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We analyze how the coherence peaks observed in Scanning Tunneling Spectroscopy (STS) of
cuprate high temperature superconductors are transferred from the cuprate layer to the oxide layers
adjacent to the STS microscope tip. For this purpose, we have carried out a realistic multiband cal-
culation for the superconducting state of Bi2Sr2CaCu2O8+δ (Bi2212) assuming a short range d-wave
pairing interaction confined to the nearest-neighbor Cu dx2−y2 orbitals. The resulting anomalous
matrix elements of the Green’s function allow us to monitor how pairing is then induced not only
within the cuprate bilayer but also within and across other layers and sites. The symmetry properties
of the various anomalous matrix elements and the related selection rules are delineated.

PACS numbers: 68.37.Ef 71.20.-b 74.50.+r 74.72.-h

I. INTRODUCTION

Scanning tunneling spectra (STS) of the cuprates1–5

clearly show the presence of superconducting gaps and
the associated coherence peaks. The ‘leaking’ of super-
conductivity from the cuprate layers into the oxide lay-
ers is a form of proximity effect6–8. A recent STS study9

finds that the magnitude of the superconducting gap or
the pseudogap is not solely determined by the local dop-
ing, but is also sensitive to the nearby nanoscale sur-
roundings, raising the broader question as to how super-
conductivity is transfered across various orbitals/sites in
the cuprates.10 In this connection, we have recently de-
veloped a Green’s function based methodology for carry-
ing out realistic computation of scanning tunneling mi-
croscopy/spectroscopy (STM/STS) spectra in the nor-
mal as well as the superconducting state of complex ma-
terials, where the nature of the tunneling process, i.e., the
effect of the tunneling matrix element is properly taken
into account. In our approach, all relevant orbitals in the
material are included in a multi-band framework, and the
tunneling current is computed directly for a specific tip
position on the semi-infinite surface of the solid. An ap-
plication to the case of overdoped Bi2212 was reported in
Refs. 11 and 12, where it was shown, for example, that
the striking asymmetry of the STS spectrum between
high positive and negative bias voltages arises from the
way electronic states in the cuprate layer couple to the
tip: With increasing negative bias voltage, new tunneling
channels associated with dz2 and other orbitals begin to
open up to yield the large tunneling current. The asym-
metry of the tunneling current at high energies could thus
be understood naturally within the conventional picture,

without the need to invoke exotic mechanisms. Results
of Refs. 11 and 12 show clearly that the STS spectrum is
modified strongly by matrix element effects as has been
shown previously for angle-resolved photoemission13, res-
onant inelastic x-ray scattering14, and other highly re-
solved spectroscopies.15–17.

The STM/STS modeling in Refs. 11 and 12 is based
on invoking the common assumption that the pairing in-
teraction in cuprates is d-wave, involving nearest neigh-
bor dx2−y2 orbitals of Cu atoms. Nevertheless, our com-
puted STS spectrum reproduces, in accord with exper-
imental observations, the superconducting gap and co-
herence peaks at the position of the tip, even though the
tip is not in direct contact with the cuprate layer. Our
STS modeling scheme thus provides a natural basis for
examining how the pairing interaction, which is limited
to nearest-neighbor Cu dx2−y2 orbitals in our underlying
Hamiltonian, gets transferred to other layers and sites.

This article attempts to address these and related is-
sues with the example of overdoped Bi2212. Central to
our analysis is the concept of tunneling channels, which
allows us to identify the contribution to the total tun-
neling current from individual sites/orbitals in the semi-
infinite solid. Moreover, we can distinguish between regu-
lar and anomalous contributions to the tunneling signal,
which arise from the corresponding matrix elements of
the Nambu-Gorkov Green’s function tensor. The anoma-
lous channels are physically related to the formation and
breaking up of Cooper pairs. In particular, matrix ele-
ments of the anomalous Green’s function can be used to
monitor the contribution to the coherence peaks in the
STS spectrum resulting from specific orbitals/sites in the
material. In this way, we delineate how the pairing ampli-
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FIG. 1: (Color online) Theoretical (green) STS spectrum nor-
malized as shown in the figure is compared with the experi-
mental (dashed blue) spectrum2 in optimally doped Bi2212.
Regular (red) and anomalous (turquoise) parts of the com-
puted spectrum are shown separately. All computations are
based on Eq. (6). Coherence peaks arise only from the
anomalous component of the Green’s function.

tude travels from the nearest-neighbor Cu-sites to other
sites and orbitals within the cuprate plane as well as out-
side to the second cuprate plane and to the BiO/SrO lay-
ers. The symmetry properties of various matrix elements
are analyzed and related selection rules are worked out.

