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Abstract

Inhomogeneous dynamical mean-field theory is employed to calculate the vertex-corrected elec-

tronic charge transport for multilayered devices composed of semi-infinite metallic lead layers cou-

pled through a strongly correlated material barrier region. The barrier region can be tuned from

a metal to a Mott insulator through adjusting the interaction strength and the particle filling. We

use the Falicov-Kimball model to describe the barrier region because an exact expression for the

vertex corrections is known, allowing us to determine their effect on transport. The dc conductiv-

ity is calculated and we find the effects of the vertex corrections are relatively small, manifesting

themselves in a small reduction in the resistance-area product. This reduction saturates in absolute

magnitude as the barrier layer becomes thick, as expected due to the vanishing nature of the ver-

tex corrections in bulk. The vertex corrections have a larger relative effect on the resistance-area

product for more metallic and thinner devices.
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I. INTRODUCTION

As the characteristic length scales of electronic devices reach further into the nanometer

regime, quantum-mechanical effects give rise to novel properties and new devices. The

field of strongly correlated materials makes possible the calculation of various properties of

nanostructures. These calculations are motivated by the significant experimental activity in

multilayered nano-heterostructures1–3. New physical phenomena have been seen to emerge

in these heterostructures that are absent in the bulk materials they are composed from, like

the appearance of two-dimensional electron gases at the interfaces between band and Mott

insulators1 and their low temperature superconductivity2.

In our work, we construct strongly correlated electron nanostructures, with carefully

controlled quantum confinement effects. These theoretical nanostructure devices, are con-

structed from semi-infinite ballistic-metal leads that are coupled together through a barrier

region of strongly correlated material. We investigate the effect that the barrier region inho-

mogeneity has on the longitudinal charge transport through the multilayered nanostructures.

Unlike previous work4, that neglected the vertex corrections due to their vanishing nature in

the bulk5, we investigate the effects of including the vertex corrections in charge transport.

The vertex corrections vanish in the bulk due to the odd parity of the velocity operator

in momentum space and the even parity of the local irreducible vertex5. The arrangement

of the multilayers breaks the homogeneity of the system meaning this parity argument no

longer holds for longitudinal transport. Momentum is no longer a good quantum number

in the longitudinal direction, so one cannot change the sign of the momentum and classify

states according to their parity. Of course, for transport parallel to the planes, we have full

translational invariance, so the vertex corrections do vanish in dynamical mean field theory.

Recently, using different methods from our work, the importance of the vertex corrections in

the optical conductivity calculations of the single-band Hubbard model using the dynamical

cluster approximation has been investigated6, showing that as frequency and doping levels

increase, the vertex corrections play an increasingly important role. Their technique does

not require explicit calculation of the irreducible charge vertex, but instead they directly

calculate the optical conductivity. Additional work by V. Janǐs and V. Pokorný7 investi-

gated general properties of the vertex corrections to the electrical conductivity of electrons

scattered on random impurities. They found that the sign of the vertex corrections to the
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Drude conductivity is negative, which disagrees in sign, with the results presented in this

paper, although the system they investigate is different from ours. Our work is concerned

with the DC limit and investigates the effect the barrier thickness has on the vertex correc-

tions. Due to the vanishing nature of the vertex corrections in the bulk, when the barrier

is thick enough, it becomes bulk-like, so the vertex corrections stop having an effect, hence

the maximal impact of the vertex corrections will be localized to the interface regions.

The theoretical framework for this work is based on dynamical mean-field theory (DMFT)

which allows for self-consistent calculations of the properties of strongly correlated materials.

