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Circular photogalvanic-effect on topological insulator surfaces: Berry

curvature-dependent response

Pavan Hosur
Department of Physics, University of California, Berkeley

We study theoretically the optical response of the surface states of a topological insulator, espe-
cially the generation of helicity-dependent direct current by circularly polarized light. Interestingly,
the dominant current, due to an interband transition, is controlled by the Berry curvature of the
surface bands. This extends the connection between photocurrents and Berry curvature beyond the
quasiclassical approximation where it has been shown to hold. Explicit expressions are derived for
the (111) surface of the topological insulator Bi2Se3 where we find significant helicity dependent
photocurrents when the rotational symmetry of the surface is broken by an in-plane magnetic field
or a strain. Moreover, the dominant current grows linearly with time until a scattering occurs,
which provides a means for determining the scattering time. The dc spin generated on the surface
is also dominated by a linear-in-time, Berry curvature dependent contribution.

PACS numbers:

I. INTRODUCTION

Topological insulators (TIs) have caught the eye of many a condensed matter physicist and materials scientist in
recent years. In very simple terms, these are materials that have an insulating bulk but conducting surface states (SSs)
that are protected against disorder by time-reversal symmetry. The reason for the tremendous amount of attention
they have received is two-fold. One, they have been predicted to exhibit a number of exotic phenomena such as
the magnetoelectric effect1, magnetic monopole-like behavior2 and the existence of topologically protected Majorana
modes3 with potential applications for topological quantum computing4. Two, a number of materials have already
been theoretically predicted5–9 and experimentally found10–16 to be in this fascinating phase.

In their simplest incarnation, the SSs of TIs these correspond to the dispersion of a single Dirac particle, which
cannot be realized in a purely two dimensional band structure with time reversal invariance. This dispersion is
endowed with the property of spin-momentum locking, i.e., for each momentum there is a unique spin direction of
the electron. Since several materials were theoretically predicted to be in this phase, most of the experimental focus
on TIs so far has been towards trying to directly observe these exotic SSs in real or momentum space, in tunneling10

and photoemission11–16 experiments, respectively, and establish their special topological nature. However, there has
so far been a dearth of experiments which study the response of these materials to external perturbations, such as an
external electromagnetic field.

In order to fill this gap, we calculate here the response of TI surfaces to circularly polarized (CP) light. Since
photons in CP light have a well-defined angular momentum, CP light can couple to the spin of the surface electrons.
Then, because of the spin-momentum-locking feature of the SSs, this coupling can result in dc transport which is
sensitive to the helicity (right- vs left-circular polarization) of the incident light. This phenomenon is known as the
circular photogalvanic effect (CPGE). In this work, we derive general expressions for the direct current on a TI surface
as a result of the CPGE at normal incidence within a two-band model and estimate its size for the (111) surface of
Bi2Se3, an established TI, and find it to be well within measurable limits. Since bulk Bi2Se3 has inversion symmetry
and the CPGE, which is a second-order non-linear effect, is forbidden for inversion symmetric systems, this current
can only come from the surface.

We find, remarkably, that the dominant contribution to the current is controlled by the Berry curvature of the
electron bands and grows linearly with time. In practice this growth is cut-off by a scattering event which resets the
current to zero. At the microscopic level, this part of the current involves the absorption of a photon to promote an
electron from the valence to the conduction band. The total current contains two other terms - both time-independent
- one again involving an interband transition and the other resulting from intraband dynamics of electrons. However,
for clean samples at low temperatures, the scattering or relaxation time is expected to be large, and these contributions
will be eclipsed by the linear-in-time one. Hence, this experiment can also be used to measure the relaxation time for
TI SSs.

