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Within the framework of time-dependent density functional theory combined with the Korringa-Kohn-

Rostoker Green function formalism, we present a real space methodology to investigate dynamical

magnetic excitations from first-principles. We set forth a scheme which enables one to deduce the

correct effective Coulomb potential needed to preserve the spin-invariance signature in the dynamical

susceptibilities, i.e. the Goldstone mode. We use our approach to explore the spin dynamics of 3d

adatoms and different dimers deposited on a Cu(001) with emphasis on their decay to particle-hole

pairs.

PACS numbers:

I. INTRODUCTION

The magnetic functionalization of nanostructures made of few atoms requires the understanding of spin-excitations

at the nanoscale and subnanoscale level. Recently, state of the art experiments based on scanning tunneling microscopy

(STM) were utilized to excite and control the magnetic states of single adatoms sitting on semi-insulating1 or metallic2,3

surfaces. The spin dynamics of moment bearing 3d metal atoms have been probed in those experiments but often the

theoretical picture used for the interpretation is based on a model Hamiltonian describing an atomic like localized moment

with integer or half-integer spin. Such a model is useful only for systems where the substrate interacts weakly with the

adsorbate1; it fails qualitatively to describe cases with strong coupling to the substrate electrons where hybridization

leads to moments far from integer and half integer values, and d levels with widths that can range from a few hundred

millivolts to perhaps an electron volt. This paper presents a scheme wherein one may address the commonly encountered

strongly coupled systems, with density functional theory as the basis. In contrast to empirical tight binding schemes used

earlier4–7 the method set forth in this paper incorporates a proper ab-initio based description of the one electron physics

from upon which our description of spin dynamics is erected. Also the scheme set forth in this paper may be implemented

with modest computational labor.

Several approaches have been proposed to describe inelastic STM experiments involving the above mentioned local

moment picture8–12 but none are based on taking full account of the electronic structure of the adsorbates as well as

the substrates including the effects of hybridization. The latter requires, among other ingredients13, the evaluation of

the transverse magnetic response function χ or the so-called transverse dynamical magnetic susceptibility that relates, in

linear response theory, the amplitude of the transverse spin motion mx,y produced by a transverse external magnetic field

Bext of frequency ω. There are three major roads followed to compute χ: (i) empirical tight-binding theory (ETB)
4–7,

(ii) time-dependent density functional theory (TD-DFT)14–21, and (iii) many body perturbation theory (MBPT) using

the Random Phase Approximation (RPA) and DFT22,23. The calculation of χ requires one to solve a Dyson equation

whose solution may be written schematically in the form:

χ = χ0(1− Uχ0)−1 (1)

As noted in Ref.21, χ0 is described by a different nomenclature depending on the method used to calculate it. Within

TD-DFT14,15, χ0 is known as the Kohn-Sham susceptibility and U is the exchange and correlation kernel that if ideally

known completely would render Eq. 1 the exact solution. U is obviously approximated in practice, for example, by the

adiabatic local spin density approximation. It turns out that evaluating Eq. 1 is computationally very challenging, especially

within the TD-DFT or the MBPT. This explains the very few calculations found in the literature, almost all of which

address bulk systems. This makes it even more challenging to simulate inelastic STM experiments that examine adatoms

deposited on surfaces. Recently, we developed a method21 that handles the calculation of the transverse dynamical

magnetic susceptibility in a scheme that resembles ETB but is based on TD-DFT. Thus the method incorporates full

self-consistent first-principles calculations of the underlying electronic structure. Two interesting results were obtained:

(i) a justification of the Lowde and Windsor scheme24 emerged from the analysis and (ii) values of U determined from
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first-principles for different systems are in accordance with the empirical values extracted from photoemission data by

Himpsel.25

In our previous paper21, we addressed a central question related to the practical determination of χ0 and U, within

the framework of density functional based schemes. It is known, but often not discussed explicitly, that the Goldstone

theorem is not satisfied, in practice, when solving Eq. 1 within TD DFT schemes. We remark that within the framework of

the empirical tight binding scheme, the Goldstone theorem is satisfied exactly, as demonstrated earlier6. The Goldstone

theorem, when satisfied, insures that the zero wave vector spin waves have precisely zero frequency (when spin orbit

coupling is set aside). The reason the Goldstone theorem is not satisfied within density functional based schemes is that

the numerical methods used to extract U and χ0 are not compatible with the Ward identity. To compensate for this

problem, Sasioglu et al.23 correct U by 45% in their study of bulk Ni while Buczek et al. find a finite frequency for the

Goldstone mode19. To cure such inconsistencies, an ad-hoc shift by hand of the value of U is used commonly. Our aim

is to demonstrate that such corrections could be dangerous, for instance, when the system under investigation contains

more than two atoms in the unit cell. In Ref.21, we set forth and utilized a sum rule that allows one to generate a U that

is fully compatible with the Goldstone mode.

The discussion of the sum rule in ref.21 was brief, though its application was illustrated. In this paper, we pro-

vide a detailed derivation of our scheme21 including the sum rule needed to determine U. Our method is based on

the Korringa-Kohn-Rostoker single particle Green function (KKR-GF)26 which contains an ab-initio description of the

electronic structure.

We remark that in earlier work, the empirical tight binding method has been used successfully to describe spin waves

in films on substrates5,7 along with the spin dynamics of adatoms as probed in the recent STM experiments6. In

this approach, it is necessary to make contact with electronic structure calculations for the purpose of extracting the

tight binding parameters required to describe the one electron properties of the system of interest. Often appropriate

electronic structure calculations are unavailable, or if they are it can be a challenge to extract appropriate parameters in

an unambiguous manner for complex systems such as ultrathin films adsorbed on substrates. The approach we develop

here eliminates this issue completely, while at the same time it provides a computationally straightforward scheme for

generating the dynamic transverse susceptibility.

II. STRUCTURE OF THE THEORY; THE SUM RULE AND THE EFFECTIVE U

It is, of course, possible in principle to calculate the Kohn-Sham non interacting susceptibility χ0. In this section, we

show that once χ0 assumed known, we can derive a prescription for generating the effective Coulomb interaction U which

enters Eq. 1 that is fully compatible with the Goldstone theorem. In effect, U is a functional of χ0. With U determined in

the manner we describe, there is no reason for ad-hoc adjustment of this central parameter. We also describe a scheme

which allows one to generate a physically sensible approximation to χ0 that is straightforward and simple to implement.