An outline of this article is as follows. The introduc-
tory remarks are followed in Section II with an overview
of the relevant methodological details of the underlying
Hamiltonian and of our STS formalism. Section III dis-
cusses proximity effects and is divided into several sub-
sections, which address pairing amplitudes in various lay-
ers. Section IV discusses selection rules and issues related
to the symmetry of the gap through an analysis of the
anomalous matrix elements. It is divided into consid-
eration of on-site cases where the pairing orbitals lie at
the same horizontal position, and to cases where these
orbitals lie at other sites in the lattice. Finally, Section
V presents a concluding discussion and a summary of
our results. The added Appendix clarifies the symme-
try properties of the regular matrix elements, which play
an important role in the analyis of the symmetry of the
anomalous matrix elements of the Green’s function.

II. DESCRIPTION OF THE MODEL

The model underlying our analysis is the same as in
Ref. 12 to which we refer for details. An overview is nev-
ertheless presented for completeness, and to introduce
the various quantities needed for the present study. The
Bi2212 sample is modeled as a slab of seven layers ter-

minated by the BiO layer, which is followed by layers of
SrO, CuO2, Ca, CuO2, SrO, and BiO.18–20 The tunneling
current is computed using a 2

√
2×2

√
2 real space super-

cell consisting of 8 primitive surface cells with a total of
120 atoms. The crystal structure is taken from Ref. 21.
The STM tip is modeled as an s-orbital lying at the apex
of the tip. The electron and hole orbitals included in the
computations are: (s, px, py, pz) for Bi, Ca and O; s for
Sr; and (4s, d3z2−r2 , dxy, dxz, dyz, dx2−y2) for Cu atoms.
This yields 2×58 electron (spin up) and hole (spin down)
orbitals in the primitive unit cell, or a total of 2×464 or-
bitals in the simulation supercell. The Green’s function
is computed using 256 equally distributed k-points in the
supercell which corresponds to 8 × 256 = 2048 k-points
in a primitive cell.

The multiband Hamiltonian in which superconductiv-
ity is included by adding a pairing interaction term ∆
is22–24

Ĥ =
∑

αβσ

[

εαc†ασcασ + Vαβc†ασcβσ

]

+
∑

αβσ

[

∆αβc†ασc†β−σ + ∆†
βαcβ−σcασ

] (1)

with real-space creation (annihilation) operators c†ασ (or
cασ). Here α is a composite index identifying both the
type of orbital and its site, and σ is the spin index. εα

denotes the on-site energy of the αth orbital, and Vαβ is
the hopping integral between the α and β orbitals. The
hopping parameters are chosen to reproduce the LDA
bands.25–29

In the mean field approximation, the coupling between
electrons and holes is of the form

∆αβ =
∑

ab

Uαβab〈ca↓cb↑〉. (2)

Since the interaction U is not known, the standard prac-
tice is to introduce a gap parameter, which gives the cor-
rect gap width and symmetry30. Specifically, we take
∆ to be non-zero only between the dx2−y2 orbitals of
the nearest neighbor Cu atoms, and to possess a d-
wave form, i.e., ∆d(d±x) = +|∆| and ∆d(d±y) = −|∆|,
where d denotes the dx2−y2 orbital at a chosen site, and
d ± x/y the dx2−y2 orbital of the neighboring Cu atom
in x/y-direction.31 This form allows electrons of oppo-
site spins to combine to produce superconducting pairs
such that the resulting superconducting gap is zero along
the nodal directions kx = ±ky, and is maximum along
the antinodal directions. The gap parameter value of
|∆| = 45meV is chosen to model a typical experimental
spectrum2 for our illustrative purposes.32,33

We discuss pairing between different orbitals in terms
of the tensor (Nambu-Gorkov) Green’s function G (see,
e.g., Ref. 34)

G =

(

Ge F
F † Gh

)

where Ge and Gh denote the electron and hole Green’s
function, respectively.



