This is the accepted manuscript made available via CHORUS. The article has been published as:

Fermi surface and in-plane anisotropy of the layered organic superconductor k_\{L\}-(DMEDO-

TSeF)_\{2\}[Au(CN)_\{4\}](THF) with domain structures
Tadashi Kawamoto, Takehiko Mori, Yamaguchi Takahide, Shinya Uji, David Graf, James S.
Brooks, Takashi Shirahata, Megumi Kibune, Hiroko Yoshino, and Tatsuro Imakubo
Phys. Rev. B 83, 012505 - Published 28 January 2011
DOI: 10.1103/PhysRevB.83.012505

Fermi surface and in-plane anisotropy of the layered organic superconductor $\kappa_{\mathrm{L}}-(\mathrm{DMEDO}-\mathrm{TSeF})_{2}\left[\mathrm{Au}(\mathrm{CN})_{4}\right](\mathrm{THF})$ with domain structures

Tadashi Kawamoto*
Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Takehiko Mori
Department of Chemistry and Materials Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
Yamaguchi Takahide and Shinya Uji
National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan

David Graf and James S. Brooks
National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32310, USA

Takashi Shirahata, ${ }^{\dagger}$ Megumi Kibune, Hiroko Yoshino, and Tatsuro Imakubo ${ }^{\ddagger}$ Imakubo Initiative Research Unit, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan

Abstract

The Fermi surface of the layered organic superconductor $\kappa_{\mathrm{L}}-(\mathrm{DMEDO}-\mathrm{TSeF})_{2}\left[\mathrm{Au}(\mathrm{CN})_{4}\right](\mathrm{THF})$ has been investigated, where DMEDO-TSeF is dimethyl(ethylenedioxy)tetraselenafulvalene. Band structure calculations show that the fundamental Fermi surface is not circular, but elliptical with an eccentricity of 0.76 , leading to a large orbital overlap in the extended Brillouin zone. This symmetry is lowered by a structural phase transition at 209 K where domains form. The magnetic breakdown orbit is observed in the Shubnikov-de Haas oscillations under the low field region, consistent with the small energy gap at the zone boundary. The observation of the Shubnikov-de Haas effect shows that the present compound has a clean electronic system despite of the domain structures.

PACS numbers: $74.70 . \mathrm{Kn}, 71.18 .+\mathrm{y}, 74.25 . \mathrm{Jb}$

The κ-type molecular arrangement in Fig. 1 is the basis for the highest T_{c} materials among organic superconductors, ${ }^{1}$ and has been recognized as an almost ideal two-dimensional system. In the κ structure, the donor molecules form face-to-face and head-to-tail orthogonal dimers, where the dimer pairs are approximately 90° with respect to each other. Recently, a family of κ-type organic superconductors of the form κ-(DMEDO-TSeF) $)_{2}\left[\mathrm{Au}(\mathrm{CN})_{4}\right]$ (Solvent) has been developed. ${ }^{2,3}$ With the solvent tetrahydrofuran (THF), we obtain two phases which have the same chemical composition, $\kappa_{\mathrm{L}^{-}}$and $\kappa_{\mathrm{H}^{-}}(\mathrm{DMEDO}-\mathrm{TSeF})_{2}\left[\mathrm{Au}(\mathrm{CN})_{4}\right]$ (THF) as shown in Fig. 1. Most organic superconductors are clean single crystals; the donor molecules and anions are in ordered states. ${ }^{1}$ Although the THF molecule of the κ_{H} phase (onset $T_{c}=4.8 \mathrm{~K}$) is ordered even at room temperature, THF in the κ_{L} phase (onset $T_{c}=3.0 \mathrm{~K}$) is disordered due to mirror symmetry. We have determined the structural phase transition in the κ_{L} phase; the orthorhombic system (Pnma) changes to the monoclinic domain structure with the space group $P 2_{1} / n 11$ below the distortion temperature $T_{d}=209 \mathrm{~K} .{ }^{4}$ In other words, the b axis tilts in the $b c$ plane in real space [Figs. 1(c) and (d)]. The κ_{L} phase is, to our knowledge, the only organic superconductor with a crystallographic domain structure.

