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To explore conditions underlying the superconductivity in electron-doped TiNCl where Tc = 16
K, we calculate the electronic structure, Wannier functions and spin and charge susceptibilities us-
ing first-principles density functional theory. TiNCl is the first high-temperature superconductor
discovered in the α-structure of the layered transition-metal nitride family MNCl (M=Ti, Zr, Hf).
We construct a tight-binding model based on Wannier functions derived from the band structure,
and consider explicit electronic interactions in a multi-band Hubbard Hamiltonian, where the in-
teractions are treated within the random phase approximation (RPA) to calculate spin and charge
susceptibility. The results show that, consistent with TiNCl being a nonmagnetic material, spin
fluctuations do not dominate over charge fluctuations and both may have comparable impact on the
properties of the doped system.

I. INTRODUCTION AND BACKGROUND

High-temperature superconductivity has been a widely
pursued subject for condensed matter physicists for
over two decades. There are several classes of mate-
rials where unconventional superconductivity is found:
cuprates whose highest Tc’s remain unrivaled, the re-
cently discovered and intensively studied iron pnictides,
Na1−xCoO2 intercalated with H2O, BaBiO3 doped by K,
the Pu-based “115” heavy fermion series, and the tran-
sition metal nitride halide MNX (M=Zr, Hf; X=Cl, Br,
I). MNX crystallizes in two structures, labeled α and β.
The Zr and Hf members were found to be superconduct-
ing with unprecedented critical temperatures for nitrides
(15K, 25K) in the β-structure, which is isostructural to
SmSI, and contains double-honeycomb layers of alternat-
ing M and N atoms1. The sister compound TiNCl with α-
structure has now been discovered to superconduct (16K)
as well.2

Based on many examples now, layered structures seem
to favor high-temperature superconductivity. The re-
duced dimensionality promotes various instabilities as-
sociated with Fermi surface nesting. Due to electron-
electron interactions, many parent compounds of HTSCs
exhibit long-range magnetic order, such as antiferromag-
netism (AFM) in cuprates and iron pnictides. The AFM
order needs to be destroyed upon doping, by electrons
or by holes, to open the way for superconductivity. This
is not the case for non-magnetic MNX, which are band
insulators with a band gap of 2 − 4 eV, and the transi-
tion metal d states make up most of the lower conduction
bands3.

Both the α- and β-polymorphs are quasi-2D structures
with large interlayer spacing and weak van der Waals
coupling between layers. When doped with electrons,
AxMNX (A being alkali metals) remains insulating at
low concentration, then suddenly become superconduct-
ing at about x = 0.13 in HfNCl and x = 0.06 in ZrNCl,
and maintain a relatively constant Tc up to x = 0.5 [4].
The superconducting transition temperature can be as
high as 26 K, discovered in Lix(THF)yHfNCl5. It has
also been found that Tc may be correlated with the inter-

layer spacing, which can be tuned by intercalation of dif-
ferent sized molecules6. Also, the electron doping can be
substituted by ion vacancy of the Cl atoms with similar
superconductivity being found7. In a theoretical treat-
ment by Bill et al., the dynamical screening of electronic
interactions in these materials was modeled8,9 by con-
ducting sheets spaced by dielectrics.10 A fully open large
superconducting gap without nodes was observed with
tunneling spectroscopy.11–13

Experimental observations from several perspectives
confirm that MNX are not electron-phonon BCS super-
conductors: (1) measured isotope effects are small;14,15

(2) specific heat measurements16 indicate a small mass
enhancement factor; (3) the density of states at the Fermi
level is small (when electron doped), and Tc is almost in-
dependent of the doping level in the range 0.15 < x < 0.5.
As a feature peculiar to this system, Tc actually in-
creases as the metal-insulator transition at xcr=0.06 is
approached, rather than following the common dome
shape with doping. Linear response calculations also
agree on the small electron-phonon coupling constant17

that cannot account for the observed Tc. The impres-
sive high transition temperatures and easy tunability of
carrier concentrations (and sometimes effective dimen-
sionality) suggest there is potential to reach higher Tc in
this class.18