3

The following expressions for the pairing amplitudes in
a tight-binding basis, which are derived in Ref. 12, are
especially relevant for our analysis.

〈cα↓cβ↑〉 =

∫

dε[1 − 2f(ε)]ρeh
αβ(ε), (3)

where the density matrix is

ρeh
αβ(ε) = − 1

π
Im[F+

αβ(ε)].

Here, F+
αβ(ε) can be solved by using the tensor form of

Dyson’s equation for the retarded Green’s function. Sim-
ilarly,

〈c†α↑c
†
β↓〉 =

∫

dε[1 − 2f(ε)]ρeh†
βα (ε). (4)

Eqs. (3) and (4) reveal the relationship between the
anomalous part of the Green’s function tensor and the
pairing amplitudes between various sites. In particular,
symmetry properties of Fαβ are seen to be related di-
rectly to those of 〈cα↓cβ↑〉.

The tunneling spectrum is computed by using the
Todorov-Pendry expression35,36 for the differential con-
ductance σ between orbitals of the tip (t, t′) and the sam-
ple (s, s′), which in our case can be written as

σ =
dI

dV
=

2πe2

h̄

∑

tt′ss′

ρtt′(EF )Vt′sρss′(EF +eV )V †
s′t. (5)

Since electrons are not eigenparticles in the presence
of the pairing term, the density matrix can be rewritten
by applying the tensor form of Dyson equation12:

ρss′ = − 1

π

∑

α

(G+
sαΣ′′

αG−
αs′ + F+

sαΣ′′
αF−

αs′), (6)

where Σ′′
α is the imaginary part of self-energy.37,38 The

left-hand side of Eq. (6) is the ordinary density matrix for
electrons, which is equivalent to the traditional Tersoff-
Hamann approach39. However, as discussed in Ref. 12,
our decomposition of the spectrum into tunneling chan-
nels in Eq. (6) provides a powerful way to gain insight
into the nature of the STS spectrum, especially in com-
plex materials.40,41 Note that the right side of Eq. (6)
contains terms originating from the anomalous part of
the Green’s function. In Ref. 12 we showed that coher-
ence peaks appear only through the matrix elements of
the anomalous Green’s function. This role of the anoma-
lous terms is demonstrated in Fig. 1, where we see that
the coherence peaks are absent in the partial spectrum
resulting from the regular terms of the Green’s function
(red curve).

III. INTERLAYER AND INTRALAYER
PROXIMITY EFFECTS

In this section, we analyze the induced pairing am-
plitude 〈cα↓cβ↑〉 for a representative set of orbitals. It

will be seen that despite the short range of the pairing
interaction ∆αβ , the anomalous Green’s function, Fαβ ,
possesses a longer range. More specifically, we delineate
induced pairing effects as follows: (i) Within a CuO2 bi-
layer (Fig. 2(a)); (ii) Intra-layer pairing in SrO and BiO
layers (Fig. 2(b)); and (iii) Interlayer pairing between
CuO2 and SrO/BiO layers (Fig. 2(c)). We discuss each
of these cases in turn below with reference to Fig. 2 and
Table I.

label orbital atom layer

0 dx2−y2 Cu (c) CuO2 (1st)

1 dx2−y2 Cu (nn) CuO2 (2nd)

2 dx2−y2 Cu (nn) CuO2 (2nd)

3 dz2 Cu (c) CuO2 (1st)

4 dz2 Cu (nn) CuO2 (1st)

5 pz O (c) SrO

6 pz O (nn) SrO

7 pz Bi (c) BiO

8 pz Bi (nn) BiO

9 px O (b) CuO2 (1st)

TABLE I: Shorthand notation used for the indices α and β
in Fig. 2 is defined. For each of the indices, varying from
0 to 9, the table gives the atomic site [central (c), nearest
neighbor (nn) and bonding (b)], the orbital and the layer
involved. Order of the layers is: BiO, SrO, CuO2 (1st) and
CuO2 (2nd), where BiO is the termination layer which lies
closest to the STM tip.

A. Pairing within CuO2 bilayer

The most important anomalous matrix elements
within the CuO2 bilayer are shown in Fig. 2(a). The
red curve gives the contribution F01 from dx2−y2 orbitals
of two neighbouring Cu atoms in the x-direction, i.e., the
matrix element between a spin up electron orbital at a
Cu-site and a spin down hole orbital at the neighbour-
ing Cu-site. This is the principal pairing matrix element
since in our model ∆αβ is non-zero only between two such
orbitals.