We then use this scheme to generate a series of explicit predictions regarding the nature of spin excitations of adatoms

and adatom-dimers.

To begin, we assume we have in hand a magnetic system with an initial charge density n0(~r). Its ground state

magnetization (mz(~r )) pointing along, say, the z-direction experiences a modification induced by a small time-dependent

external transverse magnetic field Bext(~r ; t). The result is an induced transverse magnetization mx,y (~r ; t) localized in

the (xy) plane perpendicular to the direction z . To describe the transverse magnetization, we begin by calculating the

frequency dependent Kohn-Sham transverse susceptibility or χ0 which may be expressed in the form

χi j0 (~r ,~r
′;ω) = − 1

π

∫

dzf (z)(G↓i j (~r ,~r
′; z + ω)ImG↑j i(~r

′,~r ; z)

+ ImG↓i j(~r ,~r
′; z)G−↑j i (~r

′,~r ; z − ω)) (2)

where f (z) is the Fermi distribution function, G and G− represent the retarded and advanced one particle Green functions

connecting atomic sites i and j and ImG = − i2(G − G−).
A comment on the notation is in order. In general, the point ~r is in unit cell i , and ~r ′ is in unit cell j . These vectors are

measured from the center of their respective unit cells. Thus, if we wish to describe these two points with respect to a

master origin O, we will describe the notation ~r + ~Rj and ~r
′+ ~Rj , respectively where ~Ri ,j are vectors from O to the center

points of cell i , j . With this convention in mind, the single particle Green function, often described as G(~r+ ~Ri ,~r
′+ ~Rj , z),

will here be described as Gi j(~r ,~r
′; z), a notation that is very convenient when the KKR scheme we employ is utilized.
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To derive our criterion for choosing an effective U, our interest is in the static form of the Kohn-Sham susceptibility.

At ω = 0, the expression in Eq. 2 reduces to the usual form of the static magnetic susceptibility:

χi j0 (~r ,~r
′; 0) =

i

2π

∫

dzf (z)(G↓i j(~r ,~r
′; z)G↑j i(~r

′,~r ; z)

− G−↓i j (~r ,~r
′; z)G−↑j i (~r

′,~r ; z)) (3)

Our first step it to multiply both sides of Eq. 3 by Bjef f (~r
′;ω = 0) and then we integrate over ~r ′ within the atomic site

j and sum up over all sites j :

∑

j

∫

d~r ′χi j0 (~r ,~r
′; 0)Bjef f (~r

′; 0) =
i

2π

∫

dzf (z)
∑

j

∫

d~r ′ (4)

(G↓i j(~r ,~r
′; z)Bjef f (~r

′; 0)G↑j i(~r
′,~r ; z)

− G−↓i j (~r ,~r
′; z)Bjef f (~r

′; 0)G−↑j i (~r
′,~r ; z)) (5)

Bef f is given by the difference between the potentials of each spin channel ( V↓ − V↑).
We next use an identity derived in the Appendix that relates the Green function for a given spin channel, say ↑, to the
Green function of the opposite spin channel through the potential difference Bef f :

G↑i i(~r ,~r ; z) = G↓i i(~r ,~r ; z) +
∑

j

∫

d~r ′G↓i j(~r ,~r
′; z)Bjef f (~r

′; 0)G↑j i(~r
′,~r ; z) (6)

or

G↑i i(~r ,~r ; z)− G
↓
i i(~r ,~r ; z) =

∑

j

∫

d~r ′G↓i j(~r ,~r
′; z)Bjef f (~r

′; 0)G↑j i(~r
′,~r ; z) (7)

Similar relations but written differently have been already used for example in Refs.6,36.

Thus Eq. 5 becomes:

∑

j

∫

d~r ′χi j0 (~r ,~r
′; 0)Bjef f (~r

′; 0) =
i

2π

∫

dzf (z)

(G↑i i(~r ,~r ; z)− G
↓
i i(~r ,~r ; z)

− G−↑i i (~r ,~r ; z) + G
−↓
i i (~r ,~r ; z)) (8)

which is the same as
∑

j

∫

d~r ′χi j0 (~r ,~r
′; 0)Bjef f (~r

′; 0) = − 1
π

∫

dzf (z)

(ImG↑i i(~r ,~r ; z) − ImG
↓
i i(~r ,~r ; z)) (9)

One can recognize that the right-hand side of the previous equation is simply miz (~r ; 0). Thus, we obtain the final form

of an important sum rule:

∑

j

∫

d~r ′χi j0 (~r ,~r
′;ω = 0)Bjef f (~r

′;ω = 0) = miz(~r ;ω = 0) (10)

We remark that within the empirical tight-binding scheme, a statement equivalent to Eq.10 is found in Ref.6.

The Kohn-Sham susceptibility χi j0 (~rt,~r
′t ′) can be expanded in terms of real spherical harmonics, Y

and when this is done it can be expressed as a sum over angular momenta L, L1, L2 and L3 as
∑

LL1L2L3
χiLL1;jL2L30 (r t, r ′t ′)YL(r̂)YL1(r̂

′)YL2(r̂
′)YL3(r̂ ). This follows since χ0 is a convolution of single particle Green

functions (see Eq. 2). Consequently, within the atomic sphere approximation (ASA) and assuming a spherical magnetic

field mix,y (~rt) = m
i
x,y (r t), m

i
z (~rt) = m

i
z(r t) and B

j
ext(~r

′t) = Bjext(r
′t), Eq. 10 reads:

∑

j

∫

dr ′
∑

LL1L2L3

YL(r̂ )YL3(r̂)χ
iLL1;jL2L3
0 (r, r ′; 0)Bjef f (r

′; 0) ×
∫

dr̂ ′YL1(r̂
′)YL2(r̂

′) = miz(r ; 0) (11)
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If one integrates both sides of the previous equation over dr̂ and uses
∫

dr̂YL(r̂ )YL′(r̂) = δLL′ one finds:

∑

j

∫

dr ′
∑

LL1

χiLL1;jL1L0 (r, r ′; 0)Bjef f (r
′; 0) = 4πmiz(r ; 0) (12)

If we define

U j(r ′) =
Bjef f (r

′; 0)

4πmjz(r ′; 0)
(13)

that is the usual form for the effective U that enters Eq. 1 as generated from the Adiabatic Local Spin Density Approxi-

mation given in the upcoming section, then Eq. 12 can be rewritten as:

∑

j

∫

dr ′
∑

LL1

χiLL1;jL1L0 (r, r ′; 0)mjz(r
′; 0)U j(r ′) = miz (r ; 0) (14)

or as

∑

j

∫

dr ′Γ i j(r, r ′)U j(r ′) = miz(r ; 0) (15)

with Γ i j(r, r ′) =
∑

LL1
χiLL1;jL1L0 (r, r ′; 0)mjz(r

′; 0).