The present paper compares the calculated energy band structure with the experimental results from the Shubnikovde Haas (SdH) effect.

Single crystals were prepared by electrocrystallization in RIKEN. ${ }^{2}$ The energy band structure was calculated on the basis of the extended Hückel method and the tight-binding approximation. ${ }^{5}$ The magnetoresistance was measured by the four-probe method along the b^{*}-axis (the interlayer resistance) with ac current ($20-200 \mathrm{nA}$). The SdH measurements were performed using a superconducting magnet at NIMS, and high field measurements above 18 T were performed in a resistive magnet at the NHMFL in Tallahassee.

The calculated transfer integrals at room temperature are $t_{\mathrm{b} 1}=-356.8, t_{\mathrm{b} 2}=-231.3, t_{\mathrm{p}}=-79.6$, and $t_{\mathrm{q}}=$ 55.8 meV [Fig. 1(b)]. $\left|t_{\mathrm{b} 2}\right|$ is larger by a factor of ~ 3 than $\left|t_{\mathrm{p}}\right|$, which comes from the Se atoms in the donor molecule and the large dihedral angle $\left(103.0^{\circ}\right)$ of the donor between dimers; this relation differs from that of κ-(BEDT-TTF) $)_{2} X$ superconductors having $\left|t_{\mathrm{b} 2}\right| \sim\left|t_{\mathrm{p}}\right|,{ }^{6}$ where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene and X is an anion. The κ-type conductors are reduced to a triangular lattice of dimers with anisotropic transfers t and t^{\prime} as shown in Fig. 2(a), where $t=\left(\left|t_{\mathrm{p}}\right|+\left|t_{\mathrm{q}}\right|\right) / 2$ and $t^{\prime}=\left|t_{\mathrm{b} 2}\right| / 2 .^{7}$ This model gives a square lattice in the $t^{\prime} / t=0$ limit, but a one-dimensional chain in the opposite limit $\left(t^{\prime} / t=\infty\right)$. For the κ-(BEDT-TTF) $)_{2} X$ superconductors, t^{\prime} / t is between 0.58 and $1.1,{ }^{1}$ and falls in between the square and triangular lattices. Since $\left|t_{\mathrm{b} 2}\right|>\left|t_{\mathrm{p}}\right|$, the present compound with

FIG. 1: (a) DMEDO-TSeF and THF molecules. Crystal structure of the κ_{L} phase projected along the molecular long axis both at (b) $T>T_{d}$ and at (c) $T<T_{d}$. A shaded circle both in (b) and (c) represents a dimer. (d) Schematic representation of the twinning structure. The domain wall is parallel to the $a c$ plane of the prototype lattice, i.e., the conducting sheet.

FIG. 2: (a) The dimer model for the κ-type conductors. The open circles represent dimers. The energy band structure and the Fermi surface (b) at room temperature, and (c) at $T<T_{d}$ using the modified transfer integrals ($t_{\mathrm{b} 1}^{\prime}=1.1 t_{\mathrm{b} 1}, t_{\mathrm{b} 2}^{\prime}=1.1 t_{\mathrm{b} 2}$, $t_{\mathrm{p}}^{\prime}=0.9 t_{\mathrm{p}}$, and $\left.t_{\mathrm{q}}^{\prime}=0.9 t_{\mathrm{q}}\right)$.
$t^{\prime} / t=1.71$ is located in the highly anisotropic triangular lattice region.
Figure 2(b) shows the calculated energy band structure and Fermi surface at room temperature. In the κ-type compounds, the effective on-site Coulomb repulsion is defined as $U_{\text {eff }}=2\left|t_{\mathrm{b} 1}\right|{ }^{8}$ The ratio between $U_{\text {eff }}$ and the energy bandwidth of the upper band W_{u} is $U_{\text {eff }} / W_{u}=0.91$ indicating a strongly correlated electronic system. The energy bands are degenerate both on the X-U and Z-U lines owing to the crystallographic symmetry. The Fermi surface consists of overlapping cylinders, which generate the fundamental α and β orbits. The large anisotropy makes the β orbit an elongated ellipse with $k_{F, c} / k_{F, a}=1.54$. As a result, the cross-sectional area of the overlapping α orbit, S_{α}, is 26% of the first Brillouin zone (S_{BZ}), and is considerably larger than the typical value, $S_{\alpha} \sim 16 \%$ seen experimentally, in the isotropic κ-(BEDT-TTF) $)_{2} X$ compounds. ${ }^{6,9}$ The β orbit, S_{β}, is exactly the same as S_{BZ}.