The matrix element between the dx2−y2 orbitals of two
Cu atoms at the same horizontal position within the
CuO2 bilayer is zero by symmetry. However, the matrix
element F02 between a Cu atom in the upper layer and
each of the four neighbouring Cu atoms of the lower layer
(and vice versa) is seen from Fig.2(a) to be substantial
with an amplitude which is about 1/4th of F01. This re-
sult shows that pairing is not restricted to dx2−y2 orbitals
within a single CuO2 layer, i.e. it is not two-dimensional
but extends vertically within the bilayer.

The dz2 orbital of Cu also plays an important role.
In fact, this orbital serves as a kind of gate for passing
tunneling current from the cuprate layers to the SrO and
BiO layers. Fig. 2(a) shows that the amplitude F34 is
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FIG. 2: (Color online) Imaginary part of the matrix elements of the anomalous Green’s function Fαβ for various (αβ) pairs.
[Recall that α and β are composite indices denoting both site and orbital.] Meaning of values of α and β, which range from
0 to 9, is explained in Table 1. For example, index 0 refers to the dx2−y2 orbital on the central Cu atom in the cuprate plane
nearest to the STM tip, and index 1 to the dx2−y2 orbital on nearest neighbor Cu atom in the same cuprate plane. The main
matrix element between the two preceding orbitals, i.e., the (01) element, is shown by red lines for reference in all panels. Other
matrix elements are shown scaled by factors ranging from 2-20 as indicated in the legends. Symmetries of the orbitals involved
in various cases are shown schematically in the upper right hand side portions of the figures. Matrix elements compared with
(01)(red) are: (a) (02) (green), (34) (dashed blue) and (99) (dotted black) for pairing within a CuO2 bilayer; (b) (56) (green)
and (78) (dashed blue) for intralayer pairing in SrO and BiO layers; and (c) (03) (dotted black), (05) (green) and (07) (dashed
blue) for pairing of CuO2 along the line connecting the central Cu and the surface Bi.

about 1/5th of F01 and comparable to F02. There is
also a smaller (about 1/5th of F34) rotationally invariant
matrix element F04 (not shown in Fig. 2) between the
dz2 of a central Cu and the dx2−y2 orbitals of the four
neighbouring Cu atoms. At first sight this seems to break
the d-wave symmetry, but we will show below that the
combined symmetry of the orbitals involved remains d-
wave42.

The role of O-atoms in the cuprate layers can be de-
lineated through the matrix elements F99 and F09. In
Fig. 2(a) we show the onsite matrix element F99, which
is about 1/4th of the F01 term. We observe that in real
space rotations of π/2 around the central Cu, F99 changes
it sign. A smaller contribution is found for F09 (not
shown in Fig. 2). Its symmetry properties are consis-
tent with the symmetry of the Zhang-Rice singlet, where
a local orbital is constructed as a linear combination of
the four oxygen atoms around the central Cu. The sym-
metry analysis of Section IV below shows that both F99

and F09 are also consistent with the d-wave symmetry.

Finally, we note that there is a substantial term, F03,
between the dz2 and dx2−y2 orbitals of the same Cu atom,
which is perhaps surprising. Fig. 2(c) shows that this
pairing amplitude is about half of F01. Since this is an
onsite term, the d-wave symmetry again follows from the
combined symmetry of the two orbitals, as discussed in
Section IV below.

B. Intralayer pairing within SrO and BiO layers

In considering intralayer pairing in the SrO/BiO layers,
we find that for Bi or apical O atoms, the most impor-
tant non-zero anomalous matrix elements occur between
pz-orbitals of the central atom and its four neighbours,
i.e. F56 and F78. These matrix elements possess the same
d-wave symmetry as F01. While all matrix elements have
the same energy dependence in Fig. 2(b), F01 is about 30
times larger than F56 or F78. The coherence peaks lie at
exactly the same energy in each layer, i.e., the gap width
is the same in all layers. The scaling factor for the am-
plitude seems to roughly follow the spectral weight of the
orbitals. Hence, the pairing of electrons within the oxide
layers seems to be a direct consequence of the tail of the
CuO2 electron wave function within the various layers.
This kind of pairing is in the spirit of the original idea of
proximity effect6–8 where superconductivity is viewed as
“leaking” from the superconducting part of the sample to
the normal state material. Although the aformentioned
orbitals are the most important ones, non-zero pairing is
not restricted to just these orbitals. On the other hand,
certain terms are strictly zero due to symmetry. In par-
ticular, all the onsite Fss, Fpxpx

