a gap in the spectrum; however, this
interpretation breaks down in the thermodynamic limit. We speculate that in this case the transition involves the
formation of a mass gap which fluctuates among different possible forms, and is a precursor to a true broken symmetry
state which emerges at still larger values of the coupling β.

We have also calculated the density response in the ladder approximation numerically using a simplified model
Hamiltonian that occurs in the context of topological insulators, which has only one Dirac point and a square Brillouin
zone. The calculation was carried out for both undoped and doped cases. In the latter case we compared results for
RPA screened Coulomb interactions and contact interactions in the rungs of the ladders. While we expect the former
interaction to be more realistic, both interactions in many respects give similar results. For Coulomb interactions, we
find a strongly enhanced cusp in the irreducible polarizability at 2kF , which leads to much stronger Friedel oscillations
than expected from the RPA. We also find a hump-like structure at stronger interaction scales just below 2kF . For
contact interactions this hump evolves into poles with increasing interaction strength, whereas no pole is seen for RPA
screened Coulomb interactions in the range of β we have studied. We presented evidence that the extra structure is
peculiar to our model Hamiltonian, suggesting it may be present at the surface of a topological insulator. Finally,
we note that with contact interactions, MDF’s do contain a pole at larger q for any positive u0, suggesting a short
wavelength instability.
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Appendix A

In this Appendix, we discuss some details of the TLA method. This may be viewed as a two-dimensional version of
the “tetrahedron method”40,41 which is widely applied for Brillouin zone integrations of three dimensional systems.
As mentioned in Ref. 33, when using linear interpolation, the surfaces e = ε(x, y) (in this Appendix x ≡ kx and
y ≡ ky) are straight lines and the parameterizations are easily given (with e being one of the parameters). There are
two cases: e < ε2 (but larger than ε1) and e > ε2 (but smaller than ε3). The parameterizations are given by Eqs. (14)
and (16) in Ref. 33, respectively. For convenience we reproduce them here.

~k =~k3 +
e− ε3
ε3 − ε1

(~k3 − ~k1)

+ u

[

e− ε3
ε3 − ε2

(~k3 − ~k2) −
e− ε3
ε3 − ε1

(~k3 − ~k1)

]

(A1)

for e > ε2, and

~k =~k1 +
e− ε1
ε3 − ε1

(~k3 − ~k1)

+ u

[

e− ε1
ε2 − ε1

(~k2 − ~k1) −
e− ε1
ε3 − ε1

(~k3 − ~k1)

]

(A2)

for e < ε2; in both cases 0 6 u 6 1.
Our goal is to express the integral over a basic triangle in terms of the values of ε(x, y) and the integrand at the

three corners of the triangle, i.e.

I(µ) =

∫

△
d2kθ(ε~k − µ)f(~k) ≈

3
∑

i=1

wi(ε1, ε2, ε3, µ)f(~ki), (A3)

where
∫

△ means integration over the triangle, wi, i = 1, 2, 3 are the weights at the three corners (remember that the

corners are labeled so that ε1 < ε2 < ε3). We will also use the shorthand fi ≡ f(~ki) below.
There are four possibilities regarding the value of µ as compared to ε1, ε2, ε3:
(i) µ > ε3:
This is trivial and the result is wi = 0, i = 1, 2, 3.
(ii) ε2 6 µ < ε3:
In this case, we need to use Eq. (A1) for the parameterization, and

I(µ) ≈
∫ ′

d2kf(~k(e, u)) =

∫ ε3

µ

de

∫ 1

0

du
2A(ε3 − e)

(ε3 − ε2)(ε3 − ε1)
f(~k(e, u)) ≡ II(µ), (A4)
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where
∫ ′

means integration over the uppermost (light blue) triangle in Fig. 12(a), and the extra factor in the integrand
is just the Jacobian, with A being the area of the triangle 123 (not the shaded triangle).

We intepolate f linearly, i.e.

f(x, y) ≈ p1 + p2x+ p3y ≡
3
∑

i=1

pigi(x, y), (A5)

where g1 ≡ 1, g2 ≡ x, g3 ≡ y, and the coefficients pi, i = 1, 2, 3 are determined by solving the equations
∑3

i=1 pigi(xj , yj) = fj . The result is

p1 =
(x3y2 − x2y3)f1 + (x1y3 − x3y1)f2 + (x2y1 − x1y2)f3

x2y1 − x3y1 − x1y2 + x3y2 + x1y3 − x2y3
, (A6)

p2 and p3 have the same denominator but with the numerator being [(y3 − y2)f1 + (y1 − y3)f2 + (y2 − y1)f3] for p2

and [(x2 − x3)f1 + (x3 − x1)f2 + (x1 − x2)f3] for p3.