Historically, the Berry curvature has been associated with fascinating phenomena such as the anomalous Hall
effect17 and the integer quantum Hall effect18 and therefore, it is exciting that it appears in the response here. Its
main implication here is that is gives us a simple rule, in addition to the requirement of the right symmetries, for
identifying the perturbations that can give a linear-in-time CPGE at normal incidence: we look for perturbations that
result in a non-zero Berry curvature. Put another way, we can identify perturbations that have the right symmetries
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Figure 1: (Color online) (a) Schematic illustration of preferential absorption at one out of two points related by the reflection
symmetry about the yz-plane. The short arrows denote the spin direction of electrons in various states. At low energies, the
spins are completely in-plane. They acquire a small out-of-plane component at higher energies. The dotted lines represent
incoming photons of helicity −1 (left-CP photons). These photons can only raise the 〈Sz〉 of an electron, and thus are
preferentially absorbed by electrons whose 〈Sz〉 < 0 in the valence band. The chemical potential µ must be between the initial
and final states for any absorption to occur. (b) Constant energy contours for the surface conduction band of Bi2Se3. Dark
lines denote lower energy. (a) is drawn at py = 0. (c) Geometry of the experiment. Light is incident normally on (111) surface
of Bi2Se3. The dotted lines represent the mirror plane m about which the lattice has a reflection symmetry. The current ja2(t)
(see text) is along x̂.

but still do not give this current because the Berry curvature vanishes for these perturbations. Importantly, for TI
SSs, the requirement of a non-zero Berry curvature amounts to the simple physical condition that the spin-direction
of the electrons have all three components non-zero. In other words, if the electron spin in the SSs is completely
in-plane, the Berry curvature is zero and no linear-in-time CPGE is expected. The spins must somehow be tipped
slightly out of the plane, as shown in Fig. 1a, in order to get such a response. Thus, a pure Dirac (linear) dispersion,
for which the spins are planar, cannot give this response; deviations from linearity, such as the hexagonal warping on
the (111) surface of Bi2Te3

19, are essential for tilting the spins out of the plane.
CPGE has been observed in the past in GaAs20, SiGe21 and HgTe/CdHgTe22 quantum wells - all systems with

strong spin-orbit coupling. The effect in these systems can be understood within a four-band model consisting of two
spin-orbit split valence bands and two spin-degenerate conduction bands. In contrast, TI SSs can be faithfully treated
within a two-band model. The simplicity of the latter system makes it more convenient for studying theoretically
compared to semiconductor quantum wells, and hence, enables us to determine a connection between the CPGE and
the Berry curvature. In general, if a surface has no rotational symmetry about the surface normal, such a photocurrent
is allowed.

Finally, we estimate the current on the (111) surface of Bi2Se3 using an effective model for the SSs19,23. This model
captures the deviations from linearity of the SS dispersion due to the threefold rotational symmetry of the (111)
surface of Bi2Se3. These deviations have been observed in photoemission experiments on Bi2Te3

11. Similar deviations
are expected for Bi2Se3

23, though they cannot be seen in the slightly smaller momentum range compared to Bi2Te3

over which data is currently available24. In order to get a direct current with CP light at normal incidence, rotational
symmetry about the surface normal needs to be broken. Based on the requirement of non-zero Berry curvature, we
propose to do this in two ways:

1. by applying an in-plane magnetic field and including deviations from linearity of the dispersion

2. by applying a strain.

With a magnetic field of 10T (With a 1% strain) and assuming a scattering time of 10ps, (the scattering time in GaAs
is ∼ 1ns over a wide range of temperatures25; we use a conservative estimate for Bi2Se3 here) we find that a current
density of ∼ 100nA/mm (∼ 10nA/mm) can be obtained due to the CPGE with a 1Watt laser. This value can be
easily measured by current experimental techniques. Conversely, the scattering time, crucial for transport processes,
for Bi2Se3 SSs can be determined by measuring the current. In comparison, circular photogalvanic currents of a few
nanoamperes per Watt of laser power have been measured in quantum wells of the semiconductors GaAs20, SiGe21

and HgTe/CdHgTe22.
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A connection between the optical response of a system and the Berry curvature of its bands has been previously
noted at the low frequencies, where a semiclassical mechanism involving the anomalous velocity of electrons in a single
band explains it26,27. Here, we show it for inter band transitions where no quasiclassical approximation is applicable.
Instead, we calculate the quadratic response function directly. A connection is still present which points to a deeper
relation between the response functions and the Berry curvature.