The DMFT formalism8 incorporates all forms of transport (except localization effects from

weak disorder), therefore we don’t have to make any a priori assumptions about the type of

transport in the device. We do make the assumption that the self energy is local within each

plane, but can vary from plane to plane. For the interaction, we use the Falicov-Kimball

model9 and employ the Potthoff-Nolting8 technique of a mixed basis for the Green’s functions

in solving the inhomogeneous DMFT. This involves stacking two dimensional homogeneous

x − y planes in a longitudinal z-direction (see Fig. 1), with hopping allowed only between

neighboring planes in the z-direction. We allow for inhomogeneity in the z-direction, but

preserve the translational invariance within each plane. This implies we can use momentum

in the x and y directions, but we must solve the problem in real space in the z-direction.

To begin, Fourier transform the x and y coordinates to wavevectors kx and ky, respec-

tively, but keep the z coordinate in real space. In our formalism, we represent the z co-

ordinate, which indicates the plane numbers, with Greek letters (α, β, γ,...). The Green’s

function then depends only on momentum through the two-dimensional band energy, so for

each two-dimensional band energy, we solve a quasi-one-dimensional problem that is repre-

sented tridiagonally in real space and can be solved with the quantum zipper algorithm4.

We iterate our many-body equations to achieve a self-consistent solution.

In the remainder of this paper, we will work through the mathematical formalism in Sec.

II. Section II also uses a Kubo formula for the electronic change transport including vertex

corrections in DMFT to find the dc conductivity matrix. We initially express the polar-

izability matrix on the imaginary-time axis, then we Fourier transform to the Matsubara

frequencies, we take the analytic continuation to the real axis, and finally take the limit of

the frequency as it goes to zero to find the dc-conductivity matrix and the resistance. In

Sec. III, we present our numerical results for various Falicov-Kimball interaction strengths
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FIG. 1. Schematic representation of the model, showing the stacking of homogeneous 2D layers

forming a 3D multilayer nanostructure. The figure shows a metal-barrier-metal junction with only

five metal layers on each side of the junction, although we can vary both the barrier and lead

thicknesses. In the work presented here, the actual number of metal lead planes is 30 on each side

and the number of barrier planes varies from one to fifty.

and barrier layer thicknesses. Finally, in Sec. IV we give our conclusions and remark on

possible future directions of research.

II. FORMALISM

To calculate the full electronic transport along the longitudinal direction (perpendicular

to the planes), we use a Kubo-Greenwood-based linear-response formalism10,11. We operate

in the steady state for current flow, with the charge density fixed as a function of time. A

constant charge density implies that the charge current is conserved throughout the device

because of the continuity equation. We also assume that temperature is a constant through-

out the device and there is no electronic charge reconstruction12 in our system, which is

realistic when both the leads and the barrier are at half-filling and their chemical potentials

match. The Kubo-Greenwood formula is based on the current-current correlation function

of the charge current operator. The charge current operator for the αth plane is the sum of
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all the current flowing longitudinally from the αth plane to the α + 1st plane,

jlongα = iaetαα+1

∑
i∈plane

(
c†α+1icαi − c

†
αicα+1i

)
ẑ, (1)

where tαα+1 is the hopping between the αth and α+1st plane and c†αi and cαi are the creation

and annihilation operators, respectively, for a conduction electron at lattice site i on plane

α. Note that the index i denotes the lattice site on each plane, a square lattice for this work,

and the planes are all aligned in registry so the longitudinal hopping is straight across each

plane from one equivalent site to the next equivalent site, i.e. the lattice sites are those of

a simple cubic lattice. The totally current operator is then jlong =
∑

α jlongα .

We consider a Hamiltonian that involves a hopping term for the electrons and an in-

teraction term for the sites within the barrier region. For the interaction in our numerical

calculations, we employ the Falicov-Kimball model9 which involves an interaction between

spinless conduction electrons and spinless localized electrons. When the conduction electron

hops onto a site occupied by the localized electrons it feel a Coulomb repulsion. When this

correlation strength is large enough, it has a Mott-like metal-insulator transition. In the

second quantization formalism, the spinless Falicov-Kimball Hamiltonian9 is,

H = −
∑
α

∑
i,j∈plane

tαijc
†
αicαj −

∑
α

∑
i∈plane

tαα+1

(
c†αicα+1i + c†α+1icαi

)
−µ
∑
α

∑
i∈plane

c†αicαi +
∑
α

∑
i∈plane

Uαc
†
αicαi

(
wαi −

1

2

)
, (2)

where tαij is the intraplane hopping between nearest neighbor sites on plane α, Uα represents

the interaction strength on plane α, and wαi is a classical variable that equals one if there

is a localized particle at site i on plane α and zero if there is no localized particle at site

i on plane α (a chemical potential µ is employed to adjust the total conduction-electron

concentration).

