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In the limit of perfect nesting, the physics of iron-pnictides is governed by the density wave
formation at the zone-edge vector M. At high energies, various spin- (SDW), charge- (CDW),
orbital/pocket- (PDW) density waves, and their linear combinations, all appear equally likely, unified
within the unitary order parameter of U(4)×U(4) symmetry. Nesting imperfections and low-energy
interactions reduce this symmetry to that of real materials. Nevertheless, the generic ground state
preserves a distinct signature of its highly symmetric origins: a SDW along one axis of the iron
lattice is predicted to coexist with a perpendicular PDW, accompanied by weak charge currents.
This “hidden” order induces the structural transition in our theory, naturally insures Ts ≥ TN , and
leads to other observable consequences.

The discovery of high-temperature superconductiv-
ity (HTS) in iron-pnictides1,2 has sparked an intense
activity3. Like the cuprates, the pnictides are layered
systems and exhibit anti-ferromagnetism (AF) at zero
doping (x = 0), followed by HTS beyond some finite
x3,4. Magnetic order in parent compounds consists of
an AF spin chain along the wave vector (π, 0) or (0, π) in
the unfolded Brilliouin zone (UBZ) and an FM spin chain
along the perpendicular direction5. The dynamical ori-
gin of this AF state is hotly debated: Within the itiner-
ant electron model, the magnetic transition is ascribed
to the SDW instability, enhanced by the near-nesting
among electron and hole pockets of the Fermi surface
(FS)6–9. To insure “striped” spin order, only one electron
pocket is involved in SDW, and the spin-wave anisotropy
arises from the electron pockets’ finite ellipticity10,11. In
contrast, within the localized Heisenberg-type model12,13

various frustrated couplings J1a, J1b, J2 between neigh-
boring spins conspire to produce the observed magnetic
order and the magnon anisotropy14,15.

In addition, the tetrahedral-to-orthorhombic struc-
tural transformation is observed, accompanied by the AF
transition16,17. The AF ordered moment is linearly pro-
portional to orthorhombicity upon change in x, and both
transitions disappear for x > xc

18. Magnetoelastic cou-
pling was suggested as being responsible for the close
relation between two transitions19. In this approach, the
structural transition is driven by magnetic interactions20.
However, in the 1111 compounds, the structural transi-
tion temperature Ts is consistently above the AF one,
TN , at any x5. Furthermore, the in-plane resistivity
anisotropy develops well above TN in presence of uniaxial
pressure, and hints at the appearance of a new form of
order near Ts21. One possible explanation for Ts > TN is
that magnetic fluctuations are much stronger than those
associated with structural order.

In this Letter, we advance another physical picture to
account for this evident close relation between the struc-
tural and magnetic transitions: the two are just differ-
ent faucets of one and the same type of ordering of much
higher, U(4)×U(4) symmetry. This high symmetry char-
acterizes the dynamics of pnictides within the high-energy

regime, extending from the energies of order of the band-
width D down to those set by Ts ∼ TN . This regime is
governed by “perfect” nesting and the ensuing tendency
toward formation of a valley-density wave (VDW) at the
nesting vector Q, with all of its different reincarnations –
various spin-, charge-, and orbital/pocket-density waves,
SDW, CDW, PDW, respectively, as well as their mutu-
ally orthogonal linear combinations – unified within a
unitary U(4)×U(4) order parameter22. At yet lower en-
ergies, however, as the U(4) × U(4) symmetry-breaking
interactions and the deviations from perfect nesting come
into play, the symmetry is reduced down to that of
real materials. Nevertheless, provided there is a signif-
icant segregation of scales in the effective Hamiltonian
of iron-pnictides between the high-energy U(4) × U(4)-
symmetric and the low-energy symmetry-breaking terms,
the ground-state and its excitations bear a distinct sig-
nature of their highly-symmetric origin.