In matrix notation, Eq. 15 can be expressed as:

Γ ~U = ~mz (16)

which provides a means of calculating of U:

~U = Γ−1 ~mz (17)

Eq. 17 allows us to generate U through knowledge of only the ground state magnetization and the Kohn-Sham suscepti-

bility χ0. An analysis of Eq. 1 shows that in the absence of an external magnetic field parallel to the z-direction the full

dynamic susceptibility χ will have a pole at zero frequency, if in fact U is generated from Eq. 17. Thus, by this scheme

we generate an effective U compatible with the Goldstone theorem. Stated otherwise, the correct U is the one with the

lowest eigenvalue of the denominator of Eq.1 associated with the magnetic moments as components of the eigenvectors.

In the following we shall show through explicit calculation that the prescription in Eq. 17 can be applied to clusters of

moment bearing ions which consists of dissimilar atoms.

III. THE MASTER DYSON EQUATION WITHIN TD-DFT

Let us briefly derive the master Dyson equation which leads to Eq. 1 within the TD-DFT. By applying a linear variational

approach, one assumes similar initial conditions as the ones in the previous section: i.e. a magnetic system with an initial

charge density n0(~r ), a magnetization pointing along the z-direction and an exciting time-dependent transverse magnetic

field Bext(~r ; t) with small magnitude that allows us to use linear response theory. The result is an induced transverse

magnetization localized in the (xy) plane perpendicular to the direction z . The art of TD-DFT is to relate and connect

the induced transverse magnetization mx,y (~r ; t) to the externally applied magnetic field. The dynamic susceptibility we

seek may be expressed as a functional derivative of the transverse moment with respect to the external field, evaluated

at zero external field:

χi j(~rt,~r ′t ′) =
δmix,y [Bext ](~rt)

δBjext(~r
′t ′)

∣

∣

∣

∣

Bext=0,n0

(18)

where χ is the response function we seek. In regard to the superscripts i , j and the definition of the vectors ~r , ~r ′ see the

remarks after Eq. 2. The convention we use here is the same as that employed for the single particle Green function.

Within the atomic sphere approximation (ASA) and assuming once more an applied magnetic field with spherical

symmetry within the unit cell we may write

mix,y (~rt) =
∑

j

∫

d~r ′
∫

dt ′χi j(~r t,~r ′t ′)Bjext(~r
′t ′), (19)
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Upon resorting to the spherical harmonic expansion discussed above, this becomes

mix,y (r t) =
∑

j

∫

d~r ′
∫

dt ′
∑

LL1;L2L3

χiLL1;jL2L3(r t, r ′t ′)×

YL(r̂)YL1(r̂
′)YL2(r̂

′)YL3(r̂)B
j
ext(r

′t ′) (20)

where r and r ′ are the magnitude of the vectors ~r and ~r ′.

If we integrate both sides of the previous equation over dr̂ we find:

4πmix,y(r t) =
∑

j

∫

dr ′
∫

dt ′
∑

LL1

χiLL1;jL1L(r t, r ′t ′)Bjext(r
′t ′) (21)

Thus the functional derivative given by Eq. 18 could be simplified to

χi j(r t, r ′t ′) = 4π
δmix,y [Bext ](r t)

δBjext(r
′t ′)

∣

∣

∣

∣

Bext=0,n0

(22)

where we define χi j =
∑

LL1
χiLL1;jL1L. The same procedure is repeated for the magnetic response function χ0 of the

Kohn-Sham non interacting system which involves not only Bext but Bef f as well
14; As mentioned previously, Bef f is

the magnetic part of the effective Kohn-Sham potential (V ↓ef f − V
↑
ef f ). After a Fourier transform with respect to time

we obtain a form that maps our calculation onto the same structure employed many years ago by Lowde and Windsor24.

This remains often used in recent tight-binding simulations of magnetic excitations6,7 where it is found that the scheme

accurately reproduces results found through use of a more sophisticated description of the Coulomb integrals. Our

derivation elucidates how the structure introduced by Lowde and Windsor emerges from TD-DFT.

We now have

χi j(r, r ′;ω) = χi j0 (r, r
′;ω)

+
∑

kl

∫

dr ′′
∫

dr ′′′χik0 (r, r
′′;ω)Ukl(r ′′, r ′′′;ω)χl j(r ′′′, r ;ω) (23)

where the integrations are only over the magnitude of ~r and ~r ′, with the site labeled matrix function shown. The effective

Coulomb interaction U i j(r, r ′;ω) may be expressed as a functional derivative given by

U i j(r, r ′;ω) =
δBief f (r ;ω)

4πδmj(r ′;ω)

∣

∣

∣

∣

Bext=0,n0

(24)

Within ALDA prescription of the transverse response of the spin system, Eq. 24 simplifies to27

U i j(r, r ′;ω) =
Bief f (r ; 0)

4πmiz(r ; 0)
δr,r ′δi ,j , (25)

The object in Eq. 25 will be noted as UDFT is in the litterature often referred to as the exchange and correlation Kernel

Kxc. This is, it should be noted, exactly the form derived in Eq. 13 extracted from the sum rule Eq. 10.

From Eq. 25, it is obvious that U could be considered as a local exchange splitting divided by the magnetization.

