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A first-principles-based effective Hamiltonian is used to compute linear and quadratic magneto-
electric (ME) coefficients in epitaxial (001) BiFeO3 thin films. Its predictions are analyzed within a
phenomenological model that provides analytical expressions of the ME coefficients in terms of po-
larization, as well as, dielectric and magnetic susceptibilities. Main discoveries are: (i) the quadratic
ME coefficient is dramatically enhanced by increasing the magnitude of the compressive strain within
the Cc phase, as similar to the previously reported enhancement of the linear ME coefficient in these
films; (ii) the enhancements of the linear and quadratic ME coefficients have the same macroscopic
origin, namely an increase in the dielectric permittivity; and (iii) the relative contribution of two

different free-energy terms on the total linear ME coefficient is extracted from the simulations. The
analytical expressions also help in understanding other ME effects.

PACS numbers: 75.85.+t;77.55.Nv;77.80.B-

Multiferroics possess coupled ferroelectric and magnetic orders1 and are currently receiving a lot of attention. These
materials can exhibit a magnetoelectric (ME) coupling that allows electrical properties to be tuned by a magnetic field
or, conversely, magnetic properties to be varied by an electric field. Several recent first-principles-based studies2–5

have focused on linear ME coefficients to gain a better understanding of such coefficients and to find materials/effects
leading to large ME couplings. In particular, it was found that enhanced linear ME responses can arise in highly-
compressed epitaxial BiFeO3 (BFO) thin films, as a result of structural softness2. Another kind of theory commonly
used to study ME effects gathers phenomenological approaches1,6–10. These latter schemes are based on analytical
expressions of the free energy, and typically only involve “straightforward” macroscopic quantities. They have the
potential to be very useful to interpret in a simple manner experimental, as well as, first-principles data in multiferroics.
For instance, they may reveal, in BFO films, (i) which precise macroscopic property leads to the reported optimization
of the linear ME coefficient2; and (ii) which free-energy terms play a role in the linear ME coefficient. As a matter of
fact, (at least) two different free energies can exist in multiferroics: one form that is proportional to a single product
between magnetization, polarization and antiferromagnetic (AFM) vector3,6,11 versus another free-energy term that
involves a product between the square of the polarization and the square of the magnetization12,13. To the best of
our knowledge, the relative contributions of these two free energies on the total linear ME coefficient of BFO is not
known, despite the importance of this material.

Moreover, we are not aware of any direct first-principles calculation yielding quadratic ME coefficients in any
multiferroic, while these coefficients are predominant over linear ME couplings in BFO systems4,14–17. It is thus
presently unknown if these quadratic ME coefficients can also be dramatically enhanced by varying the epitaxial
strain in BFO films, and, if so, what is the macroscopic reason behind it. Having a general analytical expression
for the quadratic ME coefficients as a function of straightforward macroscopic properties may also help in better
understanding magnetoelectricity in various multiferroics (including BFO).

The goal of this Rapid Communication is to provide answers to all the aforementioned issues. First-principles-
based calculations reveal that the quadratic ME coefficient is also optimized in compressed BFO films. Furthermore,
a phenomenological model used to analyze the ab-initio predictions (1) indicates that the previously reported en-
hancement of the linear ME coefficient2 has the same macroscopic origin than the presently discovered optimization
of the quadratic ME coupling, that is a strain-induced increase of the dielectric susceptibility; (2) reveals that two
different free energies are indeed involved in the linear ME coefficient of BFO films; and (3) even allows to extract
the relative contribution of these two free energies.

