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Spectral singularities (SSs) emerge at isolated real frequencies when the scattering coefficients of 

a system diverge, producing scattering anomalies in non-Hermitian systems. Here, based on 

parity-time symmetry, we introduce SSs for evanescent waves, and explore their exotic features. 

We show that evanescent wave SSs can realize highly reconfigurable unidirectional lasers and 

absorbers, and offer the opportunity to observe extreme scattering anomalies associated with SSs 

in fully passive platforms, decoupling their extreme scattering responses from energy 

considerations. More broadly, our study opens new avenues for non-Hermitian wave engineering, 
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showcasing a link between non-Hermitian physics and structured waves, with implications in 

nano-optics for extreme wave-matter interactions and novel functional devices. 

  

Structured waves with inhomogeneous wavefields underpin modern optics and photonics, crucial 

in various technical areas of physics, such as microscopy, imaging and communications [1]. 

Arguably the most common form of structured waves are evanescent plane waves, i.e., oscillating 

fields with amplitude modulation due to an imaginary wavevector component. They play an 

important role in photonic systems, from conventional near-field interactions, to more exotic 

responses, as super-Planckian thermal emission [2]-[9] and sub-diffraction imaging [10]-[11]. 

Evanescent wave engineering can also be used to modify the local boundary conditions at an 

interface, enabling extreme asymmetry in metasurfaces [12]-[13], enhanced propagation through 

opaque media [14] , and the formation of exotic frozen mode regimes for slow light [15]-[19]. 

Recently, the complex-field nature of evanescent waves was used to realize a gain-free platform 

for parity-time (PT) symmetry in photonics [20], enabling features typical of PT-symmetric 

systems, such as phase transitions and anisotropic transmission resonances (ATRs) [21]. 

 Non-Hermitian physics has unveiled a new paradigm for wave engineering by utilizing 

tailored spatial distributions of gain and loss [22]-[28]. In non-Hermitian photonic systems, 

spectral singularities (SSs) can emerge, associated with diverging scattering coefficients at real 

frequencies [29]. In optics, SSs correspond to lasing at threshold [30] and, when combined with 

PT symmetry, can yield laser-absorber pairs [31]-[32]. By incorporating Fano resonances, a laser-

absorber pair can support unidirectional SSs, enabling simultaneously infinite and zero reflection 

coefficients when excited from opposite sides [33], of great interest for directional wave-matter 

interactions. 



3 

 

So far, the emergence of these exotic SSs has been restricted to propagating waves [34]-

[40]. Here, we extend them to evanescent waves and show that, due to the decoupling between 

energy transport and scattering strength for evanescent waves, an evanescent wave SS with 

diverging scattering coefficients can support arbitrary magnitude (infinite or finite) and reversible 

energy flow, depending on how the evanescent wave SS is approached in parameter space. To this 

end, we construct a non-Hermitian framework to implement both unidirectional and ordinary SSs 

for evanescent waves, providing a strategy for unidirectional lasing and absorption, and enabling 

extreme scattering responses even in purely passive settings. 

Evanescent waves in coupled-resonator optical waveguides — Evanescent wave propagation is 

ubiquitous in photonics. As a canonical platform, we consider a coupled-resonator optical 

waveguide (CROW), consisting of an array of coupled resonators with individual eigenfrequency 

𝑢𝑐 , coupling strength 𝜅𝑐  and periodicity 𝑎  [41] , with dispersion 𝜔 = 𝑢𝑐 − 2𝜅𝑐 cos 𝑞𝑎 . For 

convenience, we choose a frequency reference by setting 𝑢𝑐 = 0, and adopt a natural unit system 

assuming 𝜅𝑐 = 𝑎 = 1. For excitation frequency 𝜔 > 2 (or 𝜔 < −2), the wave number 𝑞  with 