This paper is organized as follows. In Sec. II, we state the symmetry conditions under which a CPGE may occur.
We present our results, both general as well as for Bi2Se3 in particular, in Sec. III A and describe the microscopic
mechanism in Sec. III B. The calculation is described briefly in Sec. III C and in detail in Appendix B. In Sec. IV, we
give our results for the optical injection of dc spin and in Sec. V we briefly discuss the situation where the rotational
symmetry of the surface is broken by shining the light off-normally.

II. SYMMETRY CONSIDERATIONS FOR THE CPGE

In this section, we specify the symmetry conditions under which one can get a CPGE on the surface of a TI. But
first, let us briefly review the concept of the CPGE in general.

The dominant dc response of matter to an oscillating electric field is, in general, quadratic in the electric field.
When the response of interest is a current, the effect is known as the photogalvanic effect. This current can be written
as

jα = ηαβγEβ(ω)Eγ(−ω) (1)

where Eα(t) = Eα(ω)eiωt + E∗
α(ω)e−iωt is the incident electric field, E∗

α(ω) = Eα(−ω) and ηαβγ is a third rank tensor,
which has non-zero components only for systems that break inversion symmetry, such as the surface of a crystal.

For jα to be real, one has ηαβγ = η∗
αγβ . Thus, the real (imaginary) part of ηαβγ is symmetric (anti-symmetric)

under interchange of β and γ, and therefore describes a current that is even (odd) under the transformation ω → −ω.
Consequently, jα can be conveniently separated according to

jα = Sαβγ

(

Eβ(ω)E∗
γ (ω) + E∗

β(ω)Eγ(ω)

2

)

+ iAαµ(E × E
∗)µ (2)

where Sαβγ is the symmetric part of ηαβγ and Aαµ is a second-rank pseudo-tensor composed of the anti-symmetric part
of ηαβγ . For CP light, E ∝ x̂ ± iŷ if ẑ is the propagation direction and only the second term in Eq. (2) survives, and
hence represents the CPGE. This effect is odd in ω. On the other hand, the first term, which is even in ω, represents
the linear photogalvanic effect as it is the only contribution for linearly polarized light. Since the transformation
ω → −ω, or equivalently, E → E

∗ reverses the helicity of CP light, i.e., changes right-CP light to left-CP light and
vice versa, the CPGE is the helicity-dependent part of the photogalvanic effect.

The helicity of CP light is odd (i.e., right- and left-CP light get interchanged) under mirror reflection about a plane
that contains the incident beam, but invariant under arbitrary rotation about the direction of propagation. Let us
consider normal incidence of CP light on a TI surface normal to the z axis. Let us further assume that there is a mirror
plane which is the y-z plane (See Fig. 1c). Then, the only component of direct current that reverses direction on
switching the helicity is a current along the x axis. If there is also rotation symmetry Rz about the z-axis (such as the
threefold rotation symmetry on the (111) surface of Bi2Se3), then no surface helicity-dependent direct photocurrent
is permitted. One needs to break this rotation symmetry completely by applying, for example, and in-plane magnetic
field, strain etc., to obtain a nonvanishing current.

III. HELICITY-DEPENDENT DIRECT PHOTOCURRENT

We now present our main results for the photocurrent and estimate it for Bi2Se3. After painting a simple microscopic
picture for the mechanism, we give a brief outline of the full quantum mechanical treatment of the phenomenon.

A. Results

A general two-band Hamiltonian (in the absence of the incident light) can be written as

H =
∑

p

c†
p
Hpcp =

∑

p

|Ep|c
†
p
n̂(p).σcp (3)
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upto a term proportional to the identity matrix, which is not important for our main result which involves only
inter-band transitions. Here n̂(p) is a unit vector, σ are the spin-Pauli matrices and cp = (cp↑, cp↓)

T is the electron
annihilation operator spinor at momentum p. Clearly, this can capture a Dirac dispersion, eg. with E(p) = ±vF p
and n̂(p) = vF ẑ×p. It can also capture the SSs of Bi2Se3 in the vicinity of the Dirac point, which includes deviations
beyond the Dirac limit. We also assume the Hamiltonian has a reflection symmetry m about y-axis, where ẑ is the
surface normal. Using the zero temperature quadratic response theory described in Sec III C, we calculate the current
due to the CPGE and find that