The possible candidates of pairing mechanism respon-
sible for the observed high Tc are spin and charge fluc-
tuations, which have been discussed by both experimen-
talists and theorists, but opinions remain controversial.
The specific heat measurement on LixZrNCl is suggestive
of relatively strong coupling superconductivity, based on
the observed large gap ratio and specific jump16 at Tc.
The inter-layer spacing dependence of Tc reveals the close
relation between the pairing interaction and topology of
the Fermi surface6, implying a spin and/or charge in-
duced superconductivity. The magnetic susceptibility
measurement of heavily doped Lix(THF)yHfNCl indi-
cates low carrier density and negligible mass enhance-
ment factor, in favor of charge fluctuations over the spin
fluctuations.19

A detailed measurement of the doping dependence of
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specific heat and magnetic susceptibility has been per-
formed on LixZrNCl and the data were compared with
calculations based on a model Hamiltonian20,21, which
shows correlation between Tc and magnetic susceptibil-
ity. Some change is occurring that affects both, but a
causal relationship has not been established. There have
been several band structure calculations for ZrNCl and
HfNCl that provide the basis for more specific studies,
mostly in the superconducting β-structure.3,22–24

Recently, Yamanaka et al
2 reported superconductivity

in the alkali metal intercalated α-TiNCl, with Tc up to
16.5 K. This is the first MNX compound found to be
superconducting in the α-structure. The lack of Fermi
surface nesting in α-LixTiNCl seems to exclude any dra-
matic magnetic fluctuations, and the lack of evidence for
local moment magnetism or temperature dependent sus-
ceptibility makes magnetic fluctuations an unlikely mech-
anism for pairing. Its low carrier density character is
potentially more interesting: weak screening in the back-
ground of highly charged ions (such as can be accounted
for together25), and the strong effect of two dimensional-
ity (2D) on collective charge excitations (the 2D plasmon
disperses as

√
q) suggest charge fluctuations as a more

likely pairing mechanism.

On the theoretical side, charge fluctuation induced
superconductivity has been discussed in the Hubbard
model26,27, the d-p model28, and has been applied
to study NaxCoO2 · yH2O

29,30 and organic molecu-
lar superconductors.31 Spin-fluctuation mediated pair-
ing has been discussed in relation to cuprate and heavy
fermion superconductivity by numerous authors; see Ref.
32. The studies have typically considered the strong in-
teraction regime. In the opposite limit, dynamic screen-
ing in the homogeneous electron gas has also been stud-
ied to assess the possibility of regimes of overscreening
that might result in pairing.33–35 Charge fluctuation me-
diated pairing in real (inhomogeneous) systems but not in
the strong interaction limit have been been addressed,8,9

though less often due to the numerous (but interesting)
complications that arise.

In one way or another, almost all proposed mechanisms
focus on the “susceptibility loop” diagram as providing
the generalized boson that provides attraction and hence
pairing. This loop, which occurs in the electronic self-
energy diagram, has attracted much attention, and ap-
proaches from the ab initio, density functional viewpoint
have gained attention in recent years due to sophisticated
codes, improved algorithms, and ever increasing compu-
tational power. Concern in d-electron compounds has
extended from the susceptibility (dielectric screening and
the magnetic analog) to its effects on the electronic exci-
tation spectrum itself36,37 and subsequently on the fur-
ther effects on the susceptibility (mostly focusing on the
gap-widening feature).38,39 The various approximations
that have been tried is reflective of the fact that, in the
electron-electron interaction, there is no small parameter
that allows controlled perturbation-theoretic procedures.

It is evident that a more detailed investigation of the

electronic structure and dynamical spin/charge suscepti-
bility is needed to study the superconducting mechanism
in α-TiNCl. In the present work, we carry out a calcu-
lation of spin and charge susceptibilities using a many-
body Hamiltonian, based on a realistic band structure
calculated by density functional theory and taking into
account explicitly on-site (Hubbard U) repulsion, inter-
site (extended Hubbard) charge repulsion, Hund’s rule
coupling, and interorbital “pair hopping” processes in a
multiband system. These interactions are based on the
random phase approximation, which should be reason-
ably reliable in systems like these where vertex correc-
tions should not be large. It can be noted that the (exact)
density functional expression for the static susceptibility
assumes an RPA-like form,40 with a well-defined prescrip-
tion of the screened (and correlated) Coulomb interaction
in the denominator. Our local orbital basis enables a di-
rect separation of contributions from different orbitals,
and among other findings we show that structure of the
susceptibility in wavevector q is strongly affected by ma-
trix elements.

