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Willis materials provide degrees of freedom to control mechanical waves unavailable in conven-
tional materials, but our understanding of wave-matter interaction in these exotic media has been
limited by their unconventional constitutive equations. This work derives an equivalence between
the acoustic Willis wave equation inside a general inhomogeneous and anisotropic Willis medium
and the well-known wave equation in conventional acoustic materials with embedded continuous
distributions of monopole and dipole sources. It thus enables accurate and efficient computation of
sound scattering from arbitrarily shaped general acoustic Willis materials in one-, two-, and three-
dimensions. The result is validated by showing in numerical simulations that realizable bulk Willis
metamaterials obtained by periodically replicating a labyrinthine cell scatter sound identically to its
equivalent material with embedded continuous source distributions. Furthermore, the equivalence
provides insights into the physics of Willis materials. For example, it shows that multiple pairs of
Willis coupling vectors produce exactly the same sound scattering regardless of excitation. It also
directly shows whether the effective material parameters extracted from single Willis cell simulations
maintain validity in bulk metamaterials based on that cell. This equivalence model will advance
the design of Willis metamaterials and provide the tool to better understand the physics of Willis
media.

I. INTRODUCTION

Willis media have long been recognized as extensions
to conventional materials in which additional coupling
coefficients between the strain-momentum and velocity-
stress fields provide new degrees of freedom to manipulate
sound [1–4]. Although Willis coupling is typically small
in the natural acoustic environment, various studies have
demonstrated that Willis coupling can be increased us-
ing metamaterial techniques which enabled exciting ap-
plications. For example, it has been shown that meta-
surfaces composed of arrangements of carefully designed
unit cells significantly increase the Willis coupling coeffi-
cients and allow independent control of the reflected and
transmitted sound [5]. Similarly, gradient Willis meta-
surfaces have been used as highly efficient beam steer-
ers in which transmitted waves were sent in desired di-
rections with very low reflections [6] and grating Willis
metasurfaces have been used as anomalous reflectors that
steered the reflected sound in non-specular directions [7].
Moreover, a design approach based on self-induced sur-
face waves was introduced and experimentally verified to
realize Willis gradient metasurfaces for arbitrary beam
splitting and anomalous reflection with theoretically uni-
tary efficiency [8].

Active Willis metamaterials further extended the range
of achievable Willis coupling coefficients beyond the fun-
damental limitations of passive media. Not only that
the two Willis coefficients can be set differently in active
media, but their values are not subject to the fundamen-
tal bounds imposed in passive materials outlined in [7].
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These properties were leveraged to demonstrate excellent
broadband sound barriers [9], broadband non-reciprocal
media [10–13], and programmable extreme anomalous re-
flectors [14].

These exciting applications stem from the non-
conventional wave equation governing the propagation
of sound in Willis media. However, the exotic form of
this equation, which was also associated to moving media
[15–17], has been an impediment for our understanding of
Willis media dynamics because there are no generally ac-
cepted solvers of this equation. Analytical solutions have
been provided in one-dimensional (1D) systems [3, 11, 18]
and in related homogeneous unbounded media [19], but
these approaches are not suitable for two- (2D) or three-
dimensional (3D) spaces involving finite-sized inhomoge-
neous materials.

In an attempt to overcome this obstacle, researchers re-
sorted to equivalent models that equate Willis media
with arrangements of discrete, line- or point-like sources
[9, 10, 20, 21] separated by subwavelength distances.
These models necessarily consider the microscopic inter-
action between these sources and are non-scalable in gen-
eral scenarios in which the material they model becomes
too voluminous. Moreover, it is generally challenging to
relate the physical structure of a material to the strength
of these sources [21].

In this work we address these challenges and derive the
equivalence between general inhomogeneous Willis media
anisotropic in both the mass density and Willis coupling
vectors and conventional media with embedded continu-
ous source distributions. The advantage of our approach
is three-fold. First, the latter medium is acoustically de-
scribed by a wave equation which assumes a conventional
form and thus can be solved numerically with commer-
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cially available solvers such as COMSOL Multiphysics.
Consequently, our model enables efficient simulations of
sound scattering from Willis media of arbitrary shape
and material parameters in 2D and 3D. Second, this work
gives previously unavailable insights into the physics of
Willis materials. For example, it shows that multiple
choices of Willis coupling vectors yield the same sound
scattering characteristics in active Willis media. Third,
our model answers important questions related to Willis
material design such as whether the material parame-
ters observed in single cell measurements extend to larger
metamaterial samples obtained by periodically replicat-
ing that cell. We validate this equivalence model by
showing that the sound scattered by a physical Willis
metamaterial composed of unit cells of known effective
material parameters matches excellently the field scat-
tered by its continuous equivalent medium. We show
that, remarkably, this excellent match occurs not only
outside the Willis metamaterial but also inside it. This
equivalence model will open the path towards better un-
derstanding the interaction of sound and Willis materials
and will facilitate the extension of established metama-
terial design and characterization tools including those
based on advanced machine learning techniques [22–24]
to Willis media.