IV. CALCULATION OF THE KOHN-SHAM SUSCEPTIBILITY

As shown in Eq. 2, the Kohn-Sham dynamical susceptibility is a convolution of two Green functions. The function χ0
can be separated into a sum of two terms: I1 which involves Green functions that are analytical in the same half complex

plane, so I1 itself is analytic, and then one has I2 which is non analytic
6. For positive frequencies:

I i j1 (~r ,~r
′;ω) =

i

2π

∫ EF

dzf (z)

(

G↓i j(~r ,~r
′; z + ω)G↑j i(~r

′,~r ; z)

− G↓∗j i (~r
′,~r ; z)G↑∗i j (~r ,~r

′; z − ω)
)

(26)
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and

I i j2 (~r ,~r
′;ω) =

i

2π

∫ EF

dzf (z)

(

− G↓i j(~r ,~r ′; z + ω)G
↑∗
i j (~r ,~r

′; z)

+ G↓i j(~r ,~r
′; z)G↑∗i j (~r ,~r

′; z − ω)
)

(27)

Such a separation is attractive since I1 can be calculated through use of a regular energy contour in the complex plane
28

with a modest k- and energy-mesh. In Ref.6,7, the energy contour consists of a line perpendicular to the real-axis starting

at the Fermi energy and going to infinity. This is unfortunately not possible with the KKR-method since unwanted core

states would then be included. Thus, the lower limit of the energy integration is chosen well below the valence band

minimum. I2 can be calculated along a line parallel to the real axis. This requires usually a very substantial numerical effort

since a large number of k-points as well as a dense energy mesh are needed. However, it can be shown that the integration

is limited to a small energy controlled by ω. In our discussion of spin excitations we are interested in frequencies ω small

compared to bandwidths, so the integrations involved in I2 can be carried out readily. The computational effort is thus

enormously reduced. Upon introducing a variable change we may write:

I i j2 (~r ,~r
′;ω) = − i

2π

∫ EF

EF−ω

dzG↓i j (~r ,~r
′; z + ω)G↑∗i j (~r ,~r

′; z) (28)

The use of two different contours can lead to a slightly different treatment of rather similar terms in I1 and I2. In

order to improve numerical stability, in the present analysis the two terms are arranged so they differ a bit from those

presented in Ref.6. We write

I i j1 (~r ,~r
′;ω) =

i

2π

∫ EF−ω

dz

[

f (z)G↓i j(~r ,~r
′; z + ω)G↑j i(~r

′,~r ; z)

−f (z + ω)G↓∗j i (~r ′,~r ; z + ω)G
↑∗
i j (~r ,~r

′; z)

]

(29)

+
i

2π

∫ EF

EF−ω

dzf (z)G↓i j (~r ,~r
′; z + ω)G↑j i(~r

′,~r ; z)

The second term on the right hand side of the previous equation can be added to I2 which leads to

I
i j

2 (~r ,~r
′;ω) =

i

2π

∫ EF

EF−ω

dzG↓i j(~r ,~r
′; z + ω)(G↑j i(~r

′,~r ; z)− G↑∗i j (~r ,~r ′; z)) (30)

while

I
i j

1 (~r ,~r
′;ω) =

i

2π

∫ EF−ω

dz

(

f (z)G↓i j (~r ,~r
′; z + ω)G↑j i(~r

′,~r ; z)

−f (z + ω)G↓∗j i (~r ′,~r ; z + ω)G
↑∗
i j (~r ,~r

′; z)

)

(31)

or

I
i j

1 (~r ,~r
′;ω) =

i

2π

∫ EF

dz

(

f (z − ω)G↓i j(~r ,~r ′; z)G
↑
j i(~r

′,~r ; z − ω)

−f (z)G↓∗j i (~r ′,~r ; z)G
↑∗
i j (~r ,~r

′; z − ω)
)

(32)

This procedure just outlined is found to be stable and requires to calculate one less Green function. Up to now we have

considered positive frequencies ω.

Negative frequencies lead to slightly different forms of I1 and I2:

I
i j

1 (~r ,~r
′;−|ω|) = i

2π

∫ EF

dzf (z)G↓i j (~r ,~r
′; z − |ω|)G↑j i(~r ′,~r ; z)

− f (z − |ω|)G↓∗j i (~r ′,~r ; z − |ω|)G
↑∗
i j (~r ,~r

′; z)) (33)

and

I
i j

2 (~r ,~r
′;−|ω|) = i

2π

∫ EF

EF−|ω|

dzG↑∗i j (~r ,~r
′; z + |ω|)(G↓i j(~r ,~r ′; z)− G

↓∗
j i (~r

′,~r ; z)) (34)
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These expressions can be evaluated with modest numerical efforts since the required Green functions are the same than

those calculated for the susceptibilities at positive frequencies.

V. AN APPROXIMATE FORM FOR THE SINGLE PARTICLE GREEN FUNCTIONS

The Green functions are provided by the KKR-GF method26:

Gi j(~r ,~r
′; z) =

∑

LL1

−i
√
zRiL(~r<; z)H

iL(~r>; z)δi j,LL1 + R
iL(~r ; z)G iL,jL1B (z)RjL1(~r ′; z) (35)

where GB is the structural Green function. Here the regular R and irregular H solutions of the Schrödinger equation are

energy dependent, and this makes the calculation of χ0 in Eq. 1 tedious and lengthy. Thus, instead of using Eq. 35 while

evaluating χ0, we introduce the following simplification that captures the physics central to the systems of interest to us.

In its spectral representation, the Green function is given by

Gi j(~r ,~r
′; z) =

∑

~k

∑

LL1

αiL(E~k)R
i
L(~r ;E~k)α

j∗
L1
(E~k)R

j∗
L1
(~r ′;E~k)

z − E~k
(36)

where RiL(~r ;E~k) is a suitably normalized solution of the Schrödinger equation within the unit cell i . E~k are the eigenvalues

corresponding to the eigenstates of the system while ~k , that includes a band index, is a vector in the Brillouin zone of

the reciprocal lattice.

Various Ansatz can be proposed to simplify the previous form. Instead of working with the energy dependent wave

functions, one could use an energy linearized form of the wave function as done, for example, in the Linear Muffin Tin

Orbital method29 or in the Full Potential Linearized Augmented Plane Waves method30. Our Ansatz expresses the Green

functions in terms of energy independent wave functions φ such that:

Gi j(~r ,~r
′; z) ∼

∑

~k

∑

LL1

βiL(E~k)φ
i
L(~r)β

j∗
L1
(E~k)φ

j∗
L1
(~r ′)

z − E~k
(37)

or

Gi j(~r ,~r
′; z) ∼

∑

LL1

φiL(~r)G
LL1
i j (z)φ

j∗
L1(~r

′) (38)

with

G
LL1
i j (z) =

∑

~k

βiL(E~k)β
j∗
L1
(E~k)

z − E~k
(39)

Note that after modifying the wave functions we naturally replaced the amplitude α by a different one (β).