II. CRYSTAL STRUCTURE

The α-structure2 of the MNX class of compounds, of-
ten called the FeOCl structure, is shown in Fig. 1, with
structural data given in Table I. The α-structure TiNCl
belongs to space group Pmmn (#59), with 6 atoms per
unit cell occupying the following sites: Ti(2b) (0,1

2
, zTi),

N(2a) (1
2
, 1

2
, zN) and Cl(2a) (0,0,zCl). The generators of

Pmmn are two simple reflections x → −x and y → −y,
and the non-symmorphic reflection z → −z followed by
a (1

2
, 1

2
, 0) translation.

The Ti-N net within TiNCl is topologically equivalent
to that of a single NaCl layer. There is strong buckling
this Ti-N net perpendicular to the b direction, such that
neighboring chains which are directed along a differ in
height. These chains are themselves somewhat buckled,
all of this leading to the placement of Ti ions ±0.8 Å from
the average height, and N ions ±0.4 Å from the average
height. The Ti ions are two-fold coordinated by Cl ions
lying in the y−z plane; the breaking of square symmetry
of the TiN layer by its strong buckling, can be regarded
as “due to” this positioning of the Cl ions.

Finally, each Ti is six-fold coordinated by four N and
two Cl atoms. The two Ti-N bonds have very close
lengths of 2.008 Å and 2.015 Å, respectively, though the
N ions lie at different heights in the x and y directions.
Very roughly, the Ti ion is in octahedral coordination (see
Fig. 5 of Ref. [2]), with approximate axes (1,0,0) (toward
two neighboring N ions), and (0,1,1) and (0,1,-1) (each
toward one N and one Cl ion), and indeed a rough t2g−eg

splitting of the Ti 3d states results. The Ti-Ti distance
is 3.003 Å, not much larger than that of Ti-N due to the
buckled layer structure, so in the tight-binding model we
construct in the next section, the hoppings between Ti
sites are also important.
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FIG. 1. Crystal structure of α phase TiNCl (Pmmn, #59).
Viewpoint is along the b-axis, perpendicular to the buckling
of the Ti-N net. The buckled Ti-N layer leaves each Ti coor-
dinated (roughly octahedrally) by 4 N and 2 Cl atoms. The
Cl coordinates with Ti along the b-axis, which accounts for
its orthorhombic structure.

The experimental lattice constants and atomic posi-
tions, and relaxed structure parameters with respect to
total energy, which are used in our calculation, are listed
in Table I. The calculations (see below) confirm the ex-
pected formal valences. The calculated lattice constants
are 1-1.5% smaller than the experimental values, but this
has little effect on the electronic structure. TiNCl is still
calculated to be an ionic insulator and its theoretical gap
is similar to what is calculated using the experimental
lattice parameters.

a b c zTi zN zCl

Expt. 3.938 3.258 7.800 0.1011 0.0509 0.3322

Theory 3.891 3.200 7.699 0.1011 0.0522 0.3384

TABLE I. Lattice constants (in units of Å) and internal struc-
tural parameter z for the three atoms. Experimental values
are from Ref. 2. The theoretical values are our optimized
values.

III. BAND STRUCTURE AND WANNIER

FUNCTIONS

A. Methods

The band structure has been computed by the full-
potential local orbital minimal basis set method im-
plemented in the FPLO code.41 The exchange correla-
tion is treated by the generalized gradient approximation
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FIG. 2. (color online) Band structure of TiNCl along
the orthorhombic symmetry lines, calculated with the GGA
exchange-correlation functional. The thick “fatbands” are the
tight-binding representation determined by the Wannier func-
tions labeled in the inset, chosen to represent accurately the
bands at and around the Fermi level after doping.

GGA96,42 and the k-mesh used is 16×16×8. The effect
of spin-orbit coupling is small so calculations were done
in the scalar relativistic scheme.

B. Electronic Structure

The calculated band structure of pristine TiNCl is
shown in Fig. 2 and is generally consistent with that
presented by Yamanaka et al.