, Fpypy
, and Fpzpz

from
Bi and O(Sr) are zero, as are many Bi-O(Bi) and O(Sr)-
Sr terms. However, Fpxpy

of two neighbouring Bi’s is
non-zero as is Fpxpy

on the same Bi atom.
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C. Interlayer pairing between CuO2 and SrO/BiO
layers

Pairing on BiO and SrO layers is not restricted to
intralayer terms discussed above. The interlayer terms
F05 and F07 between the pz-orbitals of the central Bi [or
O(Sr)] and dx2−y2 of Cu right below these atoms is, in fact
significant, while the anomalous term to the neighbour-
ing Cu atoms is rather small. The existence of these ma-
trix elements might be surprising, since the regular ma-
trix elements are zero by symmetry between dx2−y2 and
the rotationally symmetric orbitals of the atoms above
the central Cu (See Appendix A). But we will show in
the following section that these matrix elements are not
symmetry forbidden. From Fig. 2(c), the scaling fac-
tor between these elements and F01 is of the order of 4.
Notably, this interlayer pairing would appear as kz de-
pendence in the gap-function. If we make a reflection of
the slab with respect to the Ca plane lying between the
two CuO2 layers, the corresponding anomalous matrix el-
ements change their sign, indicating that this term has a
node at kz = 0, and thus deviations from d-wave symme-
try should be found for non-zero kz . The kz-dependence is
also seen in the rather small terms between pz orbitals of
the Bi atoms of the surface layer, and the nearest neigh-
bour Bi atoms of the BiO layer half the primitive cell
below the surface.

IV. SYMMETRY AND SELECTION RULES
FOR INDUCED PAIRING

We now discuss the symmetry properties and the re-
lated selection rules for the anomalous matrix elements
of the Green’s function in terms of the d-wave symmetry
of the pairing matrix.

A. Symmetry properties of the anomalous matrix
elements

Note first that the symmetry of the pair wave function
depends on the relative motion of the pairing electrons,
i. e., only on the relative coordinate Ri − Rj . The anal-
ysis of the symmetry properties however becomes more
transparent in k-space. Accordingly, we transform the
real space matrix elements Fiαjβ(ε) into k-space as

Fαβ(k, ε) =
∑

j

〈k|0α〉F0αjβ(ε)〈jβ|k〉

=
∑

j

F0αjβ(ε)e−ik·Rjϕ∗
α(k)ϕβ(k).

(7)

Here, we have set Ri = 0 and ϕα(k) is the orbital wave
function in k-space. The site indices i and j and the or-
bital indices α and β are shown explicitly for all matrix
elements. The summation is taken over the site index
j. The orbital indices are obviously not involved in the

transformation. For simplicity, we will restrict the analy-
sis below such that j is either on-site or one of the nearest
neighbors of the central site. The generalization to far-
ther out neighbors is straightforward.

We need to take into account not only the phase differ-
ence between the sites, but also the form of the tight bind-
ing orbitals ϕα(k). These orbitals have the same symme-
try in real-space and k-space. In particular,

ϕ∗
x(k) = 〈k|px〉 ∝

kx

k

ϕ∗
y(k) = 〈k|py〉 ∝

ky

k

ϕ∗
x2−y2(k) = 〈k|dx2−y2〉 ∝

k2
x − k2

y

k2

ϕ∗
3z2−r2(k) = 〈k|d3z2−r2〉 ∝ 3k2

z − k2

k2
.

(8)

The symmetry of the matrix elements is now readily
analyzed. We give two examples to illustrate the pro-
cedure: (i) F01 between the dx2−y2 orbitals of the cen-
tral Cu and its neighbours; and (ii) F03 between dz2 and
dx2−y2 at the central site. In the case of F01 the product
of the orbital functions is even under rotations by π/2:

ϕ∗
α(k)ϕα(k) = |ϕα(k)|2

In fact, this applies to all cases where α = β. Summing
over the four sites around the central Cu and applying
the odd parity with respect to π/2 rotation of the real
space matrix elements F0αjα ∼ ∆0j , we obtain

Fαα(k, ε) = 2|F0αjα(ε)| (cos (kxa) − cos (kya)) |ϕα(k)|2,
(9)

which is obviously d-wave. This is easy to see for the
dx2−y2 orbitals, but Eq. (9) leads to the same conclusion
for any set of four neighbouring orbitals similar to the
central one, as long as the real space element is odd under
rotations by π/2.