The degeneracy of the energy bands on the zone boundary occurs when the crystal has glide planes or screw axes having translational symmetry perpendicular to the boundary. ${ }^{10}$ Although the low-temperature monoclinic phase of the present compound has n-glide symmetry that keeps the Z-C zone boundary degenerate in Fig. 2(c), this symmetry operation creates molecules in another donor layer in the unit cell. The conducting sheet is composed of two independent dimers, giving rise to eight transfer integrals as shown in Fig. 1(c). Therefore, the energy band splits into two both at the X-C and Z-C lines as shown in Fig. 2(c) for the low-temperature monoclinic phase. As a result, the Fermi surface splits at the Z-C line, and the β orbit becomes an magnetic breakdown (MB) orbit. We can expect that the value of the energy gap is quite small, because the deviation angle $\delta=1.21(2)^{\circ}$ is extremely small [Fig. 1(d)], and the change of the transfer integrals should be small. ${ }^{4}$

Figure $3(\mathrm{a})$ is the magnetic field dependence of the electrical resistance at $35 \mathrm{mK}\left(B \| b^{*}\right)$. Above 15 T the

FIG. 3: (a) Magnetoresistance at $35 \mathrm{mK}\left(B \| b^{*}\right)$. The inset is the SdH signal. (b) The FFT spectrum of the SdH oscillation.
magnetoresistance shows fast oscillating behavior. The oscillatory part (SdH signal) of the resistance represented by $\left[R(B)-R_{0}(B)\right] / R_{0}(B)$, rescaled by the nonoscillatory background $R_{0}(B)$ is shown in the inset of Fig. 3(a). The fast Fourier transformation (FFT) spectrum based on the SdH signal between 15.2 and 17.8 T shows two peaks α and β [Fig. 3(b)]. The observed S_{α} is $24(2) \%$ of S_{BZ}, and that of the β orbit is $103(2) \%$, where S_{BZ} is calculated using the lattice constants at room temperature. The observed large S_{α} verifies the elongated elliptical β orbit.

The observation of the SdH oscillation indicates that the present compound has a clean electronic system despite of the domain formation. Since the domain walls are parallel to the conducting sheet [Fig. 1(d)], the domain structure will not affect the cyclotron motion.

In order to investigate the slow oscillating behavior of the background magnetoresistance in Fig. 3(a), we have measured the high field magnetoresistance up to 35 T as shown in Fig. 4. The small dip structure of the magnetoresistance around 8 T in Fig. 3(a) is found in Fig. 4. However, the second dip structure around 14 T is not found in Fig. 4. Therefore, the slow oscillation-like behavior in Fig. 3(a) is not the SdH effect. In the high field region above 26 T , the SdH oscillation coming from the β orbit is observed, but the α orbit is not found in the FFT spectrum based on the SdH signal between 26.3 and 35.1 T as shown in Fig 4. This indicates that this field region is enough larger than the MB field B_{0} related to the energy gap E_{g} as $B_{0} \propto E_{g}^{2} \cdot{ }^{1,11,12}$ Although κ - $(\mathrm{BEDT}-\mathrm{TTF})_{2} \mathrm{Cu}(\mathrm{NCS})_{2}$ shows many combination frequencies, $\beta+n \alpha(n=-2,-1,1,2)$, under high magnetic field $(B \geq 20 \mathrm{~T}),{ }^{13-15}$ the present compound does not show clearly such orbits.

As shown in Fig. 5(a), the SdH frequencies show $1 / \cos \theta$ behavior as expected for quasi-two-dimensional electronic systems. The frequencies obtained are summarized in Table I with the ratios of the cross-sectional area to the first Brillouin zone. The SdH signals are analyzed in the conventional way using the two-dimensional Lifshitz-Kosevich

FIG. 4: Magnetoresistance at 0.5 K for different field directions. The inset is the FFT spectrum of the SdH oscillation between 26.3 and 35.1 T for $B \| b^{*}$. The sample is different from that presented in the other figures.