Since our KKR-GF method generates the full Green function as given in Eq. 35, one could calculate G
LL1
i j (z) from

G
LL1
i j (z) =

∫ ∫

d~rd~r ′φiL∗(~r)Gi j(~r ,~r
′; z)φjL1(~r ′)

∫

drφiL∗(r )φiL(r )
∫

dr ′φjL1(r ′)φjL1∗(r ′)
(40)

where on the right hand side of Eq. 40 we insert the full KKR Green function displayed in Eq. 35.

The terms in the denominator are normalization factors. Thus, instead of working with φiL(~r) we introduce

ψiL(r ) =
φiL(r )

(

∫

drφiL∗(r )φiL(r )

)
1
2

(41)

where we choose φiL(r ) = Rid(r ;EF ), i.e., the wave function of d character that is the regular solution (see Eq. 35)

of the Schrödinger equation. Our aim is to generate an approximate form for the single particle Green function which

contains full information on the electronic structure, and which also is appropriate for use in generating the dynamical
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susceptibility. We note that the Coulomb interactions responsible for moment formation are intra-atomic in character,

inside the 3d shell. Thus for the purpose of studying the moment and its dynamics, it will suffice to extract just the d

like portion of single particle Green function. In the empirical tight binding method, this is precisely what is done, since

the Hamiltonian explicitly incorporates only interactions within the 3d shell. We note that the presence of the sp band

complex expresses itself fully in the Ansatz we use here, by virtue of hybridization between the d and sp levels. Thus, in

Eq. 38 we confine the angular momentum components to the L = 2 states. In the full KKR expression for the Green

function, the one electron wave functions which enter are energy dependent. We propose here an expansion in terms of

energy independent wave functions of d character that we chose to be the regular solutions of KKR-GF theory evaluated

at the Fermi energy. Our focus is on low energy excitations of 3d moments so as we shall see below this choice is

appropriate.

Within the KKR-representation of the Green function Gi j(z) is evaluated from:

G
LL1
i j (z) =

∑

L2L3

(

− i
√
z

∫ rws

0

d~r ′HiL2(~r ′; z)ψiL(~r ′)

∫ r ′

0

d~rψiL1∗(~r )RiL2(~r ; z)δi j,L2L3 (42)

−i
√
z

∫ rws

0

d~r ′RiL2 (~r
′; z)ψiL(~r ′)

∫ rws

r ′
d~rψiL1∗(~r)HiL2(~r ; z)δi j,L2L3

+

∫ rws

0

d~rψiL∗(~r)RiL2(~r ; z)G iL2,jL3B (z)

∫ rws

0

d~r ′RjL3(~r ′; z)ψjL1(~r ′)

)

where rws stands for Wigner-Seitz radius.

VI. THE FINAL DYSON EQUATION

Assuming the expansion in terms of energy independent wave functions described previously, the final Dyson equation

simplifies after some straightforward algebra into a strictly site dependent equation

χ = χ0 + χ0Uχ (43)

where the d-block of the dynamical susceptibility is given by

χi j0 (r, r
′;ω) = ψid↓ (r )ψ

id∗
↑ (r )χ

i j

0 (ω)ψ
jd∗
↓ (r

′)ψjd↑ (r
′) (44)

and

U
i
=

∫ rws

0

drψid∗↓ (r )ψ
id
↑ (r )U

i(r )ψid↓ (r )ψ
id∗
↑ (r ) (45)

Within ALDA, we use Eq. 25 in Eq. 45 and obtain

U
i
=

∫ rws

0

drψid∗↓ (r )ψ
id
↑ (r )

Bief f (r ; 0)

4πmiz(r ; 0)
ψid↓ (r )ψ

id∗
↑ (r ) (46)

If we want to use the sumrule we expand the susceptibility given in Eq. 12 in terms of d-bloch susceptiblity expressed in

Eq. 44 and repeat the same procedure used in section II to find

~U = Γ
−1 ~Mz (47)

as written in matrix notation and Γ
i j
= χ

i j

0 (0)M
j
z with M

i
z , calculated from the projection scheme proposed in section V,

is the magnetic moment of atom i . U can be calculated once for every atom either from the previous sum rule, Eq. 47,

or from Eq. 46. It can be understood as a Stoner parameter and gives once more a justification for the approach used

by Lowde and Windsor24: i.e. the effective intra-atomic Coulomb interaction is expressed by only one parameter.
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VII. APPLICATION OF THE FORMALISM TO EXPLICIT EXAMPLES

A. Single Adatoms

We choose as an application of the formalism developed above the investigation of 3d adatoms and dimers positioned

on the fourfold hollow sites of Cu(001) surface. In this section, we focus on single adatoms. The calculations consist of

the self-consistent determination of the electronic structure of these nanostructures using the usual KKR-GF scheme26.

Once this is done, we generate the Green functions needed to calculate χ0, for the elements that bear a magnetic

moments (Cr, Mn, Fe and Co), following Eq. 2. U is calculated either from Eq. 47 or Eq. 46. It is convenient to note

that for the case of a single adatom i , Eq. 47 simplifies to Ui =
1

χi,i0
at ω = 0.

We have already examined the spin dynamics of these systems in Ref.21 where we have shown that the Green functions

extracted from our approach (Eq. 43) nicely reproduces the magnetic moment of the adatoms as calculated from a full

DFT calculation. That this is so is illustrated in Fig. 1(a). Indeed, interestingly, the d-contribution to the total moment

is, as expected, the most important and seems to be nicely reproduced by the projection of the Green functions into our

choice of wave functions.

We did not, however, discuss in Ref.21 the differences between values of U calculated from both schemes mentioned

previously. In Fig. 1(b) we show the values of U for the adatoms we have investigated. We find values of U very close

to 1eV/µB for all cases we have studies. Himpsel
25, in his analysis of a large body of photoemission data on moment

bearing 3d ions, has concluded that 1eV/µB is a universal value that applies to diverse moment bearing 3d transition

metal ions. As discussed in Ref.21, 1eV/µB is also used commonly ETB calculations
6,7. Thus, we are pleased to see

these values emerge from the scheme set forth here. The relative error or U values generated from density functional

theory, as measured by the ratio (UDFT−Usumrule
UDFT

) are depicted in Fig. 1(c). The error is the highest for Cr-adatom while the

lowest is seen for Co. It is interesting that the observed error does not exceed 15% which is still much lower then what

has been estimated by Sasioglu et al.23 while investigating bulk Ni.