2 plotted along other lines
in the zone. It is an insulator with a calculated energy
gap of 0.5 eV. The real band gap may be as large as 1 eV,
based on the common observation that LDA and GGA
underestimates gaps in insulators. The band structure
exhibits clearly a two-dimensional feature, gauged from
the general flatness of bands along the Γ − Z direction
perpendicular to the layers. The states on either side
of the gap are very two-dimensional, considering the ex-
treme flatness of those bands along Γ-Z.

The twelve valence bands are made of six N 2p and six
Cl 3p states, and the conduction band is comprised of ten
Ti 3d states. The 3d bands show a “t2g−eg” crystal field
splitting (three states below and two above), that arises
in spite of the nonequivalence of the five 3d orbitals in
this structure. As can be seen in the partial density of
states plotted in Fig. 3, there is 3d weight in the valence
bands and N weight in the conduction bands, reflecting
substantial N 2p - Ti 3d hybridization in addition to the
ionic character reflected in their formal charges.

Whereas the 3d environment appears locally to be
pseudo-cubic, the low site symmetry severely splits the N
2p states, with 2px and 2py becoming quite distinct. The
top valence band is primarily N 2px character, which ex-
tends down to −5 eV. The N py and pz bands have their
maximum 1 eV lower, and the Cl 2p weight is concen-
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FIG. 3. (color online) Total and partial density of states of
TiNCl, showing the Ti 3d - N 2p mixing. The inset figure is
a blown-up of the region near Fermi level.

trated at the bottom of the valence bands.
The inset in Fig. 3 shows an enlargement of the to-

tal and atom-projected DOS around the Fermi energy.
The onset at 0.5 eV and the smooth slope to 1.2 eV is
characteristic of a two-dimensional band which becomes
non-parabolic away from the band edge, and strongly so
in the 1.2-1.5 eV region. At 1.5 eV the onset of the sec-
ond band, with its much heavier mass, is clear. However,
the DOS does not have the sharp step at the top of the
valence band that is characteristic of a 2D system.

The Ti 3d orbitals are lifted in degeneracy entirely by
the orthorhombic point group site symmetry, but as men-
tioned above the conduction bands are separated by a
crystal field analogous to cubic t2g − eg splitting. Check-
ing the band character reveals that, in terms of 3d or-
bitals expressed in terms of the orthorhombic coordinate
axes, dxy, dz2 , dxz have most of the weight in the 0.5 − 3
eV region, and dyz, dx2−y2 are in a higher energy window
of 4 − 6 eV. Thus it is feasible, in a low-energy tight-
binding model, to include only Ti dxy, dz2 , dxz and N 2px

states. Plotted on top of the DFT bands in Fig. 2 is
the tight-binding fit using the Wannier functions. The
representation of the full t2g complex is excellent, as is
that of the top of the upper valence band.

The distance between TiNCl slabs and the weak inter-
layer coupling allows intercalation of alkali atoms, which
act as electron donors. This feature validates the rigid
band shift approximation in simulating doping. Doped-in
electronic carriers will go into the single lowest conduc-
tion band, which is quite two-dimensional as mentioned
above but is dispersive within the plane. This band has
strong Ti 3dxy character, similar to the in-plane 4d char-
acter in ZrNCl. The Fermi surface of electron-doped
TiNCl is an oval centered at the Γ point. This point
has some relevance for the superconductivity, since with
a single Fermi surface there can be no nesting of discon-
nected Fermi surfaces, such as are proposed21 to play an
important role in many other layered superconductors,

such as Fe pnictides, as well as β-structured ZrNCl and
HfNCl. The similar characters of TiNCl and ZrNCl, and
their similar values of Tc, suggest that possible nesting
of Fermi surfaces is not an important feature for pairing
in the materials.