Re(𝑞) = 𝜋 (or 0) picks up a nonzero imaginary part, and evanescent waves emerge [42]. Their 

time-dependent energy-normalized complex amplitude 𝜓(𝑛, 𝑡) in steady state reads 

where the integer 𝑛  labels CROW sites, and sin 𝑞 = ∓√𝜔2 − 4/(2𝑗) when 𝜔 > 2 (𝜔 < −2), 

involving forward (backward) evanescent waves of amplitude 𝐹 (𝐵) decaying towards the sites of 

larger (smaller) 𝑛. Associated with Eq. (1), the energy flux from site 𝑛 to 𝑛 + 1 is [16],[18],[20]  

independent of position 𝑛, where ∗ represents complex conjugation. In contrast with propagating 

waves, a single evanescent wave does not carry energy [11], and the energy flux 𝐽𝑛→𝑛+1 in Eq. (2) 

 𝜓(𝑛, 𝑡) = 𝐹𝑒𝑗𝜔𝑡−𝑗𝑞𝑛 + 𝐵𝑒𝑗𝜔𝑡+𝑗𝑞𝑛, (1) 

  𝐽𝑛→𝑛+1 = 4𝑗 sin 𝑞 Im(𝐹𝐵∗),  (2) 
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is nonzero only when two evanescent waves decay in opposite directions and interfere, i.e., 𝐹 and 

𝐵 in Eq. (1) are simultaneously nonzero, see also Ref. [43].   

PT-symmetric scattering for evanescent waves — When encountering a defect in the direction of 

decay, an evanescent wave experiences scattering, like propagating waves. Consider the set-up 

shown in Fig. 1(a), where a scatterer composed of three coupled resonators is embedded in the 

CROW. The left and right uniform sections of the CROW constitute two ports, and the coupling 

strengths between the two ports and the scatterer are 𝑐. To implement a PT-symmetric response 

for evanescent waves [20], we engineer the effective Hamiltonian 𝐻𝑒𝑓𝑓 for wave evolution within 

the three coupled resonators (𝑛 = 0, ∓) as 

where the diagonal terms are complex resonant frequencies with real parts {𝜔0, 𝜔∓} denoting 

resonance frequencies and imaginary parts {𝛾0 > 0, 𝛾∓ = 𝛾 > 0} capturing the damping, while the 

off-diagonal elements 𝑗𝑔, 𝑗𝛽𝑔 represent the imaginary couplings [Fig. 1(a)]. Due to the assumed 

imaginary couplings, the scatterer described by 𝐻𝑒𝑓𝑓  is passive when passivity constraint 

conditions (PCCs) hold, i.e., 𝛾 ≥ 𝛽𝑔 ≥ 2𝑔2 𝛾0⁄ − 𝛾  [44]. We also assume 𝜔0 =

𝜔𝑎𝑣𝑔 (1 − 𝑐2 2⁄ )⁄ > 2 , where 𝜔𝑎𝑣𝑔 ≡ (𝜔+ + 𝜔−) 2⁄ . The corresponding setup in Fig. 1(a) 

supports Fano resonances due to the coupling of the localized state in resonator 𝑛 = 0 with the 

resonator chain states [33],[47]. 

Different from Ref. [20] using an anti-PT symmetric scatterer, the Hamiltonian 𝐻𝑒𝑓𝑓 in Eq. 

(3) when 𝜔0 ≠ 𝜔𝑎𝑣𝑔  does not anticommute with a joint PT operation [48]. Nevertheless, the 

engineered non-Hermitian configuration in Fig. 1(a) can enable a PT-symmetric response for 

 𝐻𝑒𝑓𝑓 = [

𝜔− + 𝑗𝛾− 𝑗𝑔 𝑗𝛽𝑔

𝑗𝑔 𝜔0 + 𝑗𝛾0 𝑗𝑔
𝑗𝛽𝑔 𝑗𝑔 𝜔+ + 𝑗𝛾+

], (3) 
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evanescent wave excitations. To show this, we label the sites in left and right CROW ports 

symmetrically, and calculate the generalized scattering matrix 𝑆(𝜔) [49] defined via (𝐵(𝐿)

𝐵(𝑅)
) =

𝑆(𝜔) (𝐹(𝐿)

𝐹(𝑅)
) ≡ (

𝑟𝐿 𝑡𝐿𝑅

𝑡𝑅𝐿 𝑟𝑅
) (𝐹(𝐿)