Our picture is based on the itinerant model, and re-
lies on the hierarchy of energy scales that separate the
“flavor”-conserving from the “flavor”-changing interac-
tions of quasiparticles on the FS, composed of two hole
(h1, h2) and two electron (e1, e2) pockets (or valleys)
(Fig. 1). This hierarchy is further assisted by the differ-
ences in area and shape of different pockets being much
smaller than their common overall features; hence the
U(4)e×U(4)h symmetry. Such hierarchy, quantified in22,
does not reflect a deep underlying principle; rather, it is
an accident of the particular semimetallic character of
pnictides and a screened Coulomb repulsion23. But be
that as it may, the hierarchy is well obeyed in all parent
compounds and we use it as an organizing framework to
derive the following results: i) The ground state of par-
ent pnictides is the combination of a SDW along the wave
vector (π, 0) or (0, π) in the UBZ and a spin-singlet den-
sity wave (DW) along the perpendicular direction; ii) The
spin-singlet DW is predominantly a PDW, with a tiny ad-
mixture of a CDW, and is imaginary, i.e. it represents a
modulated pattern of weak currents on inter-iron bonds.
This PDW is difficult to detect and is dubbed the “hid-
den” order; iii) The imaginary PDW at Q = (π, 0) (or
(0, π)) induces real CDW at 2Q = (0, 0), different from
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the CDW similarly generated by the SDW. The result-
ing broken orbital symmetry between ex and ey pockets
(Fig. 1) drives the observed tetragonal-to-orthorhombic
transition; and iv) The predicted electronic structure of
the ground state has numerous observable consequences,
some of which we explore. Our results are generic for the
1111 and 122 materials, and – with details changing from
one compound to another – the overall physical picture
should be universally applicable.
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FIG. 1. Fermi pockets in the UBZ of iron-pnictides. Two hole
pockets h1 and h2 are centered at the Γ = (0, 0) point. The
electron pockets ex and ey are centered at the nesting vectors
M1 = (π, 0) and M2 = (0, π), respectively. The h1, ex, and
ey pockets are assumed to be perfectly nested to the leading
order, while h2 is larger than these three; this difference, how-
ever, is small compared to the overall bandwidth D, as is the
finite but small ellipticity of ex and ey pockets7,10.

First, we set up the problem: the band structure can be
described by the five 3dFe and three pPn orbitals tight-
binding model7, resulting in the FS of Fig. 1. Our point
of departure is the Hamiltonian H = H0 +HW :

H0 =
∑
k,σ,α

εαkh
(α)†
kσ h

(α)
kσ +

∑
k,σ,β

εβke
(β)†
kσ e

(β)
kσ

HW = W
∑
q

n̂eqn̂
h
−q , (1)

where σ, α, and β are the spin, hole (h) and (e) pocket
indices, respectively (Fig. 1; β = x, y for e bands, α = 1, 2
for h bands) and n̂eq and n̂hq are the density operators
within the e and h pockets22.

H (1) describes the high-energy physics of pnictides.
It contains only the density-density, flavor-conserving in-
teractions between different pockets, W . D24. In con-
trast, the flavor-changing interactions and the variations
among W s in different pockets are all � D, as long as
the Hund coupling JH � Ud, the Hubbard repulsion on
d-orbitals7,22. Furthermore, we also initially assume per-
fect nesting, i.e., ε1k = ε2k = −εxk+M1

= −εyk+M2
= εk,

since the differences among h and e bands are also � D.

H (1) has a large U(4)e×U(4)h symmetry, made man-
ifest by introducing annihilation operators cµ and dν
to represent h and e pockets, respectively, with µ, ν =

1, . . . , 4 labeling both spin and band indices:

µ, ν =
{

1 h1↑ or ex↑; 2 h1↓ or ex↓

3 h2↑ or ey↑; 4 h2↓ or ey↓
.

H0 =
∑
k,µ

εk
(
c†µcµ − d†µdµ

)
HW = W

∑
qkµν

c†µk+qcµkd
†
νk′dνk′+q .

The interaction HW drives a VDW formation at the nest-
ing vectors M1 and M2 (Fig. 1). The order parameter is
a 4× 4 matrix ∆µν whose 16 complex elements describe
various SDWs, CDWs, PDWs, and their linear combina-
tions that gap the FS below some temperature TV :

exp
(
−W

∑
c†µcµd

†
νdν

)
↔∫

D∆ exp

{
−
∑
µν

[
1
W
|∆µν |2 −∆∗µνc

†
µdν + h.c.