It is important to note that the following derivation does not depend on the Hamiltonian

used and can be thought of as a general result, until we explicitly state otherwise. We add

the perturbation,

H ′(t) = −
∑
α

jlongα ·Aα(t), (3)

to the Hamiltonian, to introduce the effect of the electric field. A(t) is the vector po-

tential, with the electric field written in the gauge where the scalar potential vanishes,
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Eα = −∂tAα(t) and units chosen so c = 1 (we also choose ~ = 1). The electric field, vector

potential, and charge current all are vectors in the longitudinal (z) direction only.

To calculate the charge transport, we must start by evaluating correlation functions in

imaginary time. To do so, we need to determine the Wick rotation for H ′(t) → H ′(τ).

Since the vector potential couples to the charge current, we take the vector potential on the

imaginary time axis to be periodic in β = 1/T , so it can be expressed as a Fourier series

in the bonsonic Matsubara frequencies Aα(τ) = T
∑

l exp[iνlτ ]Aαl with iνl = 2iπT l. The

current-current correlation function for the multilayer nanostructure is defined to be

Παβ(ivl) =

∫ β

0

dτeivlτ
〈
Tτ j
†long
α (τ)jlongβ (0)

〉
, (4)

with α and β being planar indices (not to be confused with the β in the integration

limit which is the inverse temperature) and Tτ denotes time ordering of operators. The

notation 〈X〉 denotes the trace, Tr exp(−βH)X divided by the partition function Z=

Tr exp(−βH), and the operators are expressed in the Heisenberg representation X(τ) =

exp(τH) X exp(−τH), all with respect to the equilibrium Hamiltonian H.

We calculate the current-current correlation function by taking the functional derivative

of the appropriate expectation value with respect to the vector potential. We will use Green’s

functions to express our results. Because we need to know the dependence of the Green’s

function on A, we need to define a two-time Green’s function in the presence of H +H ′(τ).

The Green’s function, in real space, is defined by

Gαβij(τ, τ
′;A) = −

〈
Tτcαi(τ ;A)c†βj(τ

′;A)
〉
, (5)

for imaginary time τ and τ ′. The extra notation “;A” is used to remind us that the

operators ciα and c†jβ evolve according to the full Hamiltonian H + H ′(τ) via Ô(τ ;A) =

U †(τ, 0) Ô U(τ, 0) with U(τ, 0) being the evolution operator with respect to H +H ′(τ); i.e.

∂τU(τ, 0) = [H+H ′(τ)]U(τ, 0). To properly express the Green’s functions for the Matsubara

frequencies we use a double Fourier transformation

Gαβ(iωn, iωm;A) = T

∫ β

0

dτ

∫ β

0

dτ ′eiωnτGαβ(τ, τ ′;A)e−iωmτ
′
. (6)

We do this because the perturbation j ·A(τ) causes the Green’s function to lose its time-

translational invariance. Note that after taking all relevant derivatives and algebraic manip-

ulations, we can express the Green’s functions in zero field, where Gαβ(iωn, iωm;A) ∝ δnm,
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and we write Gαβ(iωn) because the limiting form of the Green’s function in Eq. (5) depends

only on τ − τ ′ in equilibrium as A(τ)→ 0.

