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A first-principles-based approach is developed to model dynamical coupling between different
degrees of freedom in the terahertz frequency range, at any temperature. Such approach is applied
to Pb(Zr,Ti)O3 alloys, that exhibit both ferroelectric (FE) and antiferrodistortive (AFD) motions.
It reproduces very well the existence of two modes (rather than the single E(1TO) soft mode) in
the 50 − 75 cm−1 range for temperatures smaller than ≃ 200 K. It also provides an insight into the
existence of these two modes, that originates from the coupling between long-range-ordered FE and
AFD motions. The proposed scheme is further used to reveal a field-induced anticrossing involving
FE and AFD degrees of freedom.
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Ferroelectric (FE) and related materials are of great importance for many device applications1. For some of these
applications and for fundamental reasons, the dynamical properties of these materials need to be determined and
understood, especially when realizing that surprises can be in store when they are investigated2–9. For instance,
some recent studies discovered that BaTiO3 has two (rather than one, as believed for more than 30 years) modes
contributing to its dielectric response in the THz range, both in the paraelectric and FE tetragonal phases2,3. Similarly,
multiferroics (that are materials simultaneously possessing electric and magnetic degrees of freedom) were found to
exhibit additional dielectric or Raman peaks in the GHz-THz regime, because of coupling between long-range-ordered
electric and magnetic dipoles4–6. Such latter peaks are termed electromagnons and are currently attracting much
interest. Interestingly, the electric polarization can also dynamically couple with other degrees of freedom to give rise
to additional peaks that appear in the dielectric or Raman spectra. One example of such degrees of freedom is the
antiferrodistortive (AFD) motion, that corresponds to the tilting of the oxygen octahedra. For example, the so-called
structural mode (that can be thought as the soft-mode of AFD motions) of SrTiO3 interacts with a polar mode,
leading to its observation in the complex dielectric or Raman spectra10,11 below a critical temperature (below which
the structural phase simultaneously exhibits long-range-ordered tilting of the oxygen octahedra and a spontaneous
polarization). It is also believed12,13 that the additional mode appearing below ≃ 200 K in the Raman spectra of
one of the most important ferroelectrics to date – that is Pb(Zr,Ti)O3 (PZT) – originates from a dynamical coupling
between FE and AFD motions.

Being able to acquire an insight into these additional dielectric or Raman peaks is of large importance, since
they affect various properties at certain frequencies. One may also wonder if other dynamical phenomena, which
also involve the coupling between different degrees of freedom, remain to be discovered. Ideally, addressing such
issues would require a computational ab-initio scheme with the capability of accurately predicting the consequence of
dynamical coupling in ferroelectrics at finite temperatures and in the GHz-THz range.

The main goals of this Rapid Communication are four-fold: (1) to demonstrate that it is possible to develop such
a scheme; (2) to apply it to PZT to prove its accuracy; (3) to gain a deeper knowledge into the additional peak that
has been reported in Refs [12,13] (and that, as we found, does indeed originate from the coupling between FE and
AFD motions); (4) to further use the proposed technique to reveal an electric-field-induced anticrossing involving FE
and AFD degrees of freedom in PZT.

Practically, we want to simulate finite-temperature dynamical properties of a disordered Pb(Zr0.55Ti0.45)O3 solid
solution, including those related to FE and AFD degrees of freedom (as well as their couplings). For that, we first
take advantage of the effective Hamiltonian scheme of Ref. [14]. The total energy of the system is thus written as

Etot =EFE ({ui} , {vi} , ηH , {σj})

+ EAFD-C ({ui} , {ωi}, {vi} , ηH , {σj}) , (1)

where ui denotes the local soft mode in the unit cell i (which is directly proportional to the electric dipole centered
on that cell and is associated with the lowest optical phonon branch), and ωi is a vector whose direction is the axis
about which the oxygen octahedron of cell i tilts while its magnitude provides the angle of such tilting. {vi} are
related to the inhomogeneous strain variables inside each cell15,16. ηH is the homogeneous strain tensor, and {σj}
characterizes the atomic configuration. EFE gathers the energy terms solely involving the soft mode, strain and their
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mutual couplings17, while EAFD-C includes the AFD motions and their interactions with the electric dipoles and
strain14. In particular, one term of EAFD-C that is relevant to the present study is the interaction energy between the
FE and AFD motions, which is given by:

EAFD-FE =
∑

i

∑

α,β,γ,δ

Dαβγδωi,αωiβuiγui,δ, (2)

where i runs over all the unit cells and α, β, γ, δ denote Cartesian components – with the x-, y- and z-axes being
chosen along the pseudo-cubic [100], [010] and [001] directions, respectively. The Dαβγδ matrix elements quantify
the couplings between FE and AFD degrees of freedom, and are extracted from local-density-approximation (LDA)
calculations18,19 – like all the parameters entering Eq. (1).

In order to obtain dynamical properties for any temperature, the total energy of this effective Hamiltonian scheme
is then incorporated into a Molecular Dynamics (MD) technique. This contrasts with Ref. [14] that used Etot within
a Monte-Carlo (MC) approach. These MD and MC simulations give similar static properties. In particular, for
the chosen Ti composition of 45%, a cubic paraelectric phase is found for temperatures above ∼ 700 K and a R3m
phase in which the polarization points along a 〈111〉 direction exists between the Curie temperature TC ∼ 700 K
and another critical temperature ∼ 200 K. Below such latter temperature, a R3c state occurs, in which the oxygen
octahedra tilt, in a long-range fashion, about the same 〈111〉 direction (with neighboring oxygen octahedra rotating in
antiphase) and coexist with the electrical polarization. These predictions are all in good agreement with experiments
for Ti compositions associated with the rhombohedral side of the morphortropic phase boundary20–22. One practical
aspect of our presently developed MD simulations is to determine the moment of inertia associated with the oxygen
octahedra, as well as the mass associated with the local soft modes, that appear in the Newton’s equations of motions.
Such determination is accomplished by performing phonon calculations within LDA. More precisely, we adjust these
moment of inertia and mass until the frequencies of some modes predicted by the developed technique at small
temperature agree with those given by LDA.

One particularly important advantage of the proposed MD scheme is that two different complex responses can be
computed in the GHz-THz regime at any temperature, via the following equations2,23:

εαβ (ν) − 1 =
1

ε0V kBT
[〈dα(t)dβ(t)〉+

i2πν

ˆ

∞

0

dtei2πνt 〈dα (t) dβ (0)〉

]

εAFD
αβ (ν) − 1 =

1

ε0V kBT

[〈

ωR
α (t)ωR

β (t)
〉

+

i2πν

ˆ

∞

0

dtei2πνt
〈

ωR
α (t)ωR

β (0)
〉

]

(3)

where ν is the frequency while α and β define Cartesian components. d (t) and ω
R (t) are the dipole moment and

the order parameter vector associated with the AFD motions at the R-point of the cubic Brillouin zone14,29 at time
t, respectively. εαβ (ν) is the complex dielectric response2,3 while εAFD

αβ (ν) can be thought as the response of ω
R (t)

to its ac conjugate field (that is a time-dependent staggered field24). Practically, each peak found by our simulations
in the spectra of ε (ν) and εAFD (ν) is fitted by a classical harmonic oscillator Sν2

r/
(

ν2
r − ν2 + iνγ

)

, where νr, γ
and S are the resonant frequency, damping constant, and strength of the oscillator, respectively. The fact that our
simulations provide (unlike Ref. [2]) εAFD (ν), in addition to ε (ν), allows to extract dynamical properties that are
difficult to access or interpret experimentally. For instance and as we will see below, the resonant frequency of the AFD
distortions can be easily determined at any temperature, and the effect of coupling between FE and AFD degrees
of freedom on dynamical properties can be seen and understood. Technically, we first run 105 MD steps of NPT
simulations on a 12× 12× 12 supercell (8640 atoms) to equilibrate the system at a chosen temperature and pressure.
Then, the equilibration of the system within an NVE ensemble is performed through 105 MD steps. Subsequent
4.3 × 106 NVE steps are performed to obtain the time-resolved physical properties of the system.