Here, we use the effective Hamiltonian approach of Ref. [4] to investigate (001) BFO films under compressive strain.
Its degrees of freedom are: the local soft-mode distortions in every 5-atom unit cell i, ui (which is directly proportional
to the local electrical dipole of cell i); the homogeneous strain tensor, {ηH}18; inhomogeneous strain-related variables,
vi

18; the ωi vectors whose directions are the axis about which the oxygen octahedron tilts in unit cell i, while their
magnitudes provide the angle of such tilting19; and the mi magnetic dipoles in the cells i14. All the parameters of
this effective Hamiltonian scheme are extracted from first principles. As done in Refs. [2,20,21], the only distinction
we assume between simulating a BFO bulk and an epitaxial (001) BFO film is that the latter is associated with the
freezing of some components of the homogeneous strain tensor. More precisely, mechanical boundary conditions of
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this film are mimicked by imposing that (in the basis for which the x-, y- and z-axis lie along the pseudo-cubic [100],
[010] and [001] directions, respectively) ηH,xy =ηH,yx = 0 and ηH,xx = ηH,yy = δ, with δ being the value forcing the
film to adopt the in-plane lattice constant of the substrate22,23. In practice, δ=(asub − abulk)/abulk, where asub is the
in-plane lattice parameter of the substrate and abulk is the 0K pseudocubic lattice constant of bulk BFO. The total
energy of the effective Hamiltonian scheme is then used in Monte-Carlo simulations, with up to 106 sweeps. Note that
first-principles-based effective Hamiltonians successfully reproduced important characteristics of bulk BFO, such as
its structural ground state, quadratic magnetoelectric coefficients, and Néel and Curie temperatures4,14,15. The latest
effective Hamiltonian developed for BFO4 is also able to reproduce the spin-canting structure of BiFeO3 films that
generates a weak magnetization (of the order of 0.025µB) along with a strong G-type AFM vector24.

Figures 1 show that this effective Hamiltonian approach predicts that up to a critical compressive misfit strain,
δcrit, the ground state of epitaxial (001) films is a Cc phase that is characterized by: (1) by a polarization lying along
[uuv] directions, with the out-of-plane component of the polarization increasing when increasing the magnitude of the
misfit compressive strain while the in-plane polarization adopts an opposite behavior; (2) oxygen octahedra tilting in
antiphase about [u′u′v′] directions, with v′ (respectively, u′) increasing (respectively, decreasing) with the magnitude
of δ; (3) a G-type AFM vector that remains perpendicular to the polarization and to the axis about which the oxygen
octahedra tilt for any compressive strain; and (4) a weak magnetization that rotates with δ (in order to stay orthogonal
to both the AFM vector and the axis about which the oxygen octahedra tilt4,25). For compressive strains larger in
magnitude than δcrit, the resulting ground state is characterized by (i) a strong out-of-plane polarization and (ii) and
a large tetragonal axial ratio. Items (1)-(4) and (i)-(ii), as well as, the strain-induced energetic crossing between Cc
and a strong ferroelectric phase, are all consistent with recent first-principles calculations2,20,21. On the other hand,
the strong ferroelectric phase we predict at high compression has the tetragonal P4mm space group. As a result, it
does not have any in-plane component of the polarization, unlike the monoclinic Cm state of Ref. [20]. It also does
not exhibit any tilting of the oxygen octahedra, unlike the monoclinic Cc phase of Refs. [2,21]. However, all these
first-principles calculations2,20,21 found that the P4mm phase is quite close in energy to these Cm and Cc states, and
that these latter monoclinic states both gradually transform into, and become, P4mm at high enough compressive
strain (i.e., of the order of -6 or -7%)26. It is also interesting to realize that Fig. 1(a) indicates that the Cc state can
survive for compressive strains larger in magnitude than δcrit

27. This feature is in agreement with Refs. [2,20], and
is relevant to our study because the linear ME coefficients of the Cc state were found to dramatically increase in the
strain region for which this Cc phase is “only” metastable2.

Figures 2(a) and 2(b) display the β311 quadratic and α31 linear ME coefficients at 10K in the Cc phase, respectively,
as predicted by our effective Hamiltonian approach – with the ‘1’, ‘2’ and ‘3’ index corresponding to the pseudo-cubic
[110], [11̄0] and [001] directions, respectively28. These coefficients are calculated by fitting the polarization-versus-
magnetic field curve by a polynomial of degree 2 for any δ and up to a field of 100 Tesla4,14,15. Figure 2(b) confirms a
finding of Ref. [2], namely that increasing the magnitude of δ within the Cc state leads to a spectacular enhancement
of the magnitude of the linear ME coefficient (note that our predicted magnitude of this coefficient is equal or larger
than 5ps/m for δ larger in magnitude than 5%, which agrees very well with the first-principles results of Ref. [2]).
Interestingly, Fig. 2(a) reveals that the β311 quadratic coefficient also considerably increases in magnitude at the same

time (note that we predict a magnitude of 0.3×10−19 s/A for β311 at zero strain, which is precisely the low-temperature
experimental value of BFO bulk16).