To build our model, we need to solve for the local Green’s function on each plane,

which we do by employing the quantum “zipper” algorithm4, based on the Potthoff-Nolting

formalism8. When solving for the local Green’s functions, we use the symbol Z to represent

a general variable in the complex plane. Typically Z takes the form of the fermionic Mat-

subara frequencies, Z = iωn or the analytic continuation to the real axis with iωn → ω±i0+.

We start with the unperturbed equation of motion (EOM), for equilibrium, where Aα = 0,∑
γ

Gγβ(Z; k||)
[(
Z + µ− εαk||

)
δγα + (tα−1αδγα−1 + tα+1αδγα+1)− Σα(Z)δγα

]
= δαβ, (7)

where the two-dimensional band structure is εα
k|| = −2tα [cos kx + cos ky], k|| = (kx, ky, 0)

is the transverse momentum, δαβ is the Kronecker delta function, and Σα(Z) is the local

self-energy on plane α. Note that from this point on we will use the simplification that the

hopping matrix elements are equal to t for all nearest neighbors (interplane and intraplane),

tα+1α = tα−1α = tαij = t and vanish otherwise. Since the EOM has a tridiagonal form

with respect to the spatial component, it can be solved with the so-called renormalized

perturbation expansion13. We solve the equation directly, for the β = α case via

Gαα(Z; k||) =
1

Z + µ− Σα(Z)− εk||α + Gα−1α(Z;k||)

Gαα(Z;k||)
t+ Gαα+1(Z;k||)

Gαα(Z;k||)
t
. (8)

We create left and right recursion relations,

Lα−n(Z; k||) = Z + µ− Σα−n(Z)− εk|| +
t2

Lα−n−1(Z; k||)
, (9)

and

Rα+n(Z; k||) = Z + µ− Σα+n(Z)− εk|| +
t2

Rα+n+1(Z; k||)
(10)

respectively. We start these relationships with the bulk values (n→ ±∞), which give us

L−∞(Z; k||) =
Z + µ− Σ−∞(Z)− εk||

2
±
√

[Z + µ− Σ−∞(Z)− εk|| ]2 − 4t2 (11)

and

R∞(Z; k||) =
Z + µ− Σ∞(Z)− εk||

2
±
√

[Z + µ− Σ∞(Z)− εk|| ]2 − 4t2. (12)

The signs in the previous two equations are chosen to yield an imaginary part less than zero

for Z lying in the upper half plane, and vice versa for Z lying in the lower half plane. The
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self-energies (Σ±∞) vanish for the ballistic metal leads used here. Employing these recursive

relationships, we can solve the diagonal, α = β, and off-diagonal terms, (α 6= β), using the

relations

Gαα−n(Z; k||) = −Gαα−n+1(Z; k||)t

Lα−n(Z; k||)
(13)

and

Gαα+n(Z; k||) = −Gαα+n−1(Z; k||)t

Rα+n(Z; k||)
, (14)

which are defined for n > 0. In addition, one needs to note that the following identity holds:

Gαβ(Z; k||) = Gβα(Z; k||), by interchanging planar subscripts in the EOM, solving for the

new recursion relationships, and showing they are the same as the above.

We need to express the current-current correlation function in a form where we can use

the local Green’s functions for each plane. We begin by using Green’s functions to evaluate

the expectation value of the current-current correlation function in Eq. (4),

Παβ(ivl) =
∑
mn

∑
k||

iaet

[
δGββ+1

(
iωm, iωn; k||;A

)
δAα,−l

−
δGβ+1β

(
iωm, iωn; k||;A

)
δAα,−l

]
, (15)

where δ denotes a functional derivative. After employing the identity

Gαβ(iωn, iωm;A) =
∑
m′n′

∑
γδ

Gαγ(iωn, iωm′ ;A)G−1
γδ (iωm′ , iωn′ ;A)Gδβ(iωn′ , iωm;A), (16)

we have

Παβ(ivl) =
∑

mnm′n′

∑
k||

∑
γδ

iaet
δG−1

γδ

(
iωm′ , iωn′ ; k

||;A
)

δAα,−l[
Gβγ

(
iωm; k||

)
Gδβ+1

(
iωn; k||

)
−Gβ+1γ

(
iωm; k||

)
Gδβ

(
iωn; k||

)]
δmm′δnn′ . (17)

Note that we replaced Green’s functions that have no derivative with respect to the vector

potential by their zero field values as is done in the Kubo-Greenwood formula.