~jCPGE(t) = (jna + ja1 + ja2(t)) x̂ (4)

where the subscripts a (na) stand for “absorptive” and “non-absorptive”, respectively. The absorptive part of the
response involves a zero momentum interband transition between a pair of levels separated by energy ~ω. These
terms are only non zero when there is one occupied and one empty level. In this part of the response, we find a term
that is time-dependent, ja2(t). In particular, this term grows linearly with the time over which the electromagnetic
perturbation is present, which is allowed for a dc response. In reality, this linear growth is cut off by a decay
process which equilibrates populations, and is characterized by a time constant τ . In clean samples at sufficiently
low temperatures, characterized by large τ , this contribution is expected to dominate the response, and hence, is the
focus of our work. The other contributions are discussed in Appendix B. Conversely, because of the linear growth
with time, one can determine the lifetime of the excited states by measuring the photocurrent. This term is

ja2(t) = −
πe3

~E2
0 tsgn(ω)

4

∑

p

δ(~|ω| − 2|Ep|)vx(p)F(p) (5)

where we have assumed that the chemical potential is in between the two energy levels ±|Ep| connected by the optical
frequency ~ω, and that temperature can be neglected compared to this energy scale. Here, vx(p) =

∂|Ep|
∂px

is the
conventional velocity and F(p) = i

∑

p
〈∂px

u(p)|∂py
u(p)〉 + c.c., where |u(p)〉 is the conduction band Bloch state at

momentum p, is the Berry curvature of the conduction band at momentum p. For the class of Hamiltonians (3) that
we are concerned with, the Berry curvature is given by (See Appendix A):

F(p) = n̂.

(

∂n̂

∂px

×
∂n̂

∂py

)

(6)

which is the skyrmion density of the unit vector n̂ in momentum space. Since ∂pi
n̂ ⊥ n̂ for i = x, y, F(p) 6= 0 only if

all three components of n̂ are nonvanishing. For linearly dispersing bands, n̂ has only two non-zero components (eg.
Hp = pyσx − pxσy, n̂ ∝ (py,−px, 0)). Hence, corrections beyond the pure Dirac dispersion are essential. Also, due
to m, the Berry curvature satisfies F(px, py) = −F(−px, py). Since in Eq. (5) we have the x-velocity multiplying the
Berry curvature, which also transforms the same way, a finite contribution is obtained on doing the momentum sum.

We now calculate ja2(t) for the threefold-symmetric (111) surface of Bi2Se3 starting from the effective
Hamiltonian19,23

H = vF (pxσy − pyσx) +
λ

2

(

p3
+ + p3

−

)

σz (7)

where vF ∼ 5 × 105m/s6 and λ = 50.1eV ·Å323. A spin independent quadratic term has been dropped since it does
not modify the answers for interband transitions, which only involve the energy difference between the bands.

To get a non-zero jCPGE , the threefold rotational symmetry must be broken. We propose to do this in two separate
ways:

1. by applying a magnetic field B in the x-direction

This field has no orbital effect, and can be treated by adding a Zeeman term

H ′
Zeeman = −gxµBBσx (8)

, where gx is the appropriate g-factor and µB is the Bohr magneton, to the Hamiltonian (7). To lowest order in
λ and B, we get

ja2(t) =
3e3vFE

2
0λ(gxµBB)2t

16~2ω
A (9)

, where A is the laser spot-size. For gx = 0.523, and assuming the experiment is done in a 10T field with a
continuous wave laser with ~ω = 0.1eV which is less than the bulk band gap of 0.35eV 13, A ∼ 1mm2, a laser
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power of 1W , and the spin relaxation time t ∼ 10ps, we get a current density of ∼ 100nA/mm, which is easily
measurable by current experimental techniques. Note that the expression (9) for ja2(t) contains the parameter
λ which measures the coupling to σz in Eq. (7). Since ~B = Bx̂ breaks the rotation symmetry of the surface
completely, a naive symmetry analysis suggests, wrongly, that deviations from linearity, measured by λ, are not
needed to get ja2(t).