𝐹(𝑅)
), which relates the amplitudes 𝐵(𝛼) and 𝐹(𝛼) of the backward 

and forward evanescent waves in left (𝛼 = 𝐿) and right (𝛼 = 𝑅) CROW ports, see Eq. (1). By 

setting the excitation frequency 𝜔 > 2, and thus operating in the bandgap, the explicit form of 

𝑆(𝜔) reads [44] 

where 𝑐𝑟(𝜔) ≡ 𝑐2√𝜔2 − 4/2, 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix, the matrix 𝑀 ≡ [
1 0 0
0 0 1

] (and 

its transpose 𝑀𝑇 ) describes the connectivity between ports and scatterer, and the effective 

Hamiltonian of the scatterer becomes 𝐻𝑒𝑣(𝜔) = 𝐻(𝑃𝑇) + 𝑗(𝜔 − 𝜔0)(𝐼3 − 𝑀𝑇𝑀 𝑐2 2⁄ ) with 

This transformation implies that the response of a scatterer is attributed to both the system and the 

impinging wave. It follows the transformation in Ref. [50] to induce PT-symmetry in the absence 

of gain using a transient response, but now for operation in stationary states. Indeed, the effective 

Hamiltonian 𝐻𝑒𝑣(𝜔0) = 𝐻(𝑃𝑇) ensures that the scattering response of evanescent wave excitations 

at real-valued 𝜔 = 𝜔0  is PT symmetric, since the commutator [𝐻(𝑃𝑇), 𝑃𝑇] = 0 , with parity 

operator 𝑃  exchanging resonators 𝑛 = ∓  and time-reversal operator 𝑇  performing complex 

conjugation. Consequently, 𝑆(𝜔)  in Eq. (4) satisfies the fundamental relation 𝑃𝑇𝑆(𝜔0)𝑃𝑇 =

𝑆(𝜔0)−1 describing PT-symmetric scattering in the stationary state [32], and the effective gain and 

loss parameters ∆𝜔 are determined by the frequency detuning between resonators 𝑛 = ± [Eq. (5)]. 

 𝑆(𝜔) = −𝐼2 + 2𝑗𝑐𝑟(𝜔)𝑀[𝐻𝑒𝑣(𝜔) + 𝑗𝑐𝑟(𝜔)𝑀𝑇𝑀]−1𝑀𝑇, (4) 

 𝐻(𝑃𝑇) = [

𝛾 + 𝑗∆𝜔 𝑔 𝛽𝑔

𝑔 𝛾0 𝑔
𝛽𝑔 𝑔 𝛾 − 𝑗∆𝜔

] , ∆𝜔 ≡
𝜔+ − 𝜔−

2
 . (5) 
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Unidirectional SSs for evanescent waves — Following from PT-symmetry of 𝑆(𝜔0) in Eq. (4) 

and the reciprocity 𝑡𝐿𝑅 = 𝑡𝑅𝐿 ≡ 𝑡𝑆  [51], the scattering coefficients of the structure in Fig. 1(a) 

satisfy the pseudo-unitary conservation (PUC) relation √𝑅𝐿𝑅𝑅 = |𝑇𝑆 − 1| at 𝜔0 for evanescent 

wave excitations, where the left (right) reflectance 𝑅𝐿(𝑅) ≡ |𝑟𝐿(𝑅)|
2
 and the transmittance 𝑇𝑆 ≡

|𝑡𝑆|2. Unlike propagating waves, the reflectances 𝑅𝐿(𝑅) and transmittance 𝑇𝑆 for evanescent waves 

do not correspond to power ratios, due to the inherent absence of energy transport in individual 

evanescent waves. Notably, the squared amplitudes |𝐹|2 (|𝐵|2) of forward (backward) evanescent 

waves do not correspond to the power 𝐽𝑛→𝑛+1 ∝ Im(𝐹𝐵∗), as described in Eqs. (1) and (2). 