Calculating the functional derivative of the inverse of the Green’s function is easier then

calculating the functional derivative of the Green’s function itself. We find the inverse of the

Green’s function by examining the EOM for the Green’s function in a field, a generalization

of Eq. (6) to include two-time dependence and the vector potential, yielding∑
γ

∑
m′

Gγδ(iωm′ , iωn; k||;A)
[(
iωm + µ− εαk||

)
δαγδmm′ + (tδγα−1 + tδγα+1) δmm′

−Σα(iωm, iωm′)δαγ + iaetTAα,lδγα+1δm′m+l −iaetTAα−1,−lδγα−1δm′m+l] = δαδ, (18)
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with G−1(iωm, iωm′ ; k
||;A) being the terms inside the brackets. Taking the functional deriva-

tive of G−1(iωm, iωm′ ; k
||;A) with respect to Aα,−l, only three terms have nonzero derivative;

resulting in

δG−1
γδ

(
iωm′ , iωn′ ; k

||;A
)

δAα,−l
= −

∑
m′′n′′

δΣγ (iωm′ , iωn′ ;A)

δGγγ (iωm′′ , iωn′′ ;A)

δGγγ (iωm′′ , iωn′′ ;A)

δAα−l

+iaeT (tδδγ+1δαγ − tδδγ−1δα+1γ) δm′+l,n′ . (19)

Evaluating the Green’s functions in zero field [G
(
iωn′ , iωn; k||

)
∝ δnm] and noting that

any Green’s function that does not have a derivative acting on it can be replaced by it’s

(diagonal) zero-field value, the current-current correlation function becomes

Παβ(ivl) = a2e2t2T
∑
m

∑
k||

[
Gβα

(
iωm; k||

)
Gα+1β+1

(
iωm+l; k

||)

+Gβ+1α+1

(
iωm; k||

)
Gαβ

(
iωm+l; k

||)−Gβα+1

(
iωm; k||

)
Gαβ+1

(
iωm+l; k

||)
−Gβ+1α

(
iωm; k||

)
Gα+1β

(
iωm+l; k

||)]
+iaet

∑
mnm′′n′′

∑
k||

∑
γδ

[
Gβγ

(
iωm; k||

)
Gγβ+1

(
iωn; k||

)

−Gβ+1γ

(
iωm; k||

)
Gγβ

(
iωn; k||

)] δΣγ (iωm, iωn;A)

δGγγ (iωm′′ , iωn′′ ;A)

δGγγ (iωm′′ , iωn′′ ;A)

δAα,−l
. (20)

The second term on the right hand side is the vertex correction which disappears in the bulk

due to parity arguments, but here is nonzero. The functional derivative of Σ with respect

to G is proportional to the irreducible charge vertex.

It is worth nothing again that up until this point we have not made use of the Falicov-

Kimball model. Hence, the formalism is independent of the model used (periodic Anderson,

Falicov-Kimball, Hubbard, etc.). The Falicov-Kimball model is now explicitly used because

the result for the irreducible charge vertex Γ is known to be14,

Γγ (iωm, iωn) =
1

T

δΣγ (iωm, iωn;A)

δGγ (iωm′′ , iωn′′ ;A)
=

1

T

Σγ(iωm)− Σγ(iωn)

Gγ(iωm)−Gγ(iωn)
δmm′′δnn′′ , (21)

in the limit of vanishing field. The delta functions on the frequencies are specific to the

Falicov-Kimball model, other models will have more complicated formulas than what we

develop below.