In Fig. 2, we show examples of the imaginary part of χ for a Mn adatom positioned on the fourfold hollowsite of

Cu(001) surface after applying an additional spatially uniform static magnetic field. The imaginary part of χ describes

on the resonant response of the local magnetic moment of Mn-adatom. As required by the Goldstone theorem, a zero

frequency resonance is expected when no DC field is applied. We have verified numerically that this feature is present,

when our method of determining U is employed. As soon as a DC field pointing along the initial direction of the moment

is applied, as discussed many years ago31, the local response of the moment displays a g shifted Zeeman resonance,

broadened very substantially by decay of the coherent spin precession to particle hole pairs, whereas the total moment

of the system precesses with g=2 and zero linewidth. Thus, experiments such as STM that are highly localized probes

of the dynamic response of the moment see a qualitatively different response than very long wavelength probes such as

microwave resonance or Brillouin light scattering. In the latter methods, both g shifts and linewidths have their origin

only in terms in the system Hamiltonian that break spin rotation invariance. Examples are spin orbit effects, along with

coupling of spins to lattice degrees of freedom.

We see in Fig. 2 that the resonant frequency scales linearly with the applied DC field, as does the width of the structure

in the local response of the moment. The width of the resonances is controlled by the local density of states31, and is

thus strongly influenced by the position of the d levels relative to the Fermi energy.

B. Dimers of Identical Adatoms

Let us turn to the case of dimers. We consider two identical adatoms each adsorbed in nearest neighbor four fold

hollow sites on Cu(100). At such distances, their interaction is modest compared to energies which characterize the one

electron properties of the system.

In Fig. 3, we show effective values of U generated by different means of selecting this parameter. The one calculated

with use of Eq. 46, refereed to as UDFT, is systematically smaller than that which follows from the sum rule in Eq. 47.

We saw the same trend in our earlier discussion of single adatoms. Of course, if one employs UDFT in the calculation of

the dynamic susceptibility the Goldstone theorem is not obeyed. We turn next to a discussion the two choices U+ and

U− that appear in Fig. 3.

We discuss local dynamic susceptibilities χ11, χ22, χ12 and χ21. The superscripts refer to atomic sites where the atoms

in the dimer are located. The response function χi j gives the response of the moment at site i in response to a spatially
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from either from Eq. 47 or from Eq. 46 while in the insert (c) we plot the percentage error defined as the difference between

UDFT and Usumrule divided by UDFT.
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FIG. 2: Imaginary part of the transverse dynamical magnetic susceptibility for a Mn adatom/Cu(001) surface. After applying

different DC magnetic fields, resonances are obtained and are shifted to higher frequencies by increasing the magnitude of the
field. The corresponding Zeeman frequency with g=2 for the fields chosen are represented by the black circles. Thus the g shift

is negative for this example.

localized field applied to site j . So far, everywhere, upper cases were used for i and j site labels in the susceptibility. For

the case considered in this section, where each atom in the dimer is identical and there is reflection symmetry through

the midpoint of the line that connects their centers, we have χ11 = χ22 and also χ21 = χ12; In the next section we

consider a dimer formed from two dissimilar atoms, so the equalities just stated do not hold.

The Goldstone theorem requires that in the absence of an externally applied field (and in the absence of spin-orbit

coupling) each element χi j must have a pole at zero frequency. This is insured if U is such that the determinant D

formed from the matrix 1− Uχ0 vanishes at zero frequency. For our dimer that consists of two identical atoms we have
D = (1 − Uχ110 )2 + (Uχ120 )2. Upon setting D = 0, we encounter a difficulty. The criterion yields two acceptable values
of U, U+ = (χ

11
0 + χ

12
0 )
−1 and U− = (χ

11
0 − χ120 )−1. In Fig. 3, the red curve provides values of U+, for the ions we
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FIG. 3: Different values of U obtained with different schemes for Cr, Mn, Fe and Co dimers deposited on Cu(001) surface. See

the discussion in the text for the discussion of the various criteria for choosing U.

consider, and the blue curve U−. The two values of U determined by this criterion are quite close to each other, because

on the electron volt scale the interaction energy between the two moments in the dimer is quite small, as noted above.

One then must address which of the two choices for U discussed in the previous paragraph is the proper physical choice.

To see this, we must refine our criterion. For the dimer with two identical atoms, we can make a decision which value

of U is the proper choice. If we consider the mode structure of the dimer, there is an acoustical mode wherein the two

moments precess in phase, and an out of phase optical mode we shall discuss below. The Goldstone theorem requires

the acoustical mode to have zero frequency. Thus, it is the function χa = χ11 + χ22 + χ12 + χ21 that also must have a

pole at zero frequency, since this describes the response of the total moment of the dimer to a spatially uniform applied

transverse field. For our simple dimer formed from two identical atoms, it is a simple exercise to find an expression for

χa. One has χa = (χ110 +χ
12
0 )/[1−U(χ110 +χ120 )]. Thus for a pole to occur at zero frequency in this response function,

we must choose U = U+. The sum rule provides us with the same criterion.

For the case of the dimer just considered, it is straightforward to deduce the appropriate choice of U through examination

of χa. However, for more complex arrays of spins the task of choosing U is not simple. Suppose, for instance we have N

spins in the form of a one dimensional structure or possibly an island. From the numerical point of view, one may work

with the analog of the determinant D discussed above. Exploration of its zeros at zero frequency will yield N possible

values of U. Also if the spin structure consists of dissimilar atoms, each atom will be characterized by an appropriate

value of U. As we shall see in the next section, the sum rule allows one to generate appropriate values of the interaction

strength for each individual atom in a more complex structure.

We turn next to the description of the spin dynamics of the dimer. For the dimer, we expect two resonances, an
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acoustical mode located obviously at ω = 0 and an optical mode at positive or negative frequencies. In general, the

appearance of negative frequency modes in the dynamic susceptibility signal an instability of an assumed ground state.

In the studies presented here, we assume a ferromagnetic ground state for the dimer. The appearance of a negative

frequency optical mode is a signal that the atoms in the dimer are coupled antiferromagntically, so the ferromagnetic

ground state is unstable. Thus the dynamic susceptibility can be used as a probe of local stability of assumed structures.

