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Spectral singularities (SSs) emerge at isolated real frequencies when the scattering coefficients of
a system diverge, producing scattering anomalies in non-Hermitian systems. Here, based on
parity-time symmetry, we introduce SSs for evanescent waves, and explore their exotic features.
We show that evanescent wave SSs can realize highly reconfigurable unidirectional lasers and
absorbers, and offer the opportunity to observe extreme scattering anomalies associated with SSs
in fully passive platforms, decoupling their extreme scattering responses from energy

considerations. More broadly, our study opens new avenues for non-Hermitian wave engineering,
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showcasing a link between non-Hermitian physics and structured waves, with implications in

nano-optics for extreme wave-matter interactions and novel functional devices.

Structured waves with inhomogeneous wavefields underpin modern optics and photonics, crucial
in various technical areas of physics, such as microscopy, imaging and communications [1].
Arguably the most common form of structured waves are evanescent plane waves, i.e., oscillating
fields with amplitude modulation due to an imaginary wavevector component. They play an
important role in photonic systems, from conventional near-field interactions, to more exotic
responses, as super-Planckian thermal emission [2]-[9] and sub-diffraction imaging [10]-[11].
Evanescent wave engineering can also be used to modify the local boundary conditions at an
interface, enabling extreme asymmetry in metasurfaces [12]-[13], enhanced propagation through
opaque media [14] , and the formation of exotic frozen mode regimes for slow light [15]-[19].
Recently, the complex-field nature of evanescent waves was used to realize a gain-free platform
for parity-time (PT) symmetry in photonics [20], enabling features typical of PT-symmetric
systems, such as phase transitions and anisotropic transmission resonances (ATRs) [21].
Non-Hermitian physics has unveiled a new paradigm for wave engineering by utilizing
tailored spatial distributions of gain and loss [22]-[28]. In non-Hermitian photonic systems,
spectral singularities (SSs) can emerge, associated with diverging scattering coefficients at real
frequencies [29]. In optics, SSs correspond to lasing at threshold [30] and, when combined with
PT symmetry, can yield laser-absorber pairs [31]-[32]. By incorporating Fano resonances, a laser-
absorber pair can support unidirectional SSs, enabling simultaneously infinite and zero reflection
coefficients when excited from opposite sides [33], of great interest for directional wave-matter

interactions.



So far, the emergence of these exotic SSs has been restricted to propagating waves [34]-
[40]. Here, we extend them to evanescent waves and show that, due to the decoupling between
energy transport and scattering strength for evanescent waves, an evanescent wave SS with
diverging scattering coefficients can support arbitrary magnitude (infinite or finite) and reversible
energy flow, depending on how the evanescent wave SS is approached in parameter space. To this
end, we construct a non-Hermitian framework to implement both unidirectional and ordinary SSs
for evanescent waves, providing a strategy for unidirectional lasing and absorption, and enabling
extreme scattering responses even in purely passive settings.
Evanescent waves in coupled-resonator optical waveguides — Evanescent wave propagation is
ubiquitous in photonics. As a canonical platform, we consider a coupled-resonator optical
waveguide (CROW), consisting of an array of coupled resonators with individual eigenfrequency
u., coupling strength k. and periodicity a [41], with dispersion w = u, — 2k, cosqa. For
convenience, we choose a frequency reference by setting u,. = 0, and adopt a natural unit system
assuming k. = a = 1. For excitation frequency w > 2 (or w < —2), the wave number g with
Re(q) = m (or 0) picks up a nonzero imaginary part, and evanescent waves emerge [42]. Their
time-dependent energy-normalized complex amplitude ¥ (n, t) in steady state reads

zp(n, t) = Felot=jan Bejwt+jqn’ (1)

where the integer n labels CROW sites, and sinq = FVw? — 4/(2j) when w > 2 (w < —2),
involving forward (backward) evanescent waves of amplitude F (B) decaying towards the sites of
larger (smaller) n. Associated with Eq. (1), the energy flux from site n to n + 1 is [16],[18],[20]
Jnom+1 = 4j sing Im(FBY), )
independent of position n, where * represents complex conjugation. In contrast with propagating

waves, a single evanescent wave does not carry energy [11], and the energy flux J,,_,,+1 In EQ. (2)
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is nonzero only when two evanescent waves decay in opposite directions and interfere, i.e., F and
B in Eq. (1) are simultaneously nonzero, see also Ref. [43].