Fig. 1 shows the temperature dependence of the resonant frequency, νr, as well as the electric dipole spectral weight4,
Sν2

r , for the lowest-in-frequency dielectric peaks obtained in our simulations. Just below the Curie temperature TC ,
the lowest-in-frequency peak corresponds to the well-known E (1TO) mode (to be denoted by E, in the following).
Such mode represents dipolar oscillations perpendicular to the spontaneous polarization. Fig. 1 (a) reveals that, for

temperatures below TC , the resonant frequency of the E mode obeys rather well the relation νr = C |T − TC |
1/2,

with C = 2.24 cm−1K−1/2. Similarly, the resonant frequency of the lowest optical mode also follows this square-root

law (but with C = 2.62 cm−1K−1/2) for T > TC . Note also that the predicted frequency of the E mode is around
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49 cm−1 at room temperature, which agrees rather well with the measured value of 60 cm−1 in Pb(Zr0.55Ti0.45)O3

solid solution25.
Figs. 1 and 2 also reveal that two peaks, rather than a single E(1TO) peak, exist in the 50 − 75 cm−1 range for

temperatures below ≃ 200 K – which is the critical temperature at which the R3m to R3c phase transition occurs.
These two peaks are denoted as E(1) and E(2) in the following. Interestingly, the Raman experiments of Refs. [12,13]
previously indeed reported the existence of two modes exactly within this frequency range, and only for temperature
below the R3m-R3c transition. Ref. [12] further determined that the upper mode significantly increases its frequency
as the temperature decreases while the lower mode only very slightly increases its frequency around 58 cm−1 when the
system is cooled down. The predictions shown in Figs 1 and 2 are in excellent agreement with all these experimental
findings. Reference [12] also believed that these two modes have E(TO) symmetry and that the lower mode originates
from the zone-boundary AFD mode.

Let us turn to the insight provided by our simulations, to check such beliefs and to better understand the reason
behind the existence of the E(1) and E(2) modes. Computing the complex dielectric responses in a basis in which
the new z-axis is parallel to the polarization reveals that E(1) and E(2) indeed have E(TO) symmetry – i.e., they
both correspond to oscillations of the electric dipoles perpendicularly to the spontaneous polarization. Moreover, the
sum of the electric dipole spectral weights of the E(1) and E(2) modes just below ≃ 200 K is nearly equal to that
of the E mode just above 200 K [see Fig. 1 (b)]. Such fact hints towards an interaction between the E mode and
another dynamical quantity as the culprit for the existence of the E(1) and E(2) vibrations. In order to prove that
such other quantity are the AFD distortions, Fig. 2 (c) displays εAFD (ν) at different temperatures. One can clearly
see that the AFD degrees of freedom have two natural frequencies in the 50 − 75 cm−1 range for any temperature
below 200K30, that exactly coincide with the frequencies of the E(1) and E(2) modes. On the other hand, only a
single frequency around ∼ 50 cm−1 can be found for the AFD dynamics above 200K, as indicated by Fig. 1(a) and
2(c). Such findings imply that, in the R3c phase, the fluctuations of the AFD degrees of freedom become coupled
with the transverse fluctuations of the FE degrees of freedom. The AFD mode acquires some polarity due to this
coupling – which explains why it can now be seen in the dielectric spectra (as the E(1) mode) below 200K– while
the “usual” E dielectric mode loses some polar character due to that coupling (which explains why the electric dipole
spectral weight of E(2) decreases below 200K, see Fig. 1 (b)). In other words, E(1) originates from the AFD motions
(as correctly guessed by Ref. [12]) once these motions are allowed to dynamically couple with the FE distortions31 –
that is once the AFD and FE degrees of freedoms both adopt a long-range order10,11. E(2) is the remaining signature
of the original E mode. We have also numerically find that the E(1) and E(2) modes both mostly originate from
the coupling between the E polar mode and the oscillations of the AFD motions perpendicular to the polarization’s
direction.