9



Substituting this expression and Eq. (19) into Eq. (20) we are left with the full equation

for the current-current correlation function on the imaginary frequency axis:

Παβ(ivl) = e2a2t2T
∑
m

{∑
k||

[
Gβα

(
iωm; k||

)
Gα+1β+1

(
iωm+l; k

||)
+Gβ+1α+1

(
iωm; k||

)
Gαβ

(
iωm+l; k

||)−Gβα+1

(
iωm; k||

)
Gαβ+1

(
iωm+l; k

||)
−Gβ+1α

(
iωm; k||

)
Gα+1β

(
iωm+l; k

||)]
+
∑
γδ

(∑
k||

[
Gβγ

(
iωm; k||

)
Gγβ+1

(
iωm+l; k

||)−Gβ+1γ

(
iωm; k||

)
Gγβ

(
iωm+l; k

||)]
× Σγ(iωm)− Σγ(iωm+l)

Gγ(iωm)−Gγ(iωm+l)

×

[
δγδ −

∑
k̄||

Gγδ(iωm; k̄||)
Σδ(iωm)− Σδ(iωm+l)

Gδ(iωm)−Gδ(iωm+l)
Gδγ(iωn; k̄||)

]−1

γδ

×
∑
¯̄k
||

[
Gδα(iωm; ¯̄k

||
)Gα+1δ(iωm+l;

¯̄k
||
)−Gδα+1(iωm; ¯̄k

||
)Gαδ(iωm+l;

¯̄k
||
)
] , (22)

where k||, k̄||, ¯̄k
||

are all transverse momenta in two-dimensions and the inverse denotes a

matrix inversion with respect to the planar indices γ, δ of the matrix defined in the brackets.

To calculate the electronic charge transport we need the real-axis response. This is

found by performing an analytic continuation from the imaginary to the real frequency

axis15. We rewrite the Matsubara summations using contour integrations in the standard

way that encircles all the simple poles corresponding to the Matsubara frequencies. The

contour integrals have contributions at the poles of the Fermi-Dirac distribution [f(ω) =

1/(1 + exp(βω))] which lie at the fermionic Matsubara frequencies, iωn = iπT (2n + 1)

(the residue of the pole is −T ). The contours are then deformed to lines parallel to the

real axis and the Green’s functions are evaluated with either retarded or advanced functions

depending on the argument and the regions of analyticity (since the functions are all analytic,

there are no additional poles). We then set the Fermi-Dirac function at ω − ivl equal to

f(ω) before analytical continuing the ivl frequency to the real axis. Finally, we continue ivl

to v+ iδ and shift the ω+ v → ω in relevant integrals to obtain the real axis current-current

correlation function.

To find the dc conductivity, we need to take the limit as the frequency v goes to zero of
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the polarization,

σαβ(0) = lim
v→0

Re
i
∏

αβ(v)

v
. (23)

The final result is obtained after a lengthy algebraic manipulation focused on rearranging

the α and β labels and explicitly writing out the real and imaginary parts, Re(Z) = Z+Z∗

2

and Im(Z) = Z−Z∗

2i
, and expanding the paired terms. We also use the fact that Gαβ = Gβα

to arrive at our final expression for the dc-conductivity,

σαβ(0) =
e2a2t2

π

∫
dω

(
−∂f(ω)

∂ω

){∑
k||

[
ImGβα(ω; k||)ImGα+1β+1(ω; k||)

+ImGβ+1α+1(ω; k||)ImGαβ(ω; k||)− ImGβα+1(ω; k||)ImGαβ+1(ω; k||)

−ImGβ+1α(ω; k||)ImGα+1β(ω; k||)
]

+
∑
k||

Im
[
G∗βγ(ω; k||)Gγβ+1(ω; k||)

]
× ImΣγ(ω)

ImGγ(ω)

[
δγδ −

∑
k̄||

G∗γδ(ω; k̄||)
ImΣδ(ω)

ImGδ(ω)
Gδγ(ω; k̄||)

]−1

γδ

×
∑
¯̄k
||

Im
[
G∗δα(ω; ¯̄k

||
)Gα+1δ(ω; ¯̄k

||
)
] . (24)

In numerical calculations, since the k dependence is always through ε2dk , we replace all

momentum summations by integrals over the 2-d DOS. Note that one can also arrive at

Eq. (24) by using the general analytic continuation formulas in Ref. 16.