PT-symmetric scattering for evanescent waves — When encountering a defect in the direction of
decay, an evanescent wave experiences scattering, like propagating waves. Consider the set-up
shown in Fig. 1(a), where a scatterer composed of three coupled resonators is embedded in the
CROW. The left and right uniform sections of the CROW constitute two ports, and the coupling
strengths between the two ports and the scatterer are c. To implement a PT-symmetric response
for evanescent waves [20], we engineer the effective Hamiltonian H, ¢, for wave evolution within

the three coupled resonators (n = 0, +) as

w_ + jy- jg jByg
Herp=| J9 @o + j¥o g | 3)
JBy jg wy + jy,

where the diagonal terms are complex resonant frequencies with real parts {w,, wz} denoting
resonance frequencies and imaginary parts {y, > 0,y = y > 0} capturing the damping, while the
off-diagonal elements jg, jB, represent the imaginary couplings [Fig. 1(a)]. Due to the assumed
imaginary couplings, the scatterer described by H,.r is passive when passivity constraint
conditions (PCCs) hold, ie, y=pB,=2g%/yvo—v [44]. We also assume wy=
Wapg/ (1 —c?/2) > 2, where wg,y = (w4 +w_)/2. The corresponding setup in Fig. 1(a)
supports Fano resonances due to the coupling of the localized state in resonator n = 0 with the
resonator chain states [33],[47].

Different from Ref. [20] using an anti-PT symmetric scatterer, the Hamiltonian H, ¢ in Eq.
(3) when w, # wg,, does not anticommute with a joint PT operation [48]. Nevertheless, the

engineered non-Hermitian configuration in Fig. 1(a) can enable a PT-symmetric response for



evanescent wave excitations. To show this, we label the sites in left and right CROW ports

. . . . . . @
symmetrically, and calculate the generalized scattering matrix S(w) [49] defined via (g (R)> =

F(L)> — 143 tLR (F(L)) . . (@) (@)
S(w) (F(R) = (tRL ‘fR) F®) which relates the amplitudes B'*’ and F'*’ of the backward

and forward evanescent waves in left (@ = L) and right (@ = R) CROW ports, see Eq. (1). By
setting the excitation frequency w > 2, and thus operating in the bandgap, the explicit form of

S(w) reads [44]

S(w) = =1 + 2jc,(W)M[Hep (@) + jer (w)MTM]TIMT, 4
where ¢, (w) = c?*Vw? — 4/2, Iy is the N X N identity matrix, the matrix M = [(1) g (1)] (and

its transpose MT) describes the connectivity between ports and scatterer, and the effective

Hamiltonian of the scatterer becomes H,,(w) = H®T) + j(w — wq) (I3 — MTM ¢?/2) with

y+jdw g By
H®PT) = g Yo g A = ——. (5)
By g v-jhw

This transformation implies that the response of a scatterer is attributed to both the system and the
impinging wave. It follows the transformation in Ref. [50] to induce PT-symmetry in the absence
of gain using a transient response, but now for operation in stationary states. Indeed, the effective
Hamiltonian H,,,(w,) = H®T) ensures that the scattering response of evanescent wave excitations
at real-valued w = w, is PT symmetric, since the commutator [H®D, PT| = 0, with parity
operator P exchanging resonators n = + and time-reversal operator T performing complex
conjugation. Consequently, S(w) in Eq. (4) satisfies the fundamental relation PTS(w,)PT =
S(we) ™1 describing PT-symmetric scattering in the stationary state [32], and the effective gain and

loss parameters Aw are determined by the frequency detuning between resonators n = + [Eq. (5)].