2. by applying a strain along x
This can be modeled by adding a term

H ′
strain = δλp3

xσz (10)

to H in Eq. (7). This gives

ja2(t) =
3e3vF (δλ)E2

0 ωt

27
A (11)

to lowest order in λ and δλ. For a 1% strain, δλ/λ = 0.01, and the same values for the other paramaters as in
Eq.(9), we get a current density of ∼ 10nA/mm. Eq. (11) does not contain λ; this is because δλ alone both
breaks the rotation symmetry and tips the spins out of the xy-plane.

B. Physical process

The appearance of the Berry curvature suggests a role of the anomalous velocity in generating the current. Such
mechanisms have been discussed in the literature in the context of the CPGE26,28. However, those mechanisms only
work when the electric field changes slowly compared to the typical scattering time. The SSs of Bi2Se3 probably have
lifetimes of tens of picoseconds, and thus, we are in the opposite limit when ~ω = 0.1eV , which corresponds to a time
scale 103 times shorter.

In this limit, the dc responses are a result of a preferential absorption of the photon at one of the two momentum
points for each pair of points (±px, py) related by m, as shown in Fig. 1a for py = 0. According to the surface
Hamiltonian (7), the spin vector S = σ

2 ~ gets tipped out of the xy-plane for states that lie beyond the linear
dispersion regime, but the direction of the tipping is opposite for (px, py) and (−px, py). Thus, photons of helicity −1,
which can only raise 〈Sz〉 of an electron, are preferentially absorbed by the electrons that have 〈Sz〉 < 0 in the ground
state. The response, then, is determined by the properties of these electrons. Clearly, the process is helicity-dependent
as reversing the helicity would cause electrons with 〈Sz〉 > 0 to absorb the light preferentially.

This is consistent with the requirement of a non-zero Berry curvature, which essentially amounts to the spin
direction n̂ having to be a three-dimensional vector. In the linear limit, where H = vF (pxσy − pyσx), the spin is
entirely in-plane, and all the electrons absorb the incident light equally.

C. Calculation in brief

We now briefly outline the calculation of the helicity-dependent photocurrent. The detailed calculation can be
found in Appendix B. Readers only interested in our results may wish to skip this section.

The Model: The Hamiltonian and relevant electric field (vector potential) perturbations for getting a direct
current to second order in the electric field of the incident photon are

H = |Ep|n̂(p).σ (12)
H ′ = jxAx(t) + jyAy(t) (13)

jα =
∂H

∂pα

(14)

Ax(t) + iAy(t) = A0e
i(ω−iǫ)t (15)

where A is the vector potential, ẑ is assumed to be the surface normal, and ǫ is a small positive number which ensures
slow switch-on of the light.

Quadratic response Theory: In general, the current along x to all orders in the perturbation H ′ is

〈jx〉(t) =
〈

T ∗
(

ei
R

t

−∞
dt′H′(t′)

)

jx(t)T
(

e−i
R

t

−∞
dt′H′(t′)

)〉

(16)
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where T (T ∗) denotes time-ordering (anti-time-ordering) and O(t) = eiHtOe−iHt. Terms first order in H ′ cannot give
a direct current. The contribution to the current from the second order terms can be written as

〈jx〉(t) =

t
∫

−∞

dt′
t1

∫

−∞

dt′′ 〈[[jx(t), H ′(t′)] , H ′(t′′)]〉

=

t
∫

−∞

dt′
t1

∫

−∞

dt′′χxαβ(t, t′, t′′)Aα(t′)Aβ(t′′) (17)

where α, β ∈ {x, y}, χxαβ(t, t′, t′′) = χxαβ(0, t′ − t, t′′ − t) = 〈[[jx, jα(t′ − t)] , jβ(t′′ − t)]〉 ≡ χxαβ(t′ − t, t′′ − t) due to
time translational invariance, and the expectation value is over the ground state which has all states with Ep < (>) 0
filled (empty). For Hamiltonians of the form of Eq. (12), the expectation value of any traceless operator O in the
Fermi sea ground state can be written as a trace:

〈O〉 =
∑

p

1

2
Tr

{(

1 −
H

|Ep|

)

O

}

= −
∑

p

Tr (HO)

2|Ep|
(18)

This gives,

χxαβ(t1, t2) = −
∑

p

Tr (H [[jx, jα(t1)] , jβ(t2)])

2|Ep|
(19)

Eq. (19) is the zero temperature limit of the finite temperature expression for the quadratic susceptibility proven in
Ref.29.