Given the conductivity matrix, we can extract the resistance of the multilayer nanos-

tructure. This is done by relating the electric field and the expectation value of the planar

current density in linear response and utilizing Ohm’s law, giving the resistance-area per

unit cell product of the nanostructure

Rna
2 =

∑
αβ

[σ(0)]−1
αβ . (25)

Note that it is the resistance Rn that is extracted from these calculations, not the resistivity.

Since the system is inhomogeneous, we do not have the appropriate geometrical factors to

convert resistance into the resistivity as one can do in a homogeneous system.

The full algorithm for our work using dynamical mean-field theory can now be summa-

rized. We start with the self-consistent iterative algorithm outlined in Ref. 4 to calculate

the self-energies and diagonal Green’s function on all planes (Gαα). We use a similar parallel
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approach exploiting the fact that the frequencies are completely independent of each other,

to calculate the Green’s functions at different frequencies on different processors. After cal-

culating the diagonal Green’s functions, we use Eqs. (13) and (14) to calculate all of the

off-diagonal Green’s functions. Once all of the Green’s functions have been calculated we

can use them in Eq. (24), noting that at half filling, the temperature dependence only enters

into the Fermi factor derivative, allowing for us to calculate the temperature dependence

of σαβ(0) without having to recalculate the Green’s functions, though all numerical results

presented here will be at one temperature.

III. RESULTS

We perform our calculations at half-filling (µ = 0, 〈c†ici〉 = 1/2, and w1 = 〈wi〉 = 1/2).

This has a number of advantages. First, because the chemical potential is the same for

the metallic leads and the barrier, the filling remains homogeneous throughout the system

and there is no electronic charge reconstruction. Second, the chemical potential is fixed as

a function of temperature (µ = 0), so we don’t have to recalculate the chemical potential

as the temperature is changed. We carry out our calculations on a simple cubic lattice

allowing for nearest neighbor hopping only (interplane and intraplane hopping are equal).

This allows us to reduce the number of parameters that we vary for our calculations and

focus on the physical properties. In our calculations, we also include 30 self-consistent planes

in the metallic leads both to right and left of the barrier, which we vary in thickness between

1 and 50 planes.

We vary the Falicov-Kimball interaction strength (U) through its metal-insulator transi-

tion, which for our simple cubic lattice occurs at U = 2
√

6 ≈ 4.92. We plot the resistance-

area product versus thickness for four different U values (Fig. 2): U = 1 and U = 2, in

the diffusive metal regime; U = 4, a strongly scattering, anomalous metal; U = 6, a Mott

insulator with a small correlation-induced gap. These plots are both for vertex-corrected

and non vertex-corrected expressions for the conductivity matrices. The plots in Fig. 2

show the expected behavior; for U = 1, U = 2, and U = 4, all show an Ohm’s law lin-

ear scaling of resistance with thickness, characteristic of diffusive metals, with a nonzero

intercept denoting the non-vanishing contact resistance associated with the metallic leads.

Additionally, the resistance-area product for the Mott insulator, U = 6 grows exponentially

with thickness due to its tunneling behavior. Note that the vertex corrections hardly have
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FIG. 2. (Color online) Resistance-area product for nanostructures with U = 1, 2, 4, and 6, and

various thicknesses. Panel (a) is a semilogarithmic plot, while panel (b) is a linear plot. The

temperature is T = 0.01 in both panels. Note how the correlated insulator (U = 6) has an

exponential growth with thickness as expected4 for a tunneling process at low enough temperature,

while the metallic cases (U = 1, 2, and 4) have nearly perfect linear scaling. The values with

(symbols) and without (lines) the vertex correction are indistinguishable on the scale of the graphs.

any effect on the behavior in either regime.