Turning to the case of F03, here the sum in Eq. (7)
consists of a single term (central site), so that there is no
site related phase factor. We only need to consider the
product of orbitals:

ϕ∗
3z2−r2(k)ϕx2−y2(k) ∝ 3k2

z − k2

k4

(

k2
x − k2

y

)

(10)

This is the only term through which angular dependence
enters in Eq. (7). This again is d-wave, keeping in mind
that only the in-plane symmetry is relevant. These con-
siderations apply more generally to any case where the
two orbitals involved lie at the same horizontal position
with one of the orbitals being rotationally invariant and
the other is d-wave.

B. Selection rules for anomalous matrix elements

Selection rules for the matrix elements Fiαjβ of the
anomalous Green’s function do not follow directly from
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those for the corresponding regular matrix elements dis-
cussed in Appendix A. For this purpose, we write Fiαjβ

as12

Fiαjβ(ε) = −G+
iαkγ(ε)∆kγlδG

0−
lδjβ(−ε) (11)

where the Einstein summation convention is implicit, and
both the Green’s functions on the right hand side of
the equation are regular. The first is the renormalized
Green’s function for the superconducting state, while the
second with superscript zero is the bare Green’s function
for the normal state. However, as shown in Appendix A,
the symmetry properties of these two Green’s functions
are the same since both are regular.

Equation (11) highlights the central role of the pairing
matrix ∆kγlδ in determining the symmetry properties of
Fiαjβ . However, summation over the intermediate states
is cumbersome. Therefore, we convert Eq. (11) to k-
space first:

F (k, ε) = −G(k, ε)∆kG0∗(k,−ε) (12)

where orbital indices are suppressed. Eq. (12) makes
it clear that F (k, ε) possesses the d-wave symmetry of
∆k since the regular Green’s functions are rotationally
invariant as shown in Appendix A.

Converting F (k, ε) to the real-space, yields

Fiαjβ(ε) =
∑

k

〈iα|k〉F (k, ε)〈k|jβ〉, (13)

or

F0αjβ(ε) =
∑

k

ei(kzzj+k‖·R‖j)ϕ∗
α(k)ϕβ(k)F (k, ε), (14)

where we have fixed the first site index to Ri = 0, and
made a separation into perpendicular (kzzj) and parallel
directions (kxxj + kyyj = k‖ · R‖j).

We first consider the case where orbitals α and β are
at the same horizontal site, i.e., R‖j = 0. The necessary
condition for the matrix element F0αjβ to be non-zero is
that

ϕ∗
α(k)ϕβ(k)F (k, ε), (15)

is rotationally invariant. Since F (k, ε) is d-wave, the
product of wave functions on the right hand side of Eq.
(14) must have d-wave symmetry. For example, one of
the orbitals could be d-wave symmetric and the other ro-
tationally invariant. In particular, the anomalous matrix
element between dx2−y2 and one of the set {s, pz, dz2}
satisfies this condition.

Furthermore, if zj = 0, i.e., the orbitals are at the same
site, the term (15) must also have an even parity in the
z-direction for a non-zero matrix element, and hence pz

would not be a possible pair with dx2−y2 . However, in
the case of zj 6= 0, pz is allowed, since the phase factor
eikzzj does not have a well-defined parity. Note also that
the anomalous matrix element between dx2−y2 orbitals

at the same horizontal position (R‖j = 0) is necessarily
zero, since the term (15) is odd under rotations of π/2.

We next consider matrix elements between orbitals at
neighboring sites where, R‖j = xj = ±a, or R‖j = yj =
±a. In this case, we will see that there will always be
a non-zero matrix element with a properly symmetrized
combination of neighboring wave functions, and the se-
lection rules determine the correct choice of phase factors
between sites. We discuss a particular case in detail as an
exemplar. Specifically, let us compare sites Rj = (a, 0, c)
and Rl = (0, a, c) and check whether or not the sign of
the sum in Eq. (14) changes. For the first site we get

F0αjβ =
∑

k

ei(kxa+kzc)ϕ∗
α(kx, ky)ϕβ(kx, ky)F (k, ε)

(16)
and for the second site

F0αlβ =
∑

k

ei(kya+kzc)ϕ∗
α(kx, ky)ϕβ(kx, ky)F (k, ε).