TABLE I: Parameters obtained by the SdH oscillations.

Orbit	$F(\mathrm{~T})$	$S / S_{\mathrm{BZ}}(\%)$	m^{*} / m_{0}	g^{*}	$T_{D}(\mathrm{~K})$
α	$1.1(1) \times 10^{3}$	$24(2)$	$4.8(4)$	$1.5(1)$	$1.7(2)$
β	$4.6(1) \times 10^{3}$	$103(2)$	$6.3(1)$	$1.67(3)$	$2.0-2.5$

(LK) formula for the FFT amplitude

$$
\begin{align*}
A & \propto R_{T} R_{D} R_{s} R_{b} \tag{1}\\
R_{T} & =\frac{K\left(m^{*} / m_{0}\right) T /(B \cos \theta)}{\sinh \left[K\left(m^{*} / m_{0}\right) T /(B \cos \theta)\right]} \tag{2}\\
R_{D} & =\exp \left[\frac{-K\left(m^{*} / m_{0}\right) T_{D}}{B|\cos \theta|}\right] \tag{3}\\
R_{s} & =\left|\cos \left[\frac{\pi g^{*}\left(m^{*} / m_{0}\right)}{2 \cos \theta}\right]\right| \tag{4}\\
R_{b} & =\exp \left(\frac{-t_{i} B_{0}}{2 B \cos \theta}\right)\left[1-\exp \left(\frac{B_{0}}{B \cos \theta}\right)\right]^{b_{i} / 2} \tag{5}
\end{align*}
$$

where m^{*} is the effective cyclotron mass at $\theta=0^{\circ}, m_{0}$ is the free electron mass, T_{D} is the Dingle temperature, g^{*} is the effective conducting electron g-factor renormalized by many-body effects, K is equal to $\left(2 \pi^{2} k_{B} m_{0}\right) /(e \hbar)=14.69 \mathrm{~T} / \mathrm{K}$, B_{0} is the magnetic breakdown field, and integers t_{i} and b_{i} are respectively the number of tunneling and Bragg reflections encountered along the path of the quasiparticle. ${ }^{11,12}$

The temperature dependences of the α and β oscillation amplitudes divided by temperature, mass plots, are presented in Fig. 5(b). The effective cyclotron mass ratios, m^{*} / m_{0}, thus obtained (and listed in Table I) are large among the κ-type organic superconductors. ${ }^{9}$

The probability of the MB tunneling is given by $P=\exp \left(-B_{0} / B\right) .{ }^{1,11,12}$ The coupled network model shows that the amplitude of every term concerned is weighted by a breakdown reduction factor. ${ }^{16,17}$ The reduction factor of the α orbit is $R_{b, \alpha}=1-P=1-\exp \left(-B_{0} / B\right)$ from the number of the Bragg reflections $\left(t_{i}=0\right.$ and $\left.b_{i}=2\right)$, and that of the β orbit is $R_{b, \beta}=P^{2}=\exp \left(-2 B_{0} / B\right)$ from the number of MB points $\left(t_{i}=4\right.$ and $\left.b_{i}=0\right)$ [Fig. 2(c)]. Therefore, the field dependence of the oscillation amplitude of the α orbit is proportional to $A_{0, \alpha} R_{T, \alpha} R_{D, \alpha} R_{b, \alpha}$, and that of the β orbit is $A_{0, \beta} R_{T, \beta} R_{D, \beta} R_{b, \beta}$, where $A_{0, \alpha}$ and $A_{0, \beta}$ are the original oscillation amplitudes of the α and β orbits, respectively. A fit to the Dingle plot of the α orbit requires the adjustment of three parameters: T_{D}, B_{0}, and the infinite-field intercept $\ln A_{0, \alpha}$. Owing to close functional correlations between R_{D} and $R_{b, \alpha}$, it is virtually impossible to uniquely determine T_{D} and B_{0} using the Dingle plots. ${ }^{14,18}$ Therefore, we estimate T_{D} and B_{0} using the combination of the Dingle plots, the angle dependence of the oscillation amplitude, and the field dependence of the oscillatory magnetoresistance.