Nevertheless, the metrics 𝑅𝐿(𝑅) and 𝑇𝑆, derived from the squared amplitudes here, are intrinsically 

linked to the scattering strength of evanescent wave excitation upon encountering a scatterer. This 

connection enables us to introduce the concept of evanescent wave SSs when 𝑅𝐿(𝑅)  and/or 𝑇𝑆 

diverge, resembling the behavior of SSs observed in propagating waves.  

The PUC relationship supports an exotic unidirectional SS [33], when the finite-valued 

transmittance 𝑇𝑆 ≠ 1  and thus one reflectance 𝑅𝑅(𝐿) → 0  implies that the other reflectance 

𝑅𝐿(𝑅) → ∞, or vice versa. This phenomenon is dramatically different from the one of ATR in PT-

symmetric systems for which one between finite 𝑅𝐿 and 𝑅𝑅 vanishes, and thus 𝑇𝑆 = 1 [21]. We 

confirm this finding in the setup of Fig. 1(a): to facilitate searching for a unidirectional SS, we 

employ the decimation procedure [52], initially introduced in the renormalization techniques for 

statistical mechanics [53], to reduce the dimension of the effective Hamiltonian 𝐻𝑒𝑓𝑓 in Eq. (3) of 

the scatterer without altering its physical properties. Accordingly, the generalized 𝑆(𝜔) matrix for 

evanescent waves [see Eq. (4)] reads [44] 

 𝑆(𝜔) = −𝐼2 + 2𝑗𝑐𝑟(𝜔)[𝐻̃𝑒𝑣(𝜔) + 𝑗𝑐𝑟(𝜔)𝐼2]
−1

, (6) 
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involving reduced 2 × 2 Hamiltonian 𝐻̃𝑒𝑣(𝜔) = 𝐻̃(𝑃𝑇)(𝜔) + 𝑗𝜀𝜔(1 − 𝑐2 2⁄ )𝐼2, equivalent to the 

3 × 3 effective Hamiltonian 𝐻𝑒𝑣(𝜔), but in which the renewed PT-symmetric part 𝐻̃(𝑃𝑇)(𝜔) =

[
𝛾̃(𝜔) + 𝑗∆𝜔 𝛽𝑔(𝜔)

𝛽𝑔(𝜔) 𝛾̃(𝜔) − 𝑗∆𝜔
] [with renormalized parameters 𝛽𝑔(𝜔) = 𝛽𝑔 + 𝑗𝑔2 (𝜀𝜔 − 𝑗𝛾0)⁄  and 

𝛾̃(𝜔) = 𝛾 + 𝑗𝑔2 (𝜀𝜔 − 𝑗𝛾0)⁄ ], and the frequency detuning 𝜀𝜔 ≡ 𝜔 − 𝜔0.  

For PT-symmetric scattering at 𝜔 = 𝜔0, i.e., 𝜀𝜔 = 0, a specific non-unitary transmittance 

𝑇𝑆 = 0  is obtained when 𝛽𝑔 = 𝑔2 𝛾0⁄ , and thus the renormalized coupling 𝛽𝑔(𝜔0) = 0 , 

corresponding to decoupled resonators at 𝑛 = ∓, and enabled by the Fano resonances. In this case, 

the right reflectance 𝑅𝑅 ∝ (∆𝜔 + 𝑐𝑟(𝜔0))
2

+ (𝛽𝑔 − 𝛾)
2

 vanishes when 𝛽𝑔 = 𝛾  and ∆𝜔 =

−𝑐𝑟(𝜔0), simultaneously leading to infinite left reflectance, i.e., 𝑅𝐿 → ∞, due to the PUC relation 

at PT symmetry. Hence, we find an evanescent wave unidirectional SS at 𝜔0, supported under the 

conditions 𝑠(𝑢𝑆𝑆) = {𝛽𝑔 = 𝛾, 𝛾0 = 𝑔2 𝛾⁄ , ∆𝜔 = −𝑐𝑟(𝜔0)}. We can verify this unidirectional SS 

by studying the frequency response around 𝜔0. Specifically, we impose the conditions 𝑠(𝑢𝑆𝑆), and 

examine the behavior of the scattering coefficients as the frequency detuning 𝜀𝜔 → 0 . By 

employing Eq. (6), we find that the right reflection 𝑟𝑅 ∝ 𝜀𝜔 → 0, while the left reflection 𝑟𝐿 ∝

1 𝜀𝜔⁄ → ∞, and the finite transmission amplitude limit 𝑡𝑆 = 𝛾2 [(𝑐2 2⁄ − 1 − 𝑐𝑟
′ (𝜔0))𝑔2 − 𝛾2]⁄ . 