(17)
A rotation of π/2 is equivalent to the transformation
ky → kx and kx → −ky. Applying this to (17) yields

F0αlβ =
∑

k

ei(kxa+kzc)ϕ∗
α(−ky, kx)ϕβ(−ky, kx)F (k, ε).

(18)
Thus the product ϕ∗

α(−ky, kx)ϕβ(−ky, kx) determines
what happens under rotations of π/2 around the site
i = 0. There are two cases: (1) This product is equal to
ϕ∗

α(kx, ky)ϕβ(kx, ky), so that these terms are invariant,
and the total effect of rotation on F0αjβ in Eq. (14) fol-
lows the d-wave symmetry of F (k, ε); and (2) The prod-
ucts of the orbitals in k-space have opposite sign, and the
matrix element F0αjβ is invariant under in-plane rotation
by π/2. In either case there will be pairing between the
central orbital α and a properly symmetrized orbital φ,
as defined in Eq. (A6) of Appendix A. For case (1),
an invariant ϕ∗

α(kx, ky)ϕβ(kx, ky) linear combination of
coefficients must be chosen with d-wave symmetry. For
case 2, i.e., d-wave symmetric ϕ∗

α(kx, ky)ϕβ(kx, ky), the
correct linear combination has all positive expansion co-
efficients. Notably, for α = β, the product of orbitals
is invariant, so that any pair involving the same orbitals
at neighboring sites must involve a linear combination of
neighbors which is odd in rotations by π/2. For exam-
ple, in the anomalous matrix element F78 between the
pz-orbitals of two Bi neighbors, the coefficient in the x-
direction has an opposite sign to that in the y-direction.

V. DISCUSSION AND CONCLUSIONS

We emphasize that the logic of symmetry rules for the
anomalous matrix elements is more complicated than
that of the regular matrix elements. In particular,
the nonvanishing tunneling channels can be determined
through group theoretic considerations11,12. For exam-
ple, since the rotational symmetry of the pz orbitals of Bi



7

and apical oxygen atoms differs from that of the dx2−y2

orbital of the Cu at the same horizontal position, the
corresponding off-diagonal term of the regular Green’s
function vanishes, inhibiting the corresponding tunnel-
ing channel. In contrast, coupling between electron and
hole degrees of freedom via the gap matrix ∆αβ leads to
less obvious symmetry rules for the anomalous matrix el-
ements: Now the quasiparticles are linear combinations
of spin up electrons and spin down holes, and there is
no simple rule for selecting the orbitals contributing to a
chosen quasiparticle state. Hence, the pz or dz2 orbitals
of Bi, O or Cu atoms may couple to a dx2−y2 orbital of
a Cu atom at the same horizontal position, and the pos-
sibility of this coupling must be checked by considering
the tensor form of Dyson’s equation, as written out in Eq.
(12), together with the transformation into tight-binding
basis of Eq. (14).

In summary, we have presented a comprehensive study
of anomalous matrix elements of the Green’s function de-
rived from a realistic multiband model of Bi2212. The
imaginary parts of these matrix elements describe the
contributions of different orbitals to the coherence peaks
involving the formation and breaking up of Cooper pairs.
Although the pairing interaction is modeled by a local d-
wave term in the Hamiltonian connecting only the dx2−y2

orbitals of neighbouring Cu atoms, the anomalous matrix
elements display a longer range with induced supercon-
ductivity appearing at other sites/orbitals, including the
second cuprate layer and the BiO/SrO overlayers. Our
analysis delineates the precise routes through which the
induced superconductivity in a complex cuprate system
is transferred between various orbitals and sites.
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Appendix A: Symmetry properties of regular matrix
elements of the Green’s function.