Unidirectional SSs for evanescent waves — Following from PT-symmetry of S(w,) in Eq. (4)
and the reciprocity t; 5 = tg; = ts [51], the scattering coefficients of the structure in Fig. 1(a)

satisfy the pseudo-unitary conservation (PUC) relation /R, Rr = |Ts — 1] at w, for evanescent

wave excitations, where the left (right) reflectance Ry z) = |7”L(R)|2 and the transmittance Ts =
|ts|%. Unlike propagating waves, the reflectances Ry, and transmittance T for evanescent waves
do not correspond to power ratios, due to the inherent absence of energy transport in individual
evanescent waves. Notably, the squared amplitudes |F|? (|B|?) of forward (backward) evanescent
waves do not correspond to the power J,,_,+1 & Im(FB*), as described in Egs. (1) and (2).
Nevertheless, the metrics R, gy and Ts, derived from the squared amplitudes here, are intrinsically
linked to the scattering strength of evanescent wave excitation upon encountering a scatterer. This
connection enables us to introduce the concept of evanescent wave SSs when Ry, ) and/or Tg
diverge, resembling the behavior of SSs observed in propagating waves.

The PUC relationship supports an exotic unidirectional SS [33], when the finite-valued
transmittance Tg # 1 and thus one reflectance Ry — 0 implies that the other reflectance
Ry(r) = oo, Or vice versa. This phenomenon is dramatically different from the one of ATR in PT-
symmetric systems for which one between finite R, and Ry vanishes, and thus Tg = 1 [21]. We
confirm this finding in the setup of Fig. 1(a): to facilitate searching for a unidirectional SS, we
employ the decimation procedure [52], initially introduced in the renormalization techniques for
statistical mechanics [53], to reduce the dimension of the effective Hamiltonian H, ¢, in Eq. (3) of
the scatterer without altering its physical properties. Accordingly, the generalized S(w) matrix for

evanescent waves [see Eq. (4)] reads [44]

(W) = ~I + 2jc, () [Hen (@) + jer (@)1] (6)



involving reduced 2 x 2 Hamiltonian H,,(w) = H*D (w) + je, (1 — ¢?/2)1,, equivalent to the
3 x 3 effective Hamiltonian H,,(w), but in which the renewed PT-symmetric part H*T) (w) =

y(w) + jAw B, (w 5
7 ~) / . Bo( ) [with renormalized parameters B, (w) = By + jg*/ (e, — j¥o) and
By(w)  7(w) —jhw
7(w) =y +jg%/(e, — j¥o)], and the frequency detuning £, = w — w,.

For PT-symmetric scattering at w = w,, i.e., &, = 0, a specific non-unitary transmittance

Ts¢ = 0 is obtained when B, = g*/y,, and thus the renormalized coupling ﬁg(wo) =0,

corresponding to decoupled resonators at n = +, and enabled by the Fano resonances. In this case,

the right reflectance Ry « (Aw + cr(a)o))2 + (B, — y)2 vanishes when B, =y and Aw =
—c,(wy), simultaneously leading to infinite left reflectance, i.e., R, — oo, due to the PUC relation
at PT symmetry. Hence, we find an evanescent wave unidirectional SS at w,, supported under the
conditions s = {8, =y,y, = g%/y,Aw = —c,(w,)}. We can verify this unidirectional SS
by studying the frequency response around w,. Specifically, we impose the conditions s, and
examine the behavior of the scattering coefficients as the frequency detuning ¢, —» 0. By
employing Eq. (6), we find that the right reflection r; < ¢, — 0, while the left reflection r;,
1/, — o, and the finite transmission amplitude limit ts = y2/[(c?/2 = 1 — ¢;.(wo)) g% — ¥?].
Therefore, the defining features of a unidirectional SS for evanescent waves are exhibited as w —
w,, although, due to the absence of precise PT symmetry away from w, [54], the limiting values
of the scattering coefficients ;) and tg do not obey the PUC relation.

Properties of evanescent wave SSs — In contrast to SSs for propagating waves [29], evanescent
wave SSs exhibit intriguing features in particular in the context of energy flow [see Eq. (2)]. For
excitation from one port, the transmitted evanescent wave does not carry energy, while the infinite

reflection at the SS enables energy flow of arbitrary magnitude (infinite or finite) and reversible
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direction, depending on the varying interaction between incident and the reflected evanescent
waves as the system approaches the SS from different paths in parameter space. At a unidirectional
SS driven by PT symmetry, the zero reflection for excitation from the opposite port ensures
complete suppression of energy flow, so that the scatterer cannot be detected from one side, while
yielding large reflections from the other side, with intriguing applications for sensing.