Because of the mirror symmetry m, χxαβ(t1, t2) is non-vanishing only for α 6= β. To get a direct current, we retain

only the non-oscillating part of Ax(t + ti)Ay(t + tj) =
A2

0

2 e2ǫt [sin (2ωt + ω(ti + tj)) − sin (ω(ti − tj))]. Thus,

jdc
x (t) =

A2
0e

2ǫt

4

0
∫

−∞

dt1

t1
∫

−∞

dt2

{

(χxxy − χxyx) (t1, t2)×

eǫ(t1+t2) sin (ω(t2 − t1))

}

(20)

The Result: After carrying out the two time-integrals, we get the three currents mentioned in Eq. (4). For clean
samples at low temperatures, ja2(t), which grows linearly with time, is expected to dominate. A general expression
for this term is (in the units e = ~ = vF = 1 where vF is the Fermi velocity)

ja2(t) =

iA2
0πtsgn(ω)

2ω2

∑

p

δ(|ω| − 2|Ep|)Tr(Hjx)Tr(H [jx, jy]) (21)

Using Eqs. (12) and (14) and the Lie algebra of the Pauli matrices, [σi, σj ] = 2iǫijkσk where ǫijk is the anti-symmetric
tensor, the above traces can be written as

Tr(Hjx) = 2|Ep|vx(p) (22)

Tr(H [jx, jy]) = 4i|Ep|
3n̂.

(

∂n̂

∂px

×
∂n̂

∂py

)

= 4i|Ep|
3F(p) (23)

Eqs. (21), (22) and (23) give our main result Eq. (5).

IV. OPTICAL SPIN INJECTION

Having understood the microscopic mechanism underlying the generation of the photocurrent ja2(t) , we wonder,
next, whether such a population imbalance can lead to any other helicity-dependent macroscopic responses. Since
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each absorbed photon flips the z-component of the spin of an electron, a net 〈Sz〉 is expected to be generated on
the surface. Such a process of optical spin injection was discussed for thin films of topological insulators27, without,
however, recognizing the role of the Berry curvature in the interband transition.

The calculation of 〈Sz〉 is identical to that of jCPGE . The total 〈Sz〉 generated consists of the same three parts as
jCPGE , and the dominant part is

Sz
a2(t) = −

πe2E2
0~tsgn(ω)

8

∑

p

δ(~|ω| − 2|Ep|)nz(p)F(p) (24)

Sz does not break the rotational symmetry of the surface, so we calculate Sz
a2(t) directly for the threefold symmetric

Hamiltonian (7) and obtain

Sz
a2(t) =

e2E2
0 (~ω)3λ2t

210
A (25)

For the same values of all the parameters as for ja2(t), we get Sz
a2(t) ∼ 10~, which means only ten electron spins are

flipped over an area of ∼ 1mm2. This is a very small number and cannot be measured by the current experimental
techniques. However, the result that the dominant spin injected onto the surface is also controlled by the Berry
curvature is still theoretically interesting, as it points towards a deeper connection between the Berry curvature of
electron bands and the helicity-dependent dc responses of systems with strong spin-orbit coupled coupling.

V. CPGE AT OBLIQUE INCIDENCE

Experimentally, a very attractive way of breaking the rotational symmetry of the surface is by performing the
experiment with obliquely incident light. Indeed, such experiments have already been performed successfully on
graphene at low frequencies31. At the microscopic level, the effect there has been attributed to photon-drag, where
the current arises as a result of the in-plane component of the photon momentum q‖ getting transferred to the electrons
in graphene. In general, an analogous process is expected to contribute to the CPGE at high-frequencies as well. We
can estimate the size of the photon-drag effect on TI surfaces in the Dirac limit by considering a mechanism is similar
to the one described in Sec. III B, i.e., the electrons at (±px, py) absorb the incident light unequally if the light is
incident in the yz-plane. Now, no out-of-plane tipping of the spin is needed, because, if one thinks of the helical
photon as simply a spin-raising or lowering operator for spins parallel to its propogation direction ẑ′, the electrons at
(±px, py) already have opposite 〈Sz′〉 and hence, will absorb the light unequally. Thus, the general expression for the
current may contain only those material parameters which appear in the pure Dirac dispersion. As before, it must be
quadratic in the photon electric field, and must change sign when q‖ and ω are both reversed, since that corresponds
to switching the photon helicity. Thus, to lowest order in q‖, the linear-in-time current, based simply on symmetry
and dimensional analysis, must be of the form