C. Wannier Functions

Because the susceptibilities we will calculate have a
number of local orbital matrix elements equal to the 4th
power of the number of orbitals retained, we have calcu-
lated selected low-energy Wannier functions (WFs) that
will be used to construct our many-body Hamiltonian,
using projections of the Bloch states onto the correspond-
ing atomic orbitals. The four atomic orbitals mentioned
above allow us to reproduce the bands on either side of
the gap: Ti dxy, dz2 , dxz and N px. While the Ti “t2g” or-
bitals are not optimal in diagonalizing the local “octahe-
dral” symmetry, they and their relation to the 2px orbital
are more readily visualized. Since the RPA calculations
described below were performed in the electron-doped re-
gion where the Fermi level is shifted into the conduction
bands, considering only the N px WF in the valence band
is sufficient to understand the q-dependence. Aside from
being farther removed in energy, the remainder of the
valence bands form a complex of bands spread uniformly
over the zone, contributing little to any q-dependence.

The Ti-N layer is strongly buckled and there are 2 Ti
and 2 N atoms per unit cell with different z coordinates.
the actual tight-binding model contains 8 bands and 8
WFs, but WFs on symmetry related ions are symmetry
equivalent. Overall the Wannier orbitals generate a well
represented band structure compared to the DFT bands
within the energy window of interest, as shown in Fig. 2.

The hopping amplitudes of the Wannier orbitals are
listed in Table II. Hopping integrals smaller than 0.05
eV were not listed because they only marginally alter
the band structure and obfuscate interpretation. The
on-site energies of the “t2g” orbitals are 2.25 ± 0.08eV,
lying within the largest peak of the DOS. The px energy
is −3.22eV, in the middle of the valence bands. Thus
there is a 5.5eV separation of valence and conduction
band centers, and a gap of 0.5eV.

The dispersion within the pair of valence px bands
is represented largely by hopping between neighboring
px WFs (recall, the px WF contains some d character,
and vice versa), both being about 0.5eV. Hopping am-
plitudes to the d orbitals are tpd ≈ 0.2 − 0.3eV. In the
conduction bands, the dxy orbital has hopping amplitude
|t| ∼ 0.17eV to its partner within the cell as well as to
its replicas in neighboring cells in both directions. The
hopping to the px orbital (0.33 eV) is twice as large,
and apparently is the dominant contributor to the 3.5eV
bandwidth. Due to the relative orientations, hopping to
the other d WFs is no more than half as large as the
dxy − dxy one. The other two d WFs form rather nar-
row bands, reflected by smaller hopping amplitudes; note
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that both have hopping to the px orbital of 0.21−0.24eV.

(µ, ν) [0, 0, 0] [1, 0, ∆z] [0, 1, ∆z] [1, 1, ∆z] [2, 0, 0] [0, 2, 0]

(dxy, dxy) 2.33 −0.16 −0.17 −0.18

(dxy, dz2) −0.08

(dxy, dxz) 0.07 −0.11

(dz2 , dz2) 2.18 −0.05

(dz2 , dxz) 0.19 0.07

(dxz, dxz) 2.25 −0.05 0.13

(dxy, px) −0.33

(dz2 , px) 0.24 0.22

(dxz, px) 0.21

(px, px) −3.22 0.51 0.47 0.14

TABLE II. Nearest, 2nd, and 3rd neighbor hopping integrals
in units of eV. The hopping vectors are in units of [a/2, b/2, c],
and ∆z represents the difference between the z coordinates of
the two orbitals. This representation is purely two-dimension
(no coupling along the c axis).

IV. MANY-BODY HAMILTONIAN AND

RANDOM PHASE APPROXIMATION

The random phase approximation (RPA) applies an
interaction to the non-interacting Hamiltonian

H0 =
∑

k,ab

Hk
abc

†
k,ack,b, (1)

where a, b are composite orbital and spin indices of the
basis Wannier orbitals. The interaction Hamiltonian, in
general, is the following symmetric form

H1 =
1

2

∑

i

∑

abcd

Uabcdc
†
iacibc

†
iccid+

∑

〈i,j〉

∑

abcd

Vabcdc
†
iacibc

†
jccjd,

(2)
where U and V represent on-site and inter-site (only
nearest neighbors) interactions, respectively. (2) can be
Fourier transformed into

H1 =
1

2N

∑

kpq

∑

abcd

Fabcd(q)c†k,ack+q,bc
†
p+q,ccpd, (3)

in which Fabcd(q) = Uabcd + γ(q)Vabcd is the interaction
kernel matrix. In the second term, γ(q) =