To demonstrate these features, we first vary the damping coefficient y, of resonator n = 0
around the conditions s®5%, so that y, = g2/ + &,,. Interestingly, the right reflection r (w,) =
0 in this case, leading to the unitary transmittance (Ts = 1) based on the PUC relation, while the
left reflection 7, (wy) = [2jc,(wo)/¥1[1 + g%/ (ve,, )] approaches infinity as &,, — 0 due to the
approached unidirectional SS. The corresponding normalized field profile, In|y/F(®|, in the
stationary state for left (@ = L) [and right (@ = R)] excitation of the scatterer, is shown in the
lower left [and right] panel of Fig. 1(a), where a small detuning &,, = 0.005 was assumed, plus

free parametersy = g = 0.1, ¢ = 1, and w, = 3. The excitation source is positioned at the site
n = —3 (purple arrow) in either the left or right port. Without scatterer, evanescent waves decay
exponentially in both directions from the source (empty circles). Introducing the scatterer with
unidirectional SS, left and right impinging evanescent waves experience dramatically different
scattering phenomena. Under left incidence, the total field (filled symbols) grows towards the
scatterer due to large reflection [lower left panel], while right incidence results in alignment with
the incident wave [lower right panel] since rz(wy) = 0. In both cases, transmitted evanescent
waves remain unchanged due to unitary transmittance, and scatterer-related field profiles at the
sites n = —, 0, + are exhibited in insets.

If the detuning ¢, switches sign, the large left reflectance R, and small right reflectance

Ry are not affected [Fig. 1(b): lower middle panel]. Remarkably, however, the (normalized) energy



flux f, = 7(1‘)2n+1/|F(“)|2 = 2vVw? — 4 Im(r,) [using Eq. (2)] flowing at the excitation port a =
L, R swaps sign near frequency w = w, [Fig. 1(b): lower left and right panels], so that the direction
of the energy flow is reversed and the operation switches from a unidirectional absorber [f, (wq) —
+00, as g,, = 0*] to a unidirectional laser [J;(w,) = —oo, as g,, - 07]. The performance of the
unidirectional absorber and laser here is ideal, in the sense that, in addition to zero energy leakage
at the opposite port, neither unwanted energy absorption nor emission emerge [i.e., Jz (w,) = 0],
nor the scatterer is detected from the unwanted port [i.e., 7z (wo) = 0]. Our predictions are verified
by realistic circuit simulations using COMSOL Multiphysics [see the symbols in Fig. 1], where
the sites in the upper panel of Fig. 1(a) are modeled with RLC resonators and the real and
imaginary couplings are implemented via series inductors L. and negative resistors —Ryp,
respectively, see Fig. 1(b): upper panel and [44].

The above features persist as €, grows, see Fig. 2 for density plots (with saturated color
bars at extreme values) of the reflectance (a) R;, and associated energy flux (c) f, on a base-10 log
scale for left excitation, and of (b) Ry and (d) J for right excitation. The flux j, < 0, = L, R in
the shaded areas of Fig. 2(c, d), whose boundaries are given by €2 = _Syo(% +gz/y) and
determined from f, = 0. The power output is enabled since the scatterer becomes active when the
detuning &, < 0 [and thus H, ¢/ in Eq. (3) violates PCCs]. In the circuit analog [Fig. 1(b): Upper
panel], this transition is emulated by increasing the resistance R, (inversely correlated with y,)
above a threshold value so that the ports can draw energy from the fixed negative coupling

resistors. We can expect that, once crossing the SS by changing the sign of ¢, and thus working

past the lasing threshold, the response will be taken over by nonlinear dynamics [56]-[57].