It will be useful and interesting to compare our full dynamical calculations of the response of the dimer with the often

used localized spin model, where effective exchange interactions are calculated within an adiabatic scheme. Such adiabatic

scheme has already been used for the investigation of different kind of systems (see e.g.Refs.32–35). Through adiabatic

rotations of the moments,36, we extract an effective exchange magnetic interaction, J, by fitting the energy change to

the Heisenberg form

H = −J~e1 · ~e2 (48)

where ~e1 and ~e2 are unit vectors. By this criterion, we find that the ground state is antiferromagnetic for Cr- (J = −19.8
meV) and Co-dimers (J = −14.9 meV) and ferromagnetic for Mn (J = 16.3 meV) and Fe (J = 30.4 meV). Since the
dynamical susceptibility was evaluated through use of ferromagnetic state for all the dimers, we expect an optical mode

at positive frequencies for Mn and Fe dimers and at negative frequencies for Cr and Co dimers.

We find that the dynamic susceptibility of the dimer is remarkably sensitive to the choice of the effective U. We see

in Fig. 3 that numerically the difference between U+ (= Usumrule) and U− is quite small. Yet as illustrated in Fig. 4(a),

we show Im(χ11) calculated with the choice U = U−. For all four magnetic ions, the signature of the Goldstone mode

is evident. For the Cr dimer, we see the clear signature of the optical mode at positive frequency. This suggests that,

in contrast to the conclusion based on the adiabatic exchange analysis, the ferromagnetic ground state of Cr is stable.

The optical modes of Mn, Fe all reside at negative frequency so for these three the results in Fig. 4(a) suggest the

ferromagnetic ground state is unstable. These results are also incompatible with the conclusions based on the adiabatic

exchange integrals.

In Fig. 4(b), we show results for Im(χ11) which follow from the choice U = U+. We now have results fully compatible

with the conclusion based on the adiabatic exchange analysis. The sum rule has led to the correct selection of the

effective U.

Within the framework of the Heisenberg model, the optical mode should be an eigenmode of the system, and thus it will

have zero linewidth. We see in Fig. 4(b) that the optical mode for the Fe dimer and the Mn dimer have very substantial

width. The origin of this broadening is in decay of the optical mode to Stone excitations. The itinerant character of the

local moments is responsible for this linewidth, which elementary considerations suggest should increase linearly with the

frequency of the optical mode. Thus, the linewidth of the optical mode of the Fe dimer is substantially broader than

that of the Mn dimer. In the ground state, hybridization between 3d states of the adatom and the conduction degrees

of freedom on the Cu substrate results in ”virtual levels” whose width is in the range of a few hundred meV. At the level

of the spin dynamics, we see the large broadening of the optical mode as another reflection of the itinerant character of

these systems. We note that in Spin-Polarized Electron Energy Loss Spectroscopy (SPEELS) studies of spin waves in

ultrathin films very large linewidths are observed for high frequency, large wave vector modes37. The data is in excellent

accord with theoretical calculations that assign the large linewidth to the damping by decay to Stoner excitations7, very

much as we see in the optical modes displayed in Fig. 4(b).

It is of interest to compare the frequency of the optical modes with the prediction of the Heisenberg model, with interspin

exchange generated adiabatically as discussed above. If one considers two spin exchange coupled spins described by the

Hamiltonian −Js ~S1 · ~S2 the frequency of the optical mode is easily seen to be Js(S1+S2). In Eq. 48, ~e1,2 are unit vectors,
so Js = J/S1S2. Thus, in terms of the effective exchange couplings quoted above, with S1 = S2 = S the optical mode

frequency is 2J/S. For the Mn and Fe dimers whose optical modes are illustrated in Fig. 4(b), the predicted frequencies

are 15.4 meV and 39.2 meV, respectively. The agreement with the optical mode of the Mn dimer is excellent, whereas

the full dynamical calculation provides a somewhat smaller optical mode frequency for the Fe dimer. As discussed earlier,

the coupling between the spin precession of the local moments and the Stoner excitations produces a mode softening not

incorporated into the localized spin picture6,7. This coupling is considerably larger for the Fe dimer than the Mn dimer,

as seen by a comparison of their linewidths.
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FIG. 4: local Imχ11 is shown for the four dimers based on: Cr-, Mn-, Fe-, Co- adatoms. To calculate χ two possible schemes

of evaluating are considered: either in (a) using U− or in (b) using U+. It turns out that U+ corresponds to the value obtained
from the sumrule (Eq. 47) derived in the text while U that calculated from a simple iterative scheme out of UDFT would converge
to the wrong U when investigating Cr and Co dimers. The reason is that, for the latter elements, contrary to U+, U− is closer

to UDFT. The optical modes, estimated for Mn and Fe from a Heisenberg model, are represented as dashed lines.

C. Dimers Formed from Different Adatoms

We now turn our attention to a lower symmetry spin structure, dimers made of different magnetic adatoms. We

study the MnFe dimer and the FeCo dimer, once again with the magnetic ions sitting in nearest neighbor fourfold hollow

sites on the Cu(111) surface. Here the two atoms do not have the same magnetic moments. Also the effective U is

different for each atom. In this circumstance it is difficult to envision adjusting the values of U by hand to obtain the
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zero frequency pole in the dynamic susceptibility. We have here a circumstance where the sum rule allows us to address

the problem directly. Notice from Eq. 47 that though its use, we can determine the appropriate value of U for each

atom in the dimer. Before we discuss imaginary part of the dynamical susceptibility let us discuss values of the magnetic

moments and U’s.

TABLE I: Comparison between magnetic moments (in µB) and values of U’s (eV/µB) for dimers made of different adatoms:
MnFe- and FeCo dimers.

Mn/Fe Fe/Co

Md : projection model 3.85/2.74 2.78/1.64

Mtotal 4.23/3.06 3.13/1.82

-UDFT 0.89/0.94 0.94/0.95

-Usumrule 0.97/0.98 0.98/0.98

In Table I, the magnetic moments calculated with our projection scheme are shown and compared to the values that

follow from the full KKR treatment of the ground state. In the first line of Table I the moment which appears is the

contribution with d-like symmetry, since this is the portion built into our Ansatz for the Green function used to compute

the Khon-Sham susceptibility. It is interesting to note the substantial difference between the magnetic moments of two

adatoms in the dimer. It is the case here as for the single adatom, the U calculated from Eq. 46 understimates the value

of U needed to realize the Goldstone mode. From Eq. 47, we may deduce the value U, for each of the adatoms in the

dimer. We find

U1 =

m2z
m1z
χ120 − χ220

χ120 χ
21
0 − χ110 χ220

(49)

and

U2 =

m1z
m2z
χ210 − χ110

χ120 χ
21
0 − χ110 χ220

(50)

It is interesting that the sum rule gives similar values of U for both atoms in the dimer, and also that U is very close

to 1eV/µB. That this is so is very compatible with the conclusion of Ref.
25, which is based on an empirical study of

photoemission data on 3d transition metal ions in diverse environments.