∑

l eiq·Rl

(l running over the nearest neighbor pairs of sites) is
the structure factor, which brings in q-dependence into
Fabcd(q). The bare susceptibility is calculated as

χ0
abcd(q, ω) =

∑

k

Gad(k, ω)Gcb(k + q, ω), (4)

where Gab(k, ω) is the non-interacting Green’s function

Gab(k, ω) =
∑

n

〈a|nk〉〈nk |b〉
ω + µ − εnk

, (5)

and the summation is taken over all bands. Applying
RPA, which sums up the higher order diagrams in the
geometric series, we have the full susceptibility presented
in a matrix equation

χ(q, ω) = [I + χ0(q, ω)Re F (q)]−1χ0(q, ω) (6)

where a matrix χ is formed from χabcd by contracting the
first pair of indices and the last pair of indices.

So far we have derived a very general formula for an ar-
bitrary interaction Hamiltonian. To study our case, next
consider a more specific model in the form of an extended
Hubbard Hamiltonian, following Kuroki’s model43, but
add an extra inter-site interaction term:

H1 =
∑

i



U
∑

a

nia↑nia↓ + U ′
∑

a6=b

∑

σ,σ′

niaσnibσ′ (7)

−J
∑

a6=b

Sia · Sib + J ′
∑

a6=b

c†ia↑c
†
ia↓cib↓cib↑





+
∑

〈i,j〉

∑

a,b

Vabnianjb,

in which a, b are orbital indices, i, j are site indices of
the lattice, and σ is the spin index. U is the intra-orbital
Coulomb repulsion, U ′ is the inter-orbital Coulomb inter-
action, tµν

ij is the hopping between Wannier orbitals, Vab

is the inter-site Coulomb interaction between orbitals a
and b, J is the Hund’s rule coupling, and J ′ is referred to
pair hopping between orbitals. From this Hamiltonian,
the susceptibility is calculated by

χS(ω,q) =
χ0(ω,q)

I − S(q)χ0(ω,q)
, (8)

χC(ω,q) =
χ0(ω,q)

I + C(q)χ0(ω,q)
.

The interaction matrices S(q) and C(q) take the form:

Sabcd =



















U, a = b = c = d

U ′, a = c 6= b = d

J, a = b 6= c = d

J ′, a = d 6= b = c



















, (9)

Cabcd =



















U + 2Vac Re γ(q), a = b = c = d

−U ′ + J, a = c 6= b = d

2U ′ − J + 2Vac Re γ(q), a = b 6= c = d

J ′, a = d 6= b = c



















,

where U , U ′, J , and J ′ terms appear only if all indices
are orbitals on the same site. Finally, we can also cal-
culate the macroscopic susceptibilties by performing a
summation over the orbital indexes:

χmac(q, ω) =
∑

ijkl

Sijχijkl(q, ω)Skl, (10)

in which Sij is overlap matrix, and in our case it has the
form of delta-function δij .
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V. SPIN AND CHARGE SUSCEPTIBILITY

With our model just constructed, we calculate the spin
and charge susceptibilities. The model is a multi-band
extended Hubbard model on a 2D rectangular lattice
with 4 sites (two Ti and two N) per unit cell. For the
on-site interaction terms, we use Udd = U ′

dd = 1.5 eV,
Upp = 1.0 eV, and J = J ′ = 0.2 eV. These values are
somewhat smaller than might be used in a traditional
Hubbard model calculation; this is partly to compensate
for the fact that RPA has a tendency to overestimate the
strength of the interaction due to the lack of the self-
energy correction.43 Moreover, we are using WFs rather
than atomic orbitals, for which the extension onto neigh-
boring sites will suppress the intra-atomic interactions U
and J .

For inter-site interactions, we assume Vac to be spin
and orbital independent, and that it only depends on
the distance between the two sites. Taking into account
the Ti-N and Ti-Ti distances mentioned above, we use
VTi−N = 0.5 eV (nearest neighbor), VTi−Ti = 0.3 eV
(2nd nearest neighbor). Since the Wannier functions
have contributions from neighboring sites, it is reason-
able to set the inter-site Coulomb repulsion V slightly
larger than traditionally used for atomic orbitals. The
calculation is done at T = 0.02 eV (220K) and ω = 0,
with a k-mesh of 40× 40× 4 and q-mesh of 20× 20× 2.
The occupation is set at 4.3, simulating x = 0.15 electron
doping in A0.15TiNCl (since there are two formula units
per unit cell) by raising the Fermi level into the lowest
conduction band.