]}
.

Integrating out the fermions yields an effective action
S∆ for bosonic fields ∆µν . S∆[∆µν ] has the U(4)e ×
U(4)h symmetry, spontaneously broken at TV . Near TV ,
a Ginzburg-Landau (GL) expansion in ∆µν gives25:

TS∆→ F = αT r(∆†∆) + 1
2βT r(∆†∆∆†∆), (2)

α =
1
W
− T

N

∑
k,n

1
ω2
n + ε2k

≈ 1
W
−N(0) ln

(
D

T

)
,

β =
T

2N

∑
k,n

(
1

ω2
n + ε2k

)2

=
7

16π2

N(0)
T 2

ζ(3) , (3)

where N(0) is the density of states of a Fermi pocket and
{ωn} are Matsubara frequencies. For T < TV , α < 0 and
F has a nontrivial minimum for ∆†∆ = ∆2

0 = −α/β.
The solution is ∆ = ∆0U , where U is a 4×4 unitary ma-
trix. At this stage, the four complex 4-vectors comprising
U describe a plethora of SDWs, CDWs, PDWs, etc., and
all their mutually orthogonal linear combinations.
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FIG. 2. (Color) The leading order corrections to F due to
(a) e − h and (b) e − e interactions. (c) The ground state
of parent iron-pnictides. The red and black arrows depict
iron spins and the [±J ,± 1

2
J ] current pattern, respectively.

The ground state combines two orders: SDW along (π, 0) and
the modulated current DW at the wavevector (0, π), i.e., the
“hidden” order.
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Now, we are ready to confront the real iron-pnictides.
We turn on all low-energy (� D ∼ W ) features ignored
in (1) – differences among W s, flavor-changing vertices,
nesting imperfections, and the like24 – and proceed to
systematically decode their effect on the U(4)e × U(4)h
symmetric theory26. The most important among these is
the interband vertex G2, which generates the s± super-
conductivity as the nesting subsides6,7:[
Geh1

2 c†1c
†
2(d2d1 + d4d3) +Geh2

2 c†3c
†
4(d2d1 + d4d3)

]
+ h.c. ,

where Gehα2 = Gexhα2 = G
eyhα
2

27. The leading order cor-
rection ∆FG2 (Fig. 2(a)) to the free energy F (2) is

∼ Π(0)2
{
Geh1

2 (∆11∆22 + ∆13∆24 −∆12∆21 −∆14∆23)

+ Geh2
2 (∆31∆42 + ∆33∆44 −∆32∆41 −∆34∆43) + h.c

}
,

Π(0) ≈ N(0) ln
(
D
T

)
27. The Cauchy inequality mandates

∆FG2 ≥ −Π(0)2∆2
0

(
|Geh1

2 |+ |Geh2
2 |
)

. The equality

holds when: a) for Geh1
2 > 0, ∆22 = −∆∗11, ∆21 = ∆∗12,

∆24 = −∆∗13, ∆23 = ∆∗14. The VDW involving the h1

pocket is then the mixture of real SDW and imaginary
spin-singlet DW; b) for Geh1

2 < 0, the VDW involving h1

pocket is similarly the mixture of imaginary SDW and
real spin-singlet DW. The same holds for the h2 pocket.

Consequently, G2 fixes the phases of different DWs.
One expects that both Geh1

2 , Geh2
2 > 0, as the prereq-

uisite for high Tc s
+− superconductivity. Hence, the

ground state of parent compounds must be composed
of either real SDW(s) or imaginary spin-singlet DW(s);
the latter is a general combination of PDW and CDW, in
the nomenclature of28. The real DWs are ∝ cos(M · r),
with peaks and troughs on the iron sites (Fig. 2(c)).
In contrast, the imaginary spin-singlet DW breaks time-
reversal and lattice translation symmetries along M,
leading to charge/orbital current DW on iron bonds.