~jphoton−drag(t) ∼
e3E2

0v2
F q‖t

~2ω2
Ax̂ (26)

For q‖ = c/ω, c being the speed of light in vacuum, and the same values for all the other parameters as in Sec.
III A, we get a current density of ∼ 1µA/mm. This will dominate the response at off-normal incidence, but can be
suppressed by careful alignment of the experimental setup. However, since a response might appear even in the pure
Dirac limit in which the Berry curvature vanishes, the role of the Berry curvature is not clear for this process.

In graphene, helicity-dependent direct photocurrents have also been predicted by applying a dc bias30. However,
with a dc bias across a TI surface and ordinary continuous lasers, we find the current to be too low to be measurable.

VI. CONCLUSIONS

In summary, we studied the CPGE on the surface of a TI at normal incidence, and applied the results to the
(111) surface of Bi2Se3. If the rotational symmetry of the TI surface is broken by applying an in-plane magnetic
field or a strain, we predict an experimentally measurable direct photocurrent. A striking feature of this current is
that it depends on the Berry curvature of the electron bands. Such a dependence can be understood intuitively as
a result of the incident photons getting absorbed unequally by electrons of different momenta and hence, different
average spins. The current grows linearly with time until a decay process equilibrates populations, which provides a
way of determining the excited states lifetime. We also calculated the amount of dc helicity-dependent out-of-plane
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component of the electron spin generated. This does not require any rotational symmetry breaking; however, the
numerical value is rather small with typical values of the parameters. Finally, we estimated the size of the CPGE
due to the photon-drag effect at oblique incidence assuming a differential absorption mechanism similar to the one
discussed for normal incidence, and found a rather large value. However, the role of the Berry curvature in this process
was unclear.

For future work, we wonder whether the Berry curvature dependence of the helicity-dependent response to CP
light survives for three- and higher-band models. This is a practically relevant question, as semiconductor quantum
wells such as those of GaAs, SiGe and HgTe/CdHgTe demand a four-band model for modeling the CPGE.

We would like to thank Ashvin Vishwanath for enlightening discussions, Joseph Orenstein for useful experimental
inputs, and Ashvin Vishwanath and Yi Zhang for invaluable feedback on the draft.

This work was supported by the Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department
of Energy under contract No. DE-AC02-05CH1123.

Appendix A: Proof of Berry curvature expression

Here we show that the Berry curvature defined for Bloch electrons as

F(p) = i
(

〈∂px
u|∂py

u〉 − 〈∂py
u|∂px

u〉
)

(A1)

can be written as

F(p) = n̂.
(

∂px
n̂× ∂py

n̂
)

(A2)

for the band with energy |Ep| for Hamiltonians of the form Hp = |Ep|n̂(p).σ.
At momentum p, the Bloch state |up〉 with energy |Ep| is defined as the state whose spin is along n̂(p). Defining

| ↑〉 as the state whose spin is along +ẑ, |up〉 is obtained by performing the appropriate rotations,

|up〉 = e−i
σz
2

φ(p)ei
σy

2
θ(p)| ↑〉 (A3)

where θ(p) and φ(p) are the polar angles that define n̂(p):

n̂(p) = sin θ(p) cos φ(p)x̂ + sin θ(p) sin φ(p)ŷ + cos θ(p)ẑ (A4)

Substituting Eq. (A3) in Eq. (A1), one gets

F(p) = sin θ(p)
(

∂px
θ(p)∂py

φ(p) − ∂px
φ(p)∂py

θ(p)
)

(A5)

which, on using Eq. (A4) and some algebra, reduces to the required expression Eq. (A2).

Appendix B: current calculation for the cpge

Here we explain the current-calculation of Sec. III A in more detail and also state results for the parts of the current
that we chose not to focus on there.