The mapping to the previously defined Heisenberg model predicts a ferromagnetic ground state for both dimers investi-

gated. Indeed the magnetic exchange interaction is positive in both cases with JMnFe = 28.1 meV (Heisenberg frequency

31.6 meV) and JFeCo = 12.5 meV (Heisenberg frequency 21.7 meV). This indicates, as discussed above, that the imagi-

nary part of the dynamical magnetic susceptibility for every adatom should show a resonance at positive frequencies that

is the signature of the optical mode. In Fig. 5(a) and (b) we plot χ11 and χ22 respectively for the FeCo- and MnFe-dimer.

A most striking feature of the results displayed in Fig. 5 is that the peak positions in χ11 and χ22 occur at distinctly

different frequencies. This is particularly clear in Fig. 5(b), where the influence of damping is somewhat more modest

than in Fig. 5(a). We see that the peak in χFeFeoccurs at 30 meV, whereas that in χMnMn is distinctly downshifted to

27 meV.

This behavior is at variance with the Heisenberg description of the excitation spectrum of two well defined localized

spins. As we have seen, if we have two well defined, localized spins coupled together by the exchange interaction −J~e1 ·~e2,
the pair has two excited states associated with small amplitude motions, the acoustical mode at zero frequency (which

we see in Fig. 5) and the optical mode at the frequency 2J/S. Thus, the optical mode peak in the excitation spectrum

for each member of the dimer should be at exactly the same frequency, in this picture. While the oscillator strength of

each peak will differ, there is a unique excited state energy of the pair.

The shift in the peak positions evident in Fig. 5 is a consequence of the itinerant nature of the magnetic moments.

As each moment precesses, as we have seen, the motion is damped heavily by the coupling of the moment to the Stoner

excitations of the paramagnetic host. In the case of the FeMn dimer, the motions of the Fe spin are damped far more

heavily that those of the Mn spin, as we may appreciated from Fig.1(b) of Ref.21. This has the consequence that the

peak in ImχMnMn is dragged down to a frequency somewhat lower than that in ImχFeFe. We may see this by constructing
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FIG. 5: local Imχ for dimers with mixed adatoms are shown in (a) for FeCo dimer and in (b) for MnFe dimer. Eq. 47 based on
the sum rule derived in the text was used to define U. It is interesting to note the presence of resonances at positive frequencies

expressing a ferromagnetic ground state for both dimers. Within each dimer, the pics related to every adatom are not located
at the same position since the g-shift depends on the nature of the adatom.

a toy model that consists of two Heisenberg coupled spins, each of which is coupled to a reservoir that produces damping

α of the form encountered in the Landau-Lifschitz-Gilbert equation. The linearized equations of motion for this system

reproduces the offset in the peaks evident in Fig. 5(b). We illustrate this in Fig. 6 where Imχ11 and Imχ22 mimic the

imaginary parts of χMnMn and χFeFe. By increasing the strength of the damping parameter α2 compared to α1, we

observe a shift to lower energies of the optical mode in Imχ22 (i.e. ImχMnMn). it is striking to observe the completely

different shape of the optical mode of Mn-spin just by modifying a neighbor. Indeed, by comparing the optical mode

observed in ImχMnMn we observe also that it is much more heavily damped in the mixed dimer MnFe (Fig. 5(b)) than in
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for Mn and 2 for Fe) whose values are given in the inset.

the pure MnMn dimer (Fig. 4(b)). The physical reason behind this intriguing behavior is that in the MnFe configuration,

the Mn-spin during its precession feels the magnetic force of the heavily damped Fe-spin which provides more damping

on Mn. It would be of great interest to employ STM based spectroscopy to explore the response of the two spins in a

dissimilar dimer such as that just discussed.

VIII. CONCLUSION

We have developed and presented a theory based on TD-DFT and the KKR-GF method to extract dynamics magnetic

susceptibilities of moment bearing adatoms and adatom dimers on surfaces. In our method, the electronic structure is

described within an ab-initio scheme with KKR Green functions as the basis. Thus, no parameters need to be introduced,

as in studies that employ the empirical tight-binding method. As important feature of our approach is that it may be

implemented with a modest expenditure of computational effort. It is thus suitable for exploration of complex magnetic

structures on surfaces that contain several magnetic ions. In this paper, we illustrate the method with application to

magnetic dimers formed from either identical or dissimilar adatoms.

As discussed above, a difficulty with past TD-DFT studies of spin excitations not only on surfaces, but in bulk materials

as well is that the effective value of the Hubbard U which emerges from the standard approaches is not compatible with

the Goldstone theorem that guarantees that the low lying acoustical spin-excitation has zero frequency. This difficulty

has led others to make ad-hoc adjustments in the value of U. A feature of the present analysis is the introduction of a

sum rule from which proper values of this parameter emerge. This eliminates the need for ad-hoc adjustments. It should

be remarked that in simple systems, where the analysis can be phrased in terms of a single value of the effective U, it is

not difficult to insure satisfaction of the Goldstone theorem through an ad-hoc correction, though in our view this is an

unsatisfactory procedure that compromise the theory at the fundamental level. Additionally, for a multicomponent system,

the ad-hoc correction procedure becomes problematic in practice. As we see from our discussion of the dimer constructed

from two different magnetic ions, our sum rule approach is readily and easily implemented for multi-component systems.
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Appendix

In this appendix we provide a derivation of the useful identity presented in Eq. 6.

The Green function G(z) of a Hamiltonian operator H is defined by the operator equation

G =
1

z −H (51)

If no spin-orbit coupling and non-collinear magnetism are considered, the previous equation holds for every spin-channel

(↑ or ↓). Thus

G↑(↓) =
1

z −H↑(↓) (52)

In addition we have:

z −H↓ = z −H↑ +H↓ −H↑ (53)

that can be multiplyed from both sides from the left by (z −H↓)−1 and from the right by (z −H↑)−1. This leads to

1

z −H↑ =
1

z −H↓ +
1

z −H↓ (H
↓ −H↑) 1

z −H↑ (54)

i.e.

G↑ = G↓ + G↓Bef f G
↑ (55)

where we define Bef f = H
↓ −H↑.
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