-1 -0.5  0  0.5  1

-1

-0.5

 0

 0.5

 1

 0

 10

 20

 30

 40

 50

 60

FIG. 4. (color online) The spectral function −ImG(k, ω = 0)
in the kx− ky plane, showing the oval (nearly circular) Fermi
surface for x=0.15 electron doping.

Figure 4 shows the magnitude of the imaginary part
of Green’s function, which provides a view of the Fermi
surface. With a simple, nearly circular Fermi surface like
this, the bare susceptibility is expected44 to be isotropic
out to q = 2kF , with a relatively constant plateau be-
havior inside 2kF radius. The inter-site Coulomb inter-
action can give rise to charge fluctuation, creating collec-
tive electron motion and possible charge ordering. Com-
petition between on-site and inter-site interaction of d
electrons can lead in principle to a frustration of both
spin and charge ordering. The hybridization between d
and p orbitals opens another channel, that of a charge
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FIG. 5. (color online) Representative orbital spin susceptibil-
ities (units: 1/eV ). In the basal plane, the axis on the left
(longer in perspective) is qx axis (in units of π/a), and the
one on the right (shorter) is qy axis (in units of π/b). (a)
χS

1111 (b) χS
1133 (c) χS

1177. Note that the maximum in χS
1133

is located at (π/a, 0, 0) and not at 2kF . Note the different
vertical scales on the panels.

transfer instability. One of the interesting questions is
whether some combination of these processes can create
excitations that can pair up electrons, analogous to the
behavior found in a d-p model in the limit of infinite U
and nearest neighbor hybridization28.

In Figure 5 some representative spin susceptibilities
in the orbital representation are plotted on the two-
dimensional basal plane (qz = 0) in the BZ. Since our
hopping integrals have the units of eV , the susceptibili-
ties are in the units of 1/eV . To clarify, we denote the
orbitals by numbers in the order: (1)Ti1-dxy, (2)Ti2-dxy,
(3)Ti1-dz2 , (4)Ti2-dz2 , (5)Ti1-dxz, (6)Ti2-dxz, (7)N1-px,
(8)N2-px. The largest spin susceptibility is found for
χS

1111 (intersite, xy ↔ xy) which has approximate 4-fold
symmetry for magnetic fluctuations of the same orbital
dxy on Ti sites. The anisotropic behavior of χS

1133 (on-
site, xy ↔ z2) comes from the orthorhombic symmetry
of the lattice, i.e. a 6= b, which brings in anisotropic
q-dependence, in this case strongly so. The spin fluc-
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FIG. 6. (color online) Representative charge susceptibilities
in the full Brillouin zone. (a) χC

1111 (b) χC
1177. The latter

quantity is hardly distinguishable from its spin counterpart.
Note the different vertical scales on the panels.

tuations between d and p orbitals χS
1177 have a sizable

overall magnitude, comparable to d − d fluctuation, but
small variation with q, because four neighboring N atoms
have almost the same distance to Ti. Due to the lack of
Fermi surface nesting, there is no divergent behavior in
the spin susceptibility, presenting different physics from
the β-HfNCl which has two circular Fermi surfaces lo-
cated at two high-symmetry (K) points in the BZ which
can provide near perfect nesting.

Representative charge susceptibilities are shown in Fig-
ure 6. Often they have similiarities to the spin suscep-
tibilities, with comparable but somewhat smaller magni-
tudes. It is known that in an extended Hubbard model on
a square lattice, at zero frequency, χS and χC have simi-
lar q-dependence and only vary in magnitude.45 Without
the long-range Coulomb interaction, charge fluctuation
will always be smaller than spin fluctuation because of
the different signs in the RPA formula. The difference
between χS and χC will become more apparent at non-
zero ω. The q-dependence of χC is similar to that of χS

but shows somewhat more structure in χC
1111. Note that

the magnitude of χC
1111 is only half that of χS

1111. The
spin and charge fluctuations within the N p-channel are
very small since the p orbitals are fully occupied so fluc-
tuations only happen as a second order effect. However,
the presence of the N p band very close to the lowest
d conduction band opens an additional channel for fluc-
tuations between them (χS

1177, Fig. 5c and χC
1177, Fig.