Let us now analyze the results of Figs. 2 via a general phenomenological model. For that, we first start with the
definition of the αij linear and βijk quadratic ME coefficients12:

αij =
∂Pi

∂Hj

= −
∂2Φ

∂Ei∂Hj

and βijk =
∂2Pi

∂Hj∂Hk

= −
∂3Φ

∂Ei∂Hj∂Hk

, (1)

where Φ is the free energy. Pi and Ei are the i-component of the polarization and of the electric field, respectively.
Hj represents the j-component of the magnetic field. The next step is to determine the terms of the free energy that
do not vanish in the derivations of Eqs.(1). To the lowest orders, such energetic terms are two-fold and are12:

Φ(1) =
∑

pq

λpqPpPpMqMq and Φ(2) =
∑

pqr

gpqrMpLqPr , (2)

where the sums run over the components of the magnetization (M), AFM vector (L) and polarization. λpq and gpqr

are two-rank and third-rank tensors, respectively, that depend on the symmetry of the crystal and are material’s
dependent. It is straightforward to demonstrate that inserting Eqs.(2) into Eqs.(1) gives:

αij = α
(1)
ij + α

(2)
ij with α

(1)
ij = −4ε0

∑
pq λpqPpχ

P
piMqχ

M
qj and α

(2)
ij = −

∑
pqr gpqrχ

P
riLqχ

M
pj ,
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and βijk = β
(2)
ijk = −4ε0

∑
pq λpqPpχ

P
piχ

M
qj χM

qk , (3)

where the (1) and (2) superscripts indicate that the corresponding coefficients originate from the Φ(1) and Φ(2) free
energies, respectively. ε0 is the dielectric permittivity of vacuum, and χP represents the dielectric susceptibility tensor

(that is, χP
pi = 1

ε0

∂Pp

∂Ei
). Finally, χM

qj are the elements of the magnetic susceptibility tensor, i.e. χM
qj =

∂Mq

∂Hj
.

Interestingly, our effective Hamiltonian approach predicts that, in the studied BFO film, χP
33 and χM

11 are the largest
elements of the dielectric and magnetic susceptibility tensor, respectively (such quantities are displayed in Fig. 2(c)
and 2(d)). As a result, one can rewrite Eqs. (3) for the ME coefficients shown in Figs. 2(a) and 2(b) as:

β311 = β
(2)
311 = −4ε0λ31P3χ

P
33χ

M
11χ

M
11 , (4)

and

α31 = α
(1)
31 + α

(2)
31 with α

(1)
31 = −4ε0λ31P3χ

P
33M1χ

M
11 and α

(2)
31 = −g123χ

P
33L2χ

M
11 . (5)

Figure 2(a) shows that one can indeed fit very well the computed β311 by Eq. (4) with a strain-independent λ31

coefficient equal to 4.8×10−3 SI. This equation, along with Figs. 1(b), 2(c) and 2(d), allow to prove that the increase
of the quadratic ME coefficient with strain is mostly due to the gain in the dielectric permittivity, when going towards

the boundary of the stability of the Cc phase. Interestingly and as revealed by Fig. 2(b), α
(1)
31 = −4ε0λ31P3χ

P
33M1χ

M
11

(using the λ31 coefficient extracted from the fit of β311) significantly differs from the computed α31 linear coefficient.
As a matter of fact and as indicated in Fig. 2(b), one needs to also incorporate the second part of the linear ME

coefficient (i.e., α
(2)
31 = −g123χ

P
33L2χ

M
11 , with a fixed, misfit-independent g123 coefficient equal to 0.6 × 10−4 SI) to

precisely reproduce the computed linear ME coefficient. Such finding reveals that the two free energies of Eqs.(2)
are both playing a role on the magnitude of the total linear ME coefficient of BFO. These two terms should thus be
both accounted for when studying ME couplings in BFO films13. Moreover, looking at the behavior of the properties
depicted in Figs. 1(b), 1(d), 1(e), 2(c) and 2(d) – and that are involved in the analytical expression of Eq. (5) –
reveals that the enhancement of the linear ME coefficient when increasing the magnitude of the misfit strain mostly
originates from the sudden increase of the dielectric susceptibility too29.