But which one is it, spin-triplet (SDW) or spin-
singlet (PDW/CDW) density wave? We must con-
sider next the flavor-changing p-h analogue of G2, G1:∑2
α,β=1G

αβ
1 h†ασ

(
exσe

†
xσ′ + eyσe

†
yσ′

)
hβσ′ . G1 (< G2

22)

generates ∆FG1 from a diagram similar to Fig. 2(a):

∆FG1 =Π(0)2
{
G11

1

(|∆11 + ∆22|2 + |∆13 + ∆24|2
)

+

G22
1

(|∆31 + ∆42|2 + |∆33 + ∆44|2
)

+[
G12

1 (∆∗11 + ∆∗22)(∆31 + ∆42) + h.c.
]

+[
G12

1 (∆∗13 + ∆∗24)(∆33 + ∆44) + h.c.
]}

. (4)

Here, it is useful to introduce 2× 2 G1 matrix

G1 =
(

G11
1 ReG12

1

ReG21
1 G22

1

)
.

Since the phases of DWs are fixed by G2, only the real
parts of Gαβ1 contribute to F . Hence, G1 is real and sym-
metric, and has two real eigenvalues λ1, λ2, with associ-
ated real eigenvectors v1 and v2. From (4), ∆FG1 = 0 for

SDW and is minimized for the state composed of: a) if
λ1, λ2 > 0, two real SDWs; b) if λ1, λ2 < 0, two imaginary
spin-singlet DWs, with ∆FG1 = (λ1 + λ2)Π(0)2∆2

0 < 0;
and, c) if λ1 < 0 and λ2 > 0, one real SDW and one imag-
inary spin-singlet DW, with ∆FG1 = λ1Π(0)2∆2

0 < 0.
Experimentally, there is only a single SDW at (π, 0).
This implies option c): with majority of G1s rather
small22, this is to be expected, once we include the (weak)
electron-phonon coupling3,4. In this case, the leading or-
der contribution of ∆FG2 and ∆FG1 to F is

F ≈ α(∆2
SDW + ∆2

SSDW) + λ1Π(0)2∆2
SSDW .

∆SDW and i∆SSDW describe the SDW and the imaginary
spin-singlet DW, respectively, while

α(TSDW) = 0 α(TSSDW) + λ1Π(0)2 = 0 ,
TSSDW − TSDW

TSDW
≈ − λ1/W

N(0)W
> 0 ,

set the corresponding transition temperatures. As long
as |λ1| �W 22, TSSDW ' TSDW and ∆SSDW ' ∆SDW.

Consider now v1 = (a, b), the (real) eigenvector asso-
ciated with λ1 < 0. ∆FG1 is minimized by

∆(θ) = ∆0

(
ia1 −bσn
ib1 aσn

)
×
(

cos θ1 − sin θ1
sin θ1 cos θ1

)
, (5)

where σn = ~σ · n̂, n̂ is an arbitrary unit vector reflecting
the SU(2) spin symmetry of our theory, and θ is an ar-
bitrary angle, signaling an additional degeneracy in the
Hamiltonian. The second matrix in (5) is a rotation by
θ which mixes ex and ey pockets:

e1 = cos θex − sin θey , e2 = cos θey + sin θex . (6)

In the state described by (5), e1 and e2 couple to hn =
ah1 + bh2 and hp = ah2 − bh1, respectively, to form two
DWs. Finally, this remaining θ-degeneracy is lifted by
the density-density repulsion between ex and ey pockets:

W e
k e
†
xσexσe

†
yσ′eyσ′ →W e

k

(
d†1d1 + d†2d2

)(
d†3d3 + d†4d4

)
,

with W e
k > 0. The leading order contribution to F ,

∆FWk , follows from Fig. 2(b), and contains two fermion
loops, each with three legs. Were the nesting perfect, the
loop integral would be independent of leg indices, and,
upon summation over hole indices, the contribution of
each loop would be ∝ ∆†∆, but still independent of θ.