There are a number of numerical details that need to be discussed. We need to ensure

that at low energies the properties of the nanostructures are accurately determined, which

becomes increasingly difficult as we examine thicker Mott insulators and therefore requires

more computational power. Due to these limitations, we limit our thickness for various

interaction strengths, U = 1 up to 50 layers, U = 2 up to 30 layers, U = 4 up to 20 layers,

and U = 6 up to 15 layers. To accurately calculate the sharp frequency dependence of

the self-energy, we use a step size as fine as 0.001 for the frequency grid and up to half a

million points for the integration over the two-dimensional DOS. The combination of the

exponential growth of the resistance-area product when U = 6 and the inherent numerical

accuracy we achieve makes it difficult to extract the difference between vertex corrected and

non vertex corrected results for thicker barriers.

In Fig. 3, we plot the difference between the vertex-corrected and non vertex-corrected

13



FIG. 3. (Color online) Difference between vertex-corrected and non vertex-corrected resistance val-

ues as a function of barrier thickness. Panel (a) shows the difference between values of the resistance

for various interaction strengths, U , showing that the difference grows with an increase in barrier

width until it plateaus at a saturation value that decreases as the interaction strengths increases

towards the metal-insulator transition value. Panel (b) shows the percentage difference between

vertex-corrected and non vertex-corrected resistance values [(Rno vertex−Rvertex)/Rno vertex×100].

Note how the lower the interaction strength is, the thicker the barrier must be before the saturation

is reached, indicated by the flat region in panel (a).

terms to examine the effects of vertex corrections on various thicknesses. As expected the

vertex corrections are relatively small and as the thickness increases the vertex corrections

saturate in magnitude. This saturation is because as the thickness increases the barrier

approaches the bulk limit, and in the bulk the vertex corrections vanish. Therefore the

effect of vertex corrections lies primarily in the interface region and they disappear as you

move away from interface and into the “bulk”, part of the barrier, which dominates for

thicker barriers.

IV. CONCLUSIONS

In this work, we used inhomogeneous DMFT to calculate the electronic dc charge trans-

port, including the effect of vertex corrections in the Falicov-Kimball model. We used a
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Kubo-Greenwood formula to derive the dc conductivity matrix, using the exact expression

for the vertex corrections, known for the Falicov-Kimball model. Although we only applied

the vertex corrections to the Falicov-Kimball model, the results up to Eq. (20) hold for any

general model. Therefore, the theory can be extended to other models if the corresponding

irreducible vertex can be found. We can easily modify the model by adding mean-field-

like interactions such as Zeeman splitting for magnetic systems, and use whatever impurity

solver is desired to calculate the local Green’s functions on each plane.

In addition to changing the general model, there are a number of transport effects and

model modifications that could yield interesting results beyond what is presented in this

paper. We showed that vertex corrections play a small role in dc conductivity but did

not investigate transport outside the dc limit. We also neglected charge reconstruction17,18

at the interface and by performing the calculations off of half-filling one could introduce

temperature dependence to the chemical potential. Finally, by breaking the particle-hole

symmetry one could investigate the effect of vertex-corrections in thermal transport. But in

all cases, we expect the vertex corrections to be small for the same reasons they are small

here.

By varying the barrier thickness, we see the effects the vertex corrections play as we go

from the single barrier layer limit to the bulk limit. In Figure 3, we see that the vertex

corrections make a small relative change to the dc conductivity saturates as the barrier

thickness increases towards the bulk. We also see that vertex corrections become relatively

smaller as the Falicov-Kimball interaction strength increases. Hence, the effect of the vertex

corrections are small enough that they probably do not need to be included in an inhomo-

geneous DMFT calculation for longitudinal transport. Since the thermal transport arises

from the Jonson-Mahan Theorem16 vertex corrections also should not affect the thermal

transport much.
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