Next, we explore the response as we vary the effective gain and loss parameter Aw [EQ.
(5)] around the same evanescent wave SS as before so that Aw = —c,(wg) + €, Different from
the previous scenario, this scheme, dictated by H,sf in Eq. (3) adhering to PCCs, can be supported
within a fully passive setting. In Fig. 3, we show the density plots as in Fig. 2 but against €,,, and
the frequency detuning €,,. As &, — 0, left [R, (wy) = o] and right [Rgz(w,) — 0] reflectances
are dramatically different [Fig. 3(a, b)], yet the energy flux J,(w,) vanishes identically for both
left (a = L) and right (@« = R) excitations [Figs. 3(c, d)]. For each excitation frequency w # w,,

the local minima of the magnitude of Q = det[ﬁev(w) + jc, (a))]z] [see Eq. (6)] follow the white

dashed lines in Fig. 3. An ordinary SS for evanescent waves is found at (g,,, £4) = (—5/6, \/3/2)
(red arrow), where two white dashed lines cross, and Q = 0, associated with a real-frequency pole
of the S matrix (6) [58]. At the ordinary SS, both reflectances R,y and transmittance T (not
shown) become infinite, like those occurring at conventional SS for propagating waves but now
associated with surface wave resonances, see Refs. [59]-[60], with vanishing spectral width.
Thanks to the intriguing decoupling of the energy fluxes J, « Im(r,) [Figs. 3(c, d)] from the
reflectances R, = |r,|? [Figs. 3(a, b)], however, this scheme enables observing SSs in a fully
passive platform, somewhat consistent with [61]-[63].

Conclusions — In this paper, we extended the concept of SSs to evanescent waves and explored
their unique features in terms of energy flow. By generalizing gain-free PT symmetry for
evanescent waves to a regime in which gain and loss may occur, we have constructed a non-
Hermitian model supporting both unidirectional SSs with suppressed reflection from one side and
ordinary SSs without directionality. Depending on how we approach the SS in parameter space,
the infinite reflection at the SS can induce infinite outgoing (incoming) and zero energy flow with
extreme tunability, providing a new strategy for flexible unidirectional lasing and absorption, and
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also enabling the observation of SSs in passive (and thus inherently stable) physical platforms. We

have verified our concept in full-wave circuit simulations, shedding light into a new opportunity

to manipulate structured waves for extreme wave-matter interactions based on non-Hermitian

physics, which may be extended to nanophotonics and acoustics [64].
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Fig. 1. (a) Upper panel: schematic of the geometry formed by a three-site defect (dashed red box)
embedded in a CROW; Lower panels: logarithm of the (normalized) field profiles |y /F (@] in the
scattering set-up with (without) the scatterer for evanescent wave excitation at w = w, from left
(a = L) [left panel] and right (« = R) [right panel] respectively, near the evanescent wave
unidirectional SS with detuning ¢, = e(+) = 0.005 of the conditions s®5%)_ The locations of the

excitation sources are indicated by purple arrows, and the insets depict the scatterer-related field
profiles at sites —, 0 and +. (b) Upper panel: one circuit analog of the theoretical model in (a);
Lower panels: normalized energy flux f, at the excitation port @ = L, R versus the frequency
detuning ¢, when ¢, switches from e](,:) (left panel) to eﬁo_) = —0.005 (right panel), with the
associated left (right) reflectance R,y in the middle panel. The colored background in the right

panel highlights the negative sign of f,, and the results of the theoretical model (lines) match well
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with those of circuit simulations (symbols) [44]. Other free parametersareg =y =0.1,c =1

and w, = 3.
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Fig. 2. Density plot of the base-10 logarithm of the reflectance (a) R, [(b) Rz] and the (normalized)
energy flux magnitude (c) |f| [(d) |/z|] at the excitation port versus the detuning (&, €, ) of the

unidirectional SS, in the case for left [right] impinging evanescent waves. The shaded portions in
(c) and (d) differentiate the negative energy fluxes from the positive ones of the rest. Other

parameters are the same as in Fig. 1.
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Fig. 3. Density plot of the logarithm of the reflectances (a, b) R,  and the energy fluxes (c, d)
J.r > 0 (see Fig. 2), versus the detuning (&, a,,) Of the evanescent wave unidirectional SS. The
white dashed lines trace the trajectories of the local minima of |Q| regarding €,,,, and the red arrow

indicates their crossing point where Q = 0. Other parameters are the same as in Fig. 2.
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