Interestingly, Eqs. (3) are applicable to any multiferroic and are very informative. For instance, one can immediately
realize that the quadratic ME coefficients “only” require the structural phase to be polar, and therefore do not need
the phase to be magnetically-ordered, in order to exist. On the other hand, Eqs.(3) tell us that having non-vanishing
linear coefficients is only possible in structural states that are magnetically-ordered. The linear ME coefficient reduces

to α
(1)
ij for ferromagnetic systems, while an AFM order leaves only α

(2)
ij as the non-zero contribution to the total αij

coefficient. Eqs (3) also reveal that α
(1)
ij and α

(2)
ij are both “activated” in spin-canted magnetic structures in which

a weak ferromagnetism coexists with a strong AFM vector (exactly as in BFO films below ≃ 640K24). In contrast,
cycloidal magnetic structures that result in the annihilation of the macroscopic magnetization and AFM vector can
not have any linear ME coefficients according to Eqs.(3) – as consistent with the case of BFO bulk17. The rather
simple expressions of Eqs (3) also indicate the “recipes” to follow to have strong ME coefficients. In particular,
large values of the dielectric and magnetic susceptibilities are automatically associated with large quadratic ME
coefficients, assuming a non-zero polarization. As a result, finding systems simultaneously possessing just above
300K a second-order ferromagnetic transition and a second-order ferroelectric transition is the ideal choice to generate

huge βijk coefficients at room temperature. Similarly, the expression of α
(2)
ij implies that an antiferromagnet will

have a large linear ME coefficient for temperatures below the Néel temperature for large values of the dielectric

susceptibility. A second-order or even tricritical ferroelectric transition occurring in an AFM phase will thus generate
giant linear ME effects. It is likely that Eqs. (3) that express linear and quadratic ME coefficients can further help
in understanding other magnetoelectric effects30 and can serve as a guide to find desired materials with optimal
magnetoelectric response.
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.
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FIGURE CAPTIONS

FIG.1 (color online). Predicted properties of epitaxial (001) BFO films at 10K in the Cc (filled symbols) and P4mm
(open symbols) structural phases, as a function of the misfit strain: the total internal energy per 5 atoms (Panel
(a)), averaged local soft-mode – which is proportional to the electrical polarization – (Panel (b)), average antiphase
tilting angle of oxygen octahedra (Panel (c)), G-type antiferromagnetic vector (Panel (d)), magnetization (Panel (e)),
and tetragonal axial ratio (Panel (f)). The x-, y- and z-axes are chosen along the pseudo-cubic [100], [010] and [001]
directions respectively. The tilting of oxygen octahedra and the magnetization are both found to vanish in the P4mm
state, while the G-type AFM vector is along the [11̄0] pseudo-cubic direction.

FIG.2. Other predicted properties of epitaxial (001) BFO films at 10K in the Cc state, as a function of the misfit
strain: the β311 quadratic magnetoelectric coefficient (Panel (a)), α31 linear ME element (Panel (b)), χP

33 dielectric
susceptibility (Panel (c)), and χM

11 magnetic susceptibility (Panel (d)). The dashed line in Panel (a) corresponds to
the fit of the data by Eq. (4). The solid line in Panel (b) represents the fitting by Eq. (5), while the dashed line

shows the fitting by the sole α
(1)
31 of Eq. (5). The ‘1’, ‘2’ and ‘3’ subscripts are associated with the pseudo-cubic [110],

[11̄0] and [001] directions, respectively.
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