Figure 5(c) shows the Dingle plots. The curve of the alpha orbit starts to bend down from 16.4 T ; this means that

FIG. 5: (a) Angle dependence of the SdH frequencies. The solid lines show the $1 / \cos \theta$ dependence. (b) Mass plots. The solid lines are the fits to the data. (d) Dingle plots. The solid lines are the fits to the data. (d) Angle dependence of the SdH amplitude. The solid and dotted lines are fits to the data. (e) The observed SdH signal (upper) and the calculated one (lower) with $B_{0}=4 \mathrm{~T}$. Residuals values are given by the difference between the observed SdH signal and the calculated one.
the one extreme upper bound of the MB field is $B_{0} \sim 16.4 \mathrm{~T}$. The Dingle temperature of the alpha orbit is estimated as $T_{D, \alpha}=1.7(2) \mathrm{K}$ using the slope of the line in the low-field region. This is the lower bound of $T_{D, \alpha}$, because the MB occurs in this field region. For the β orbit, the line fitting gives only $K\left(m_{\beta}^{*} / m_{0}\right) T_{D, \beta}+2 B_{0}=222(3) \mathrm{T}$.

The oscillation amplitude of the β orbit shows a drastic decrease at $\theta \sim 20^{\circ}$ [Fig. 5(d)]. This decrease is caused by the Zeeman spin splitting damping factor R_{s} in the LK formula; R_{s} becomes zero when $\left(g^{*} m^{*}\right) /\left(m_{0} \cos \theta\right)$ is an odd integer. For the β orbit, $g_{\beta}^{*}=1.67(3)$ is smaller than the free electron g factor; this indicates large renormalization by the many-body effects. ${ }^{11}$ For the alpha orbit, we treat g^{*} and B_{0} as the fitting parameters to analyze Fig. 5(d) using eq. (1). Although the α orbit behavior is explained using $g_{\alpha}^{*}=1.5(1)$, this angle dependence gives the scattered B_{0} between 0.4 and 16.4 T. The Dingle temperature of the β orbit is between 2.0 and 2.5 K under the obtained B_{0} region, and this value is reasonable compared with $T_{D, \alpha}=1.7(2) \mathrm{K}$.

The oscillatory magnetoresistance at $\theta=0^{\circ}$ is expressed using

$$
\begin{equation*}
\frac{R(B)-R_{0}(B)}{R_{0}(B)}=\sum_{j} A_{j} \sin \left[2 \pi\left(\frac{F_{j}}{B}-\psi_{j}\right)\right] \tag{6}
\end{equation*}
$$

where F_{j} and ψ_{j} are the frequency and the phase factor, respectively, of the Fourier component linked to the j orbit, and the amplitude A_{j} is given by $A_{j}=A_{0, j} R_{T, j} R_{D, j} R_{s, j} R_{b, j}$. It is difficult to uniquely determine B_{0} using this
equation, because a fit to the field dependence of the oscillation requires the adjustment of parameters: B_{0}, A_{j}, and ψ_{j}. Figure $5(\mathrm{e})$ shows the observed SdH oscillation and the calculated result using eq.(6) with the MB field $B_{0}=4 \mathrm{~T}$, and the residuals values are not sensitive to the value of B_{0}.

The cyclotron motion of the α orbit disappears for $B>B_{0}$, and our estimation satisfies this requirement at $B \sim 30 \mathrm{~T}$ (Fig. 4). Although several groups have estimated B_{0} for κ-(BEDT-TTF) ${ }_{2} \mathrm{Cu}(\mathrm{NCS})_{2}$, the values of B_{0} are scattered between 15 and $41 \mathrm{~T} .{ }^{13-15,19,20}$ This indicates the difficulty of the estimation of B_{0}.

In summary, the large area α orbit observed in the SdH oscillations shows that the present compound is located in the highly anisotropic triangular lattice regime. The observation of the SdH oscillation near $B \| b^{*}$ indicates a clean electronic system in the present compound despite of the domain structures.