Let us now use our scheme to simulate the effect of a dc electric field applied along the polarization direction on
the E(1) and E(2) modes. Figs. 3(a) and (b) show the resonant frequencies and the relative square of the oscillator
strengths (extracted from the dielectric responses) of these two modes versus the magnitude of the electric field at
10K. Such figures reveal a “textbook” example of a so-called anticrossing28: the E(1) and E(2) modes exchange their
character as the field increases (i.e., the E(1) mode becomes less polar while the E(2) modes gains significant polarity)
while their frequencies never cross. We are not aware of any previously reported field-induced dynamical anticrossing
involving FE and AFD degrees of freedom. Note, however, that such anticrossing can be expected on symmetry
grounds since E(1) and E(2) have the same symmetry – namely, they are both E(TO) modes.

In summary, we developed a first-principles-based technique that accurately reproduces, and leads to an insight into,
reported dynamical features (at finite temperature and in the GHz-THz range) that are related to coupling between
FE and AFD motions. It can also provide predictions of dynamical effects involving such coupling. Interestingly, Eq.
(3) can also be put in use in other first-principles-based methods (such as the bond valence9) for studying dynamics of
materials exhibiting coupled FE and AFD degrees of freedom. Moreover, our proposed scheme can serve as a basis for
predicting dynamical properties of systems (such as BiFeO3) that not only exhibit couplings between ferroelectric and
antiferrodistortive motions, but also between ferroelectric and other degrees of freedom (such as magnetic dipoles).
We thus hope that the present work will deepen the knowledge of the important fields of ferroelectrics and dynamics.
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Fig. 1: (Color online) Temperature dependence of some dynamical characteristics in Pb(Zr0.55Ti0.45)O3 solid
solution. Panel (a) shows the νr resonant frequency of the lowest-in-frequency dielectric peaks for any temperature,
as well as, the resonant frequency of εAFD

x,x (ν) for temperature above 200K (denoted as “AFD mode”) found in our

simulations. The solid lines represent fittings by square-root laws (i.e., νr ∼ |T − Tc|
1/2) of the resonant frequency of

the E (1TO) mode and of the soft-mode above TC . Panel (b) displays the electric dipole spectral weight (extracted
from the dielectric response) of different modes (see text).

Fig. 2: (Color online) Complex responses of Pb(Zr0.55Ti0.45)O3 solid solution in the 20 − 100 cm−1 frequency
range, at different temperatures. Panel (a) and (b) display the real and imaginary part of the εx,x (ν) dielectric
response, respectively. Panel (c) shows the imaginary part of the AFD-related εAFD

x,x (ν) function of Eq. (3). The
displayed data correspond to a fit of the raw data by two classical damped harmonic oscillator (except at and above
T = 200 K, where we use a single oscillator because of the quality of the fit )26,27. The data for 50 K, 75 K, 100 K,
150 K, 200 K, and 300 K have been vertically shifted in Panel (a), (b) and (c) by 2500, 5000, 7500, 10000,12500 and
15000, respectively in order to distinguish them from the 10 K data.

Fig. 3: (Color online) Resonant frequency (Panel (a)) and relative square of the strength of the oscillator (Panel
(b)) of the E(1) and E(2) modes (as extracted from their dielectric peaks). Solid lines in Panels (a) and (b) represent
fittings by the eigenvalues and eigenvectors of a 2× 2 matrix, respectively. In this matrix, the two diagonal terms are
frequencies that linearly depend on the magnitude of the electric field (they are indicated by dashed lines in Panel
(a)), while the off-diagonal terms are constant frequencies associated with dynamical coupling.
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