This appendix delineates the symmetry properties of
the regular matrix elements of the normal and super-
conducting (SC) state Green’s functions G0(ǫ) and G(ǫ),
respectively, which were seen in connection with Eq. (14)
above to be important for understanding the nature of
anomalous matrix elements. Taking the origin at the po-
sition of the 0th atom, G0

0αjβ(ε) can be written as

G0
0αjβ(ε) =

∑

k

〈0α|k〉G0(k, ε)〈k|jβ〉

=
∑

k

eik·Rjϕ∗
α(k)ϕβ(k)G0(k, ε),

(A1)

where

G0(k, ε) =
1

ε − εk − Σ(ε)
. (A2)

Since the Hamiltonian is invariant under rotations of π/2,
the dispersion εk and G0(k, ε) are also invariant. This is
true as well for the SC state regular Green’s function
since the self-energy in Eq. (A2) is augmented by an

additional term ΣBCS = ∆kG0
h(k, ε)∆†

k, which is rota-
tionally invariant12. Because G0 and G possess the same
symmetry properties, in the following, we only consider
the symmetry properties of G0(k, ε).

Consider first the case where Rj = (0, 0, c). Then,
G0

0αjβ 6= 0 only if ϕ∗
α(k)ϕβ(k) in Eq. (A1) is invariant

under the in-plane operations of the symmetry group of
the Hamiltonian. For example, a pz orbital can have
non-zero matrix elements with s, pz or dz2 of an atom
at the same horizontal position. But the matrix element
between pz and dx2−y2 of atoms at the same horizontal
position is zero. For c = 0, the matrix element is non-zero
only if the orbitals are similar.

We next consider the case where there are four atoms
around a central atom at the distance of the horizon-
tal lattice constant a : R1 = (a, 0, c), R2 = (0, a, c),
R3 = (−a, 0, c), and R4 = (0,−a, c). Changing the in-
dices according to 1 → 2 → 3 → 4 → 1 corresponds
to rotations by π/2 in real space. The transformation
ky → kx and kx → −ky represents the same rotation in
k-space. Now the phase factor eik·Rj has a fundamental
effect on the symmetry behavior. Let us compare cases
R1 = (a, 0, c) and R2 = (0, a, c) and check whether the
sign of the sum changes. In the first instance we get

G0
0α1β(ε) =

∑

k

ei(kxa+kzc)ϕ∗
α(kx, ky)ϕβ(kx, ky)G0(k, ε)

(A3)
while the second case gives

G0
0α2β(ε) =

∑

k

ei(kya+kzc)ϕ∗
α(kx, ky)ϕβ(kx, ky)G0(k, ε)

(A4)
Applying the transformation ky → kx and kx → −ky to
(A4) yields

G0
0α2β(ε) =

∑

k

ei(kxa+kzc)ϕ∗
α(−ky, kx)ϕβ(−ky, kx)G0(k, ε).

(A5)
Thus, it is the product ϕ∗

α(−ky, kx)ϕβ(−ky, kx) that
determines what happens under rotations of π/2. If this
is equal to ϕ∗

α(kx, ky)ϕβ(kx, ky), the matrix element does
not change sign under rotations, otherwise G0

0αjβ changes

sign under in-plane rotation of π/2. In particular, for
α = β, this term is invariant, but for α = pz or dz2 and
β = dx2−y2 , there is a change of sign under rotation.

An equivalent approach is to consider a linear combi-
nation of orbitals jβ

|φ〉 =

4
∑

j=1

cj |jβ〉. (A6)
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There is a non-zero regular matrix element G0
0α,φ only if

|φ〉 belongs to the same representation of the symmetry
group of the Hamiltonian as orbital |0α〉. The transfor-
mation of the expansion coefficients cj directly follows
from the transformation of G0

0αjβ . For example, it is ob-
vious that

G0
0α,φ =

4
∑

j=1

cjG
0
0αjβ , (A7)

Hence, if α = β = dx2−y2 and j = 1...4 are defined as
above, cj must be a constant in order to keep the full
symmetry of the group of the Hamiltonian, leading to

G0
0α,φ ∝ c1e

ikzc[cos (kxa) + cos (kya)](k2
x − k2

y)2

If, however, α = dz2 and β = dx2−y2 , one must have
c2 = c4 = −c1 = −c3, and then

G0
0α,φ ∝ c1e

ikzc[cos (kxa)− cos (kya)](k2
x − k2

y)(3k2
z − k2),

which requires change of sign of cj ’s under rotations of
π/2 in order to obtain an invariant matrix element.
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