6b).
To close the comparison, we show the macroscopic sus-

ceptibilities in Figure 7. The imprint of 2kF is evident.

-1

-0.5

 0

 0.5

 1 -1

-0.5

 0

 0.5

 1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

(a)

-1

-0.5

 0

 0.5

 1 -1

-0.5

 0

 0.5

 1

 0.2

 0.4

 0.6

 0.8

 1

(b)

-1

-0.5

 0

 0.5

 1 -1

-0.5

 0

 0.5

 1

 0.1

 0.2

 0.3

 0.4

 0.5

(c)

FIG. 7. (color online) Macroscopic susceptibility: (a) bare;
(b) spin; (c) charge. Note the strong deviation from square
symmetry.

Beyond 2kF , the susceptibilities decrease slightly and
with (near) square symmetry. Inside 2kF , the variation
is greater and displays the rectangular symmetry of the
lattice. The overall spin enhancement of the macroscopic
susceptibility (χS(q)/χ0(q)) near q = 0 is about 1.4. For
the model with the realistic parameters considered here,
our test calculations show that χS will approach diver-
gent behavior when U ∼ 4 eV. Since TiNCl has wide 3d
bands, it is unphysical to use U anywhere near 4 eV (we
are using 1.5 eV), so strong spin fluctuation is unlikely
to occur in this material. The macroscopic charge sus-
ceptibility has smaller magnitude and q-dependence, but
will show divergent behavior when inter-site interaction
V is much larger than U , but that regime is unrealistic
for the case studied here. Overall, both spin and charge
susceptibilities show moderate enhancements compared
to the bare susceptibility, without any approach to an
instability toward spin or charge ordering.
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VI. SUMMARY

In this work we have constructed a many-body ex-
tended Hubbard model based on a realistic band struc-
ture obtained from density functional theory calcula-
tions. The random phase approximation was applied
to obtain the spin and charge susceptibilities. In a sys-
tem like α-TiNCl, where the crucial ingredients of high-
temperature superconductivity, such as strong electron-
phonon coupling and good Fermi surface nesting, seem to
be missing, spin and charge fluctuations are the remain-
ing candidates. The Wannier local orbital basis is both
a physical basis, building in bonding effects, and it pro-
motes the study of orbital-dependent contributions to the
susceptibilities. These orbital-dependent matrix element
effects are very strong, with the character of the electron
and hole bands determining the strength and character
of the q-dependence.

Our calculations show that the spin and charge en-
hancements of susceptibilities, both intra-band and inter-
band, are modest in magnitude due to moderate correla-
tions. However, spin and charge fluctuations can produce
substantial values possibly capable of encouraging elec-
trons to pair. One of the most detailed studies of such
effects is that of Monthoux and Lonzarich,32 who note
a “surprisingly rich behavior even for out chosen sim-
ple tight-binding band.” Generalizing to the multiband
system with intersite interaction that we have treated
seems futile; seemingly innocuous changes in interaction
strengths or doping level, or perhaps even the underly-
ing atomic structure, may have appreciable effect on the
resulting phenomena, so realistic models must become
increasingly more material-specific to be useful in under-
standing superconducting tendencies.

Although spin fluctuations, from our calculations, are
present to some degree in α-TiNCl, it is worth repeat-
ing that the physics seems very different from the β-
structure counterparts (no Fermi surface nesting) even
though both are nonmagnetic and seem similar in many
ways. This class of transition metal nitrides is apparently
quite distinct from the recently discovered Fe pnictides
where magnetism is a dominating feature in parent com-
pounds. As the nonmagnetic nature of TiNCl and other
MNX materials indicates, as well as seen from the re-
sults from our RPA calculation, charge fluctuations may
play the important role in superconductivity in these sys-
tems, rather than spin fluctuations. Simply put, we do
not have a clear understanding of how superconductiv-
ity arises from the fluctuations, as with all other high-Tc
families.
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