Therefore, the defining features of a unidirectional SS for evanescent waves are exhibited as 𝜔 →

𝜔0, although, due to the absence of precise PT symmetry away from 𝜔0 [54], the limiting values 

of the scattering coefficients 𝑟𝑅(𝐿) and 𝑡𝑆 do not obey the PUC relation. 

Properties of evanescent wave SSs — In contrast to SSs for propagating waves [29], evanescent 

wave SSs exhibit intriguing features in particular in the context of energy flow [see Eq. (2)]. For 

excitation from one port, the transmitted evanescent wave does not carry energy, while the infinite 

reflection at the SS enables energy flow of arbitrary magnitude (infinite or finite) and reversible 
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direction, depending on the varying interaction between incident and the reflected evanescent 

waves as the system approaches the SS from different paths in parameter space. At a unidirectional 

SS driven by PT symmetry, the zero reflection for excitation from the opposite port ensures 

complete suppression of energy flow, so that the scatterer cannot be detected from one side, while 

yielding large reflections from the other side, with intriguing applications for sensing.  

To demonstrate these features, we first vary the damping coefficient 𝛾0 of resonator 𝑛 = 0 

around the conditions 𝑠(𝑢𝑆𝑆), so that 𝛾0 = 𝑔2 𝛾⁄ + 𝜀𝛾0
. Interestingly, the right reflection 𝑟𝑅(𝜔0) ≡

0 in this case, leading to the unitary transmittance (𝑇𝑆 = 1) based on the PUC relation, while the 

left reflection 𝑟𝐿(𝜔0) = [2𝑗𝑐𝑟(𝜔0) 𝛾⁄ ][1 + 𝑔2 (𝛾𝜀𝛾0
)⁄ ] approaches infinity as 𝜀𝛾0

→ 0 due to the 

approached unidirectional SS. The corresponding normalized field profile, ln|𝜓 𝐹(𝛼)⁄ |, in the 

stationary state for left (𝛼 = 𝐿) [and right (𝛼 = 𝑅)] excitation of the scatterer, is shown in the 

lower left [and right] panel of Fig. 1(a), where a small detuning 𝜀𝛾0
= 0.005 was assumed, plus 

free parameters 𝛾 = 𝑔 = 0.1, 𝑐 = 1, and 𝜔0 = 3. The excitation source is positioned at the site 

𝑛 = −3 (purple arrow) in either the left or right port. Without scatterer, evanescent waves decay 

exponentially in both directions from the source (empty circles). Introducing the scatterer with 

unidirectional SS, left and right impinging evanescent waves experience dramatically different 

scattering phenomena. Under left incidence, the total field (filled symbols) grows towards the 

scatterer due to large reflection [lower left panel], while right incidence results in alignment with 

the incident wave [lower right panel] since 𝑟𝑅(𝜔0) = 0. In both cases, transmitted evanescent 

waves remain unchanged due to unitary transmittance, and scatterer-related field profiles at the 

sites 𝑛 = −, 0, + are exhibited in insets.  

If the detuning 𝜀𝛾0
 switches sign, the large left reflectance 𝑅𝐿 and small right reflectance 

𝑅𝑅 are not affected [Fig. 1(b): lower middle panel]. Remarkably, however, the (normalized) energy 
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flux 𝐽𝛼 ≡ 𝐽𝑛→𝑛+1
(𝛼)

|𝐹(𝛼)|
2

⁄ = 2√𝜔2 − 4 Im(𝑟𝛼) [using Eq. (2)] flowing at the excitation port 𝛼 =

𝐿, 𝑅 swaps sign near frequency 𝜔 = 𝜔0 [Fig. 1(b): lower left and right panels], so that the direction 

of the energy flow is reversed and the operation switches from a unidirectional absorber [𝐽𝐿(𝜔0) →