In real pnictides, however, the outer pocket h2 deviates
significantly from h1 and perfect nesting (Fig. 1)3,7,29.
To account for this, we set εh2

k = εh1
k + η, η � W . D.

At the leading order in η, the θ-dependent term of each
fermion loop in Fig. 2(b) is now finite and contributes

1
N

∑
ω,k

(
1

iω + ε

)2
η

(iω − ε)2 = 2βη →

→ ∆FWk ∼ 2W e
k (2βη)2∆2

0[(a cos θ)2 + (b sin θ)2]×
[(a sin θ)2+(b cos θ)2] ∝ (ab)2 + (b2 − a2)2 cos2 θ sin2 θ .
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Since generally |a| 6= |b|, ∆FWk is minimized for θ = 0
or π/2. Thus, the preferred ground state combines a real
SDW in one direction and an imaginary spin-singlet DW
along the perpendicular direction. The nature of this
imaginary spin-singlet DW depends on the form of v1

30.
If a ≈ −b, the spin-singlet DW is predominantly a PDW,
translating into a purely orbital current pattern. How-
ever, unless a = −b, there is also an accompanying charge
current DW, depicted in Fig. 2(c). This current DW can
be weak for generic a ∼ −b but should be observable and
is the main prediction of this Letter. Since the charge
current DW interacts with the underlying lattice more
strongly than the pure PDW, it favors an additional mod-
ulated structural pattern along (0, π), on top of the one
tied to the SDW along (π, 0). The apparent absence of
such pattern in pnictides suggests that indeed a ≈ −b
and the PDW dominates the imaginary spin-singlet DW.

With two DWs present at Q = M1 and M2, a real
CDW at 2Q = (0, 0) is induced as a next harmonic31.
First, this is illustrated within a two-band model, with
one h and one e pocket. In the mean-field approximation:

HMF = δΣ(h†kσhkσ − e†kσekσ);HU = U(n̂2
h + n̂2

e),
F ≤ FMF + 〈HU −HMF 〉MF . (7)

U is the intrapocket repulsion and δΣ is the relative shift
of h and e self-energies. Here we assume the e pocket
dispersion is εk = k2/2m− ε0. For δΣ� ∆0,

FMF = α(δΣ)T r(∆†∆) +O(∆4),

α(δΣ) =
1
W
− 1
β

∑
n

∫ D

−ε0−δΣ
dε

N(0)
ε2 + ω2

n

≈ α(0)− δΣN(0)
2ε0

,

〈δne〉 = −〈δnh〉 ≈ N(0)δΣ,

〈HU −HMF 〉MF ≈ 2N(0) (δΣ)2 (1 +N(0)U) .

The r.h.s. of (7) is minimized when δΣ = ∆2
0/(8ε0(1 +

N(0)U)), and hence, 〈δne〉 = −〈δnh〉 = N(0)∆2
0

8ε0(1+N(0)U) .
In a realistic four band model, with the induced CDWs

at 2Q, a lengthy but straightforward algebra yields26

〈δnex〉 = −〈δnhp〉 =
N(0)

8ε0(1 +N(0)U)
∆2

SDW ,

〈δney 〉 = −〈δnhn〉 =
N(0)

8ε0(1 +N(0)U)
∆2

PDW . (8)

As shown earlier, ∆SDW < ∆PDW, and thus 〈e†yey〉 >
〈e†xex〉. Consequently, the induced real CDW at 2Q =
(0, 0) breaks the C4 symmetry while preserving the lat-
tice translation symmetry, and can be naturally identified
as the source of the observed tetragonal-to-orthorhombic
distortion. Since the CDW arises simultaneously with
the modulated DWs, Ts = TPDW ≥ TN = TSDW. For
T � TSDW and 0 < x � xc, Eqs. (8) also result in
orthorhombicity ∝ ∆SDW(x), in agreement with18. Ad-
ditional support for this picture of structural deformation
comes from the universal scaling of magnetization32.

In summary, we have shown that the high-energy
U(4) × U(4) symmetry in iron-pnictides naturally leads
to the prediction of a “hidden” orbital current DW or-
der in parent compounds and have explored some of the
observable consequences.
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