II. EQUIVALENCE MODEL

Willis acoustic media in 3D are characterized by four
effective material parameters, namely the mass density
¯̄ρ, the bulk modulus B, the velocity to pressure S̄ and
the volumetric strain to momentum density D̄ coupling
terms. To preserve generality, these material parameters
are allowed to vary with position to account for inho-

mogeneous Willis media. For passive materials ~S = ~D.
However, given the emergence of active Willis materials,

we relax this constraint and allow ~S and ~D to be different
in this work. The constitutive equations in these general
fluids are [20]

~µ = ¯̄ρ · ~v + ~Dε,

−p = Bε+ ~S · ~v,
(1)

where p is the acoustic pressure, ~v is the particle velocity,
ǫ is the volumetric strain, and ~µ is the linear momentum
density. These equations are coupled with the following
conservation of momentum and mass equations written
in the harmonic regime using the ejωt time variation con-
vention:

−∇p = jω~µ,

jωε = ∇ · ~v.
(2)

Understanding how sound propagates in inhomogeneous
media described by Eqs. (1) and (2) requires solving

them numerically. However, the unconventional form of
these equations due to the additional terms containing
~S and ~D means that established solvers are not suitable
and developing new ones are not trivial.

FIG. 1. Schematic diagrams of a general acoustic Willis
medium with effective material parameters ¯̄ρ, B, ~S and ~D
and the acoustically equivalent continuous material with ef-

fective material parameters ¯̄
ρ′ and B

′

and embedded sources
Qm and ~qd.

We show in this section that we can always replace
the Willis medium with an equivalent conventional fluid
with embedded continuous distributions of monopole and
dipole sources of same shape and size as the Willis
medium, as illustrated in Fig. 1. Our goal is to derive
the material properties of the equivalent fluid (namely,

mass density tensor ¯̄ρ′ and bulk modulus B′) and the
monopole Qm and dipole ~qd source terms such that the
scattered pressure fields are the same for both materials
regardless of excitation. The conventional wave equation
in the equivalent medium assumes the form of the inho-
mogeneous Helmholtz equation as follows [25]:

−∇ · [
¯̄
ρ′

−1

· (∇p− ~qd)]−
ω2

B′
p = Qm. (3)

Similar to other source-driven models [9, 20, 26], the
source terms Qm and ~qd are functions of the material

parameters ¯̄ρ′ and B′, the local acoustic pressure p and
the pressure gradient ∇p. In the remainder of this sec-
tion, we show that Eqs. (1) and (2) reduce to Eq. (3)

under suitable choices of ¯̄ρ′, B
′

, Qm and ~qd expressed in

terms of ¯̄ρ, B, ~S, ~D, p and ~v.

Substituting Eqs. (2) into Eqs. (1) yields

−
1

jω
∇p = ¯̄ρ · ~v +

~D

jω
∇ · ~v, (4)

and

−p =
1

jω
B∇ · ~v + ~S · ~v. (5)



3

From Eq. (4), ~v can be found in terms of the gradient of
p and the divergence of ~v as follows.

~v = −
1

jω
¯̄ρ−1 · (∇p+ ~D∇ · ~v). (6)

Plugging ~v found above into the ~S ·~v term of Eq. (5) and
rearranging the terms give

jωp = (M −B)∇ · ~v +N, (7)

where

M = ~S · (¯̄ρ−1 · ~D),

N = ~S · (¯̄ρ−1 · ∇p),
(8)

which gives the divergence of the particle velocity in
terms of the acoustic pressure as follows:

∇ · ~v =
jωp−N

M −B
. (9)

Computing the divergence of Eq. (6) and replacing ∇ ·~v
in it with the expression provided by Eq. (9) result in
the wave equation in a Willis fluid written in terms of
the acoustic pressure

jωp−N

M −B
= −

1

jω
∇ ·

[

¯̄ρ−1 ·

(

∇p− ~D
jωp−N

B −M

)]

(10)

We notice that Eq. (10) is identical to the standard wave
equation (Eq. (3)) in a conventional fluid with continuous
distributions of monopole and dipole sources if and only
if

¯̄
ρ′ = ¯̄ρ,

B′ = B,

Qm = jωB−1
N − jωpB−1M

1−B−1M
,

~qd = B−1 ~D
jωp−N

1−B−1M
.

(11)

This is a remarkable result for at least three reasons.
First, it shows that the Willis coupling terms in a gen-
eral acoustic Willis medium could be simply replaced
by distributions of monopole and dipole sources with-
out modifying the acoustic pressure distribution inside
and outside the medium. Therefore, instead of solving

the non-conventional system of equations (1) and (2),
one can simply solve the wave equation in the conven-
tional equivalent material with embedded sources using
commercial tools such as COMSOL Multiphysics.

Second, Eqs. (11) provide important insights into the