+∞, as 𝜀𝛾0
→ 0+] to a unidirectional laser [𝐽𝐿(𝜔0) → −∞, as 𝜀𝛾0

→ 0−]. The performance of the 

unidirectional absorber and laser here is ideal, in the sense that, in addition to zero energy leakage 

at the opposite port, neither unwanted energy absorption nor emission emerge [i.e., 𝐽𝑅(𝜔0) = 0], 

nor the scatterer is detected from the unwanted port [i.e., 𝑟𝑅(𝜔0) = 0]. Our predictions are verified 

by realistic circuit simulations using COMSOL Multiphysics [see the symbols in Fig. 1], where 

the sites in the upper panel of Fig. 1(a) are modeled with RLC resonators and the real and 

imaginary couplings are implemented via series inductors 𝐿𝑐  and negative resistors −𝑅𝑔,𝛽𝑔
 

respectively, see Fig. 1(b): upper panel and [44]. 

 The above features persist as 𝜀𝛾0
 grows, see Fig. 2 for density plots (with saturated color 

bars at extreme values) of the reflectance (a) 𝑅𝐿 and associated energy flux (c) 𝐽𝐿 on a base-10 log 

scale for left excitation, and of (b) 𝑅𝑅 and (d) 𝐽𝑅 for right excitation. The flux 𝐽𝛼 < 0, 𝛼 = 𝐿, 𝑅 in 

the shaded areas of Fig. 2(c, d), whose boundaries are given by 𝜀𝜔
2 = −𝜀𝛾0

(𝜀𝛾0
+ 𝑔2 𝛾⁄ ) and 

determined from 𝐽𝛼 = 0. The power output is enabled since the scatterer becomes active when the 

detuning 𝜀𝛾0
< 0 [and thus 𝐻𝑒𝑓𝑓 in Eq. (3) violates PCCs]. In the circuit analog [Fig. 1(b): Upper 

panel], this transition is emulated by increasing the resistance 𝑅0 (inversely correlated with 𝛾0) 

above a threshold value so that the ports can draw energy from the fixed negative coupling 

resistors. We can expect that, once crossing the SS by changing the sign of 𝜀𝛾0
 and thus working 

past the lasing threshold, the response will be taken over by nonlinear dynamics [56]-[57]. 
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Next, we explore the response as we vary the effective gain and loss parameter ∆𝜔 [Eq. 

(5)] around the same evanescent wave SS as before so that ∆𝜔 = −𝑐𝑟(𝜔0) + 𝜀∆𝜔. Different from 

the previous scenario, this scheme, dictated by 𝐻𝑒𝑓𝑓 in Eq. (3) adhering to PCCs, can be supported 

within a fully passive setting. In Fig. 3, we show the density plots as in Fig. 2 but against 𝜀∆𝜔 and 

the frequency detuning 𝜀𝜔. As 𝜀∆𝜔 → 0, left [𝑅𝐿(𝜔0) → ∞] and right [𝑅𝑅(𝜔0) → 0] reflectances 

are dramatically different [Fig. 3(a, b)], yet the energy flux 𝐽𝛼(𝜔0) vanishes identically for both 

left (𝛼 = 𝐿) and right (𝛼 = 𝑅) excitations [Figs. 3(c, d)]. For each excitation frequency 𝜔 ≠ 𝜔0, 

the local minima of the magnitude of 𝑄 ≡ det[𝐻̃𝑒𝑣(𝜔) + 𝑗𝑐𝑟(𝜔)𝐼2] [see Eq. (6)] follow the white 

dashed lines in Fig. 3. An ordinary SS for evanescent waves is found at (𝜀𝜔 , 𝜀Δ) = (−5/6, √5/2) 

(red arrow), where two white dashed lines cross, and 𝑄 = 0, associated with a real-frequency pole 

of the S matrix (6) [58]. At the ordinary SS, both reflectances 𝑅𝐿(𝑅) and transmittance 𝑇𝑆  (not 

shown) become infinite, like those occurring at conventional SS for propagating waves but now 

associated with surface wave resonances, see Refs. [59]-[60], with vanishing spectral width. 