As shown in Sec. III C, the relevant susceptibility is

χxαβ(t, t′, t′′) = −
1

2

∑

p

Tr

(

H

|Ep|

[

[jx(t), jα(t′)] , jβ(t′′)
]

)

= −
∑

p

1

2|Ep|
Tr

(

H
[

[jx, jα(t1)] , j
β(t2)

])

≡ χxαβ(t1, t2) (B1)

where t1 = t′−t, t2 = t′′−t, and the non-vanishing components of χxαβ are those for which α 6= β. The non-oscillating
part of the current, hence, is

〈jdc
x 〉(t) = jCPGE(t) =

A2
0e

2ǫt

4

0
∫

−∞

dt1

t1
∫

−∞

dt2

(χxxy(t1, t2) − χxyx(t1, t2)) eǫ(t1+t2) sin (ω(t2 − t1)) (B2)
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Since jCPGE(t) is an odd function of ω, it reverses on reversing the polarization, as expected.
The traces in the susceptibility expressions are calculated by introducing a complete set of states in place of the

identity several times. Thus,

χxxy(t1, t2) (B3)

= −
∑

p

1

2|Ep|
Tr (H [[jx, jx(t1)] , j

y(t2)])

= −
1

2

∑

p

∑

nml

sgn(En)

{

ei(Em−En)t2×

(

ei(El−Em)t1 − e−i(El−En)t1
)

XnlXlmYmn + c.c.
}

where Xnl = 〈n |jx|m〉 etc. and the subscript p on Ep has been dropped to enhance the readability. Similarly,

χxyx(t1, t2) (B4)

= −
∑

p

1

2Ep

Tr (H [[jx, jy(t1)] , j
x(t2)])

= −
1

2

∑

p

∑

nml

sgn(En)

{

ei(Em−En)t2Xmn×

(

ei(El−Em)t1XnlYlm − e−i(El−En)t1YnlXlm

)

+ c.c.
}

Substituting (B3) and (B4) in (20), we get

jCPGE(t) =
A2

0e
2ǫt

4
Re

0
∫

−∞

dt1

t1
∫

−∞

dt2e
ǫ(t1+t2)× (B5)

sin (ω(t1 − t2))
∑

p,nml

sgn(En)ei(Em−En)t2×

{

(

ei(El−Em)t1 − e−i(El−En)t1
)

XnlXlmYmn−

Xmn

(

ei(El−Em)t1XnlYlm − e−i(El−En)t1YnlXlm

)

}

where Re stands for ‘the real part of’. Carrying out the the two time integrations gives

jCPGE(t) =
A2

0e
2ǫt

8
Im

∑

p

∑

nml

sgn(En)× (B6)

[

1

Em − En + ω − iǫ
−

1

Em − En − ω − iǫ

]

×

{

Xnl (XlmYmn − YlmXmn)

El − En − 2iǫ
+

Xlm (YmnXnl − XmnYnl)

El − Em + 2iǫ

}

where Im stands for ‘the imaginary part of’. Using Im

(

1
Ω−iǫ

)

= πδ(Ω) and Re

(

1
Ω−iǫ

)

= 1
Ω in the limit ǫ → 0, we

get after some algebra, jCPGE(t) = jna + ja1 + ja2(t), where (Tr denotes the trace)

jna =
A2

0

16

∑

p

ω(ω2 − 12E2
p
)

i|Ep|3(ω2 − 4E2
p
)2
×

Tr(Hjx)Tr(H [jx, jy]) (B7)

comes from intraband processes and is constant in time,

ja1 = −
πA2

0sgn(ω)

32

∑

p

δ(|ω| − 2|Ep|)

E2
p

×

Tr(H [jx, [jx, jy]]) (B8)
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is a result of an interband transition absorption as indicated by the δ-function in energy and is also constant in time,
and

ja2(t) = i
A2

0πt sgn(ω)

8

∑

p

δ(|ω| − 2|Ep|)×

Tr(Hjx)Tr(H [jx, jy])

E2
p

(B9)

which also results from interband absorption and increases linearly in time. The last term was the main focus of our
work.
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