II(µ) ≈
3
∑

i=1

Api

∫ ε3

µ

de

∫ 1

0

du
2(ε3 − e)

(ε3 − ε2)(ε3 − ε1)
gi ≡

3
∑

i=1

ApiII(µ)i. (A7)

The results of the integrations are

II(µ)1 =

∫ ε3

µ

de
2(ε3 − e)

(ε3 − ε2)(ε3 − ε1)

∫ 1

0

du =
(ε3 − µ)2

(ε3 − ε2)(ε3 − ε1)
, (A8)

II(µ)2 =

∫ ε3

µ

de
2(ε3 − e)

(ε3 − ε2)(ε3 − ε1)

∫ 1

0

du

{

x3 +
e− ε3
ε3 − ε1

(x3 − x1) + u

[

e− ε3
ε3 − ε2

(x3 − x2) −
e− ε3
ε3 − ε1

(x3 − x1)

]}

=
(ε3 − µ)2

(ε3 − ε2)(ε3 − ε1)

[

x3 −
1

3
(ε3 − µ)

(

x3 − x1

ε3 − ε1
+
x3 − x2

ε3 − ε2

)]

, (A9)

and II(µ)3 is the same as II(µ)2 but with the x’s replaced by y’s. Finally, we have

w1 =
A [(x3y2 − x2y3)II(µ)1 + (y3 − y2)II(µ)2 + (x2 − x3)II(µ)3]

x2y1 − x3y1 − x1y2 + x3y2 + x1y3 − x2y3
, (A10)

w2 and w3 have the same denominator but with the numerator being A[(x1y3 − x3y1)II(µ)1 + (y1 − y3)II(µ)2 + (x3 −
x1)II(µ)3] for w2 and A[(x2y1 − x1y2)II(µ)1 + (y2 − y1)II(µ)2 + (x1 − x2)II(µ)3] for w3.

(iii)ε1 < µ < ε2
In this case, I(µ) ≈

∫ ′′
d2kf(~k(e, u)) where the integration is over the uppermost (cyan) triangle and the yellow

quadrilateral in Fig. 12(b). The former is approximately the same (to linear order of the size of the basic triangles)
as II(ε2), while the latter is

III(µ) ≈
3
∑

i=1

Api

∫ ε2

µ

de
2(e− ε1)

(ε2 − ε1)(ε3 − ε1)

∫ 1

0

dugi ≡
3
∑

i=1

ApiIII(µ)i. (A11)

The II(µ)i’s in the formula given above for case (ii) should be replaced by

II(ε2)1 + III(µ)1 =
ε3 − ε2
ε3 − ε1

+

∫ ε2

µ

de
2(e− ε1)

(ε2 − ε1)(ε3 − ε1)

∫ 1

0

du

=
ε3 − ε2
ε3 − ε1

+
(ε2 − ε1)

2 − (µ− ε1)
2

(ε2 − ε1)(ε3 − ε1)
, (A12)

II(ε2)2 + III(µ)2 =
ε3 − ε2
ε3 − ε1

[

x3 −
1

3
(ε3 − ε2)

(

x3 − x1

ε3 − ε1
+
x3 − x2

ε3 − ε2

)]

+

∫ ε2

µ

de
2(e− ε1)

(ε2 − ε1)(ε3 − ε1)

×
∫ 1

0

du

{

x1 +
e− ε1
ε3 − ε1

(x3 − x1) + u

[

e− ε1
ε2 − ε1

(x2 − x1) −
e− ε1
ε3 − ε1

(x3 − x1)

]}

=
ε3 − ε2
ε3 − ε1

[

x3 −
1

3
(ε3 − ε2)

(

x3 − x1

ε3 − ε1
+
x3 − x2

ε3 − ε2

)]

+
1

(ε2 − ε1)(ε3 − ε1)

×
{

[

(ε2 − ε1)
2 − (µ− ε1)

2
]

x1 +
1

3

[

(ε2 − ε1)
3 − (µ− ε1)

3
]

(

x2 − x1

ε2 − ε1
+
x3 − x1

ε3 − ε1

)}

(A13)
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and III(ε2)3 + III(µ)3, which is the same as II(ε2)2 + III(µ)2 but with the x’s replaced by y’s.
(iv)µ 6 ε1
This case is trivial too, we simply have w1 = w2 = w3 = 1/3.
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