This work was partially supported by Grants-in-Aid for Scientific Research on Innovative Areas (No. 21110511) from MEXT, and the JSPS Core-to-Core Program (No. 18003). The high field work above 18 T was made possible through NSF Cooperative Agreement DMR-0084713 (NHMFL), DMR-0602859 (JSB Group), the State of Florida, and the DOE. One of the authors (T.K.) acknowledges H. Cui and T. Tokumoto for assistance in NHMFL, Tallahassee.

* Electronic address: kawamoto@o.cc.titech.ac.jp
${ }^{\dagger}$ Present address: Department of Applied Chemistry, Ehime University, Ehime 790-8557, Japan
\ddagger Present address: Department of Materials Science and Technology, Nagaoka University of Technology, Niigata 940-2188, Japan
${ }^{1}$ For a review, see N. Toyota, M. Lang, and J. Muller, Low-Dimensional Molecular Metals (Springer, Berlin, 2007).
${ }^{2}$ T. Shirahata, M. Kibune, and T. Imakubo, Chem. Commun. 1592 (2006).
${ }^{3}$ T. Shirahata, M. Kibune, H. Yoshino, and T. Imakubo, Chem. Eur. J. 13, 7619 (2007).
${ }^{4}$ T. Kawamoto, T. Mori, T. Kakiuchi, H. Sawa, T. Shirahata, M. Kibune, H. Yoshino, and T. Imakubo, Phys. Rev. B 76, 134517 (2007).
${ }^{5}$ T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, and H. Inokuchi, Bull. Chem. Soc. Jpn. 57, 627 (1984). The atomic orbital parameters we used are in T. Mori and M. Katsuhara, J. Phys. Soc. Jpn. 71, 826 (2002).
${ }_{7}^{6}$ For a review, see T. Mori, H. Mori, and S. Tanaka, Bull. Chem. Soc. Jpn. 72, 179 (1999).
${ }^{7}$ M. Tamura, H. Tajima, K. Yakushi, H. Kuroda, A. Kobayashi, R. Kato, and H. Kobayashi, J. Phys. Soc. Jpn. 60, 3861 (1991).
${ }^{8}$ K. Kanoda, Hyperfine Interact. 104, 235 (1997).
${ }^{9}$ T. Kawamoto and T. Mori, Phys. Rev. B 74, 212502 (2006).
${ }^{10}$ G. Burns, Introduction to Group Theory with Applications (Academic, New York, 1977).
${ }^{11}$ D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984).
12 J. Wosnitza, Fermi Surfaces of Low Dimensional Organic Metals and Superconductors (Springer, Berlin, 1996).
${ }^{13}$ F.A. Meyer, E. Steep, W. Biberacher, P. Christ, A. Lerf, A.G.M. Jansen, W. Joss, P. Wyder, and K. Andres, Europhys. Lett. 32, 681 (1995).
${ }^{14}$ N. Harrison, J. Caulfield, J. Singleton, P.H.P. Reinders, F. Herlach, W. Hayes, M. Kurmoo, and P. Day, J. Phys.: Condens. Matter 8, 5415 (1996).
${ }^{15}$ S. Uji, M. Chaparala, S. Hill, P.S. Sandhu, J. Qualls, L. Seger, and J.S. Brooks, Synth. Met. 85, 1573 (1997).
${ }^{16}$ A.B. Pippard, Prog. Roy. Soc. A287, 165 (1965).
${ }^{17}$ L.M. Faqlicov and H. Stachowiak, Phys. Rev. 147, 505 (1966).
${ }^{18}$ D. Vignolles, A. Audouard, V.N. Laukhin, J. Béard, E. Canadell, N.G. Spitsina, and E.B. Yagubskii, Eur. Phys. J. B 55, 383 (2007).
19 T. Sasaki, H. Sato, and N. Toyota, Physica C 185, 2687 (1991).
${ }^{20}$ J. Caulfield, W. Lubczynski, F.L. Pratt, J. Singleton, D.Y.K. Ko, W. Hayes, M. Kurmoo, and P. Day, J. Phys.: Condens. Matter. 6, 2911 (1994).