Thanks to the intriguing decoupling of the energy fluxes 𝐽𝛼 ∝ Im(𝑟𝛼) [Figs. 3(c, d)] from the 

reflectances 𝑅𝛼 = |𝑟𝛼|2 [Figs. 3(a, b)], however, this scheme enables observing SSs in a fully 

passive platform, somewhat consistent with [61]-[63].  

Conclusions — In this paper, we extended the concept of SSs to evanescent waves and explored 

their unique features in terms of energy flow. By generalizing gain-free PT symmetry for 

evanescent waves to a regime in which gain and loss may occur, we have constructed a non-

Hermitian model supporting both unidirectional SSs with suppressed reflection from one side and 

ordinary SSs without directionality. Depending on how we approach the SS in parameter space, 

the infinite reflection at the SS can induce infinite outgoing (incoming) and zero energy flow with 

extreme tunability, providing a new strategy for flexible unidirectional lasing and absorption, and 
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also enabling the observation of SSs in passive (and thus inherently stable) physical platforms. We 

have verified our concept in full-wave circuit simulations, shedding light into a new opportunity 

to manipulate structured waves for extreme wave-matter interactions based on non-Hermitian 

physics, which may be extended to nanophotonics and acoustics [64]. 
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Fig. 1. (a) Upper panel: schematic of the geometry formed by a three-site defect (dashed red box) 

embedded in a CROW; Lower panels: logarithm of the (normalized) field profiles |𝜓 𝐹(𝛼)⁄ | in the 

scattering set-up with (without) the scatterer for evanescent wave excitation at 𝜔 = 𝜔0 from left 

(𝛼 = 𝐿)  [left panel] and right (𝛼 = 𝑅)  [right panel] respectively, near the evanescent wave 

unidirectional SS with detuning 𝜀𝛾0
= 𝜀𝛾0

(+)
= 0.005 of the conditions 𝑠(𝑢𝑆𝑆). The locations of the 

excitation sources are indicated by purple arrows, and the insets depict the scatterer-related field 

profiles at sites −, 0 and +. (b) Upper panel: one circuit analog of the theoretical model in (a); 

Lower panels: normalized energy flux 𝐽𝛼  at the excitation port 𝛼 = 𝐿, 𝑅  versus the frequency 

detuning 𝜀𝜔  when 𝜀𝛾0
 switches from 𝜀𝛾0

(+)
 (left panel) to 𝜀𝛾0

(−)
= −0.005 (right panel), with the 

associated left (right) reflectance 𝑅𝐿(𝑅) in the middle panel. The colored background in the right 

panel highlights the negative sign of 𝐽𝛼, and the results of the theoretical model (lines) match well 
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with those of circuit simulations (symbols) [44]. Other free parameters are 𝑔 = 𝛾 = 0.1, 𝑐 = 1 

and 𝜔0 = 3. 

 

 

 

 

Fig. 2. Density plot of the base-10 logarithm of the reflectance (a) 𝑅𝐿 [(b) 𝑅𝑅] and the (normalized) 

energy flux magnitude (c) |𝐽𝐿| [(d) |𝐽𝑅|] at the excitation port versus the detuning (𝜀𝜔, 𝜀𝛾0
) of the 

unidirectional SS, in the case for left [right] impinging evanescent waves. The shaded portions in 

(c) and (d) differentiate the negative energy fluxes from the positive ones of the rest. Other 

parameters are the same as in Fig. 1. 
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Fig. 3. Density plot of the logarithm of the reflectances (a, b) 𝑅𝐿,𝑅 and the energy fluxes (c, d) 

𝐽𝐿,𝑅 > 0 (see Fig. 2), versus the detuning (𝜀𝜔 , 𝜀∆𝜔) of the evanescent wave unidirectional SS. The 

white dashed lines trace the trajectories of the local minima of |𝑄| regarding 𝜀∆𝜔, and the red arrow 

indicates their crossing point where 𝑄 = 0. Other parameters are the same as in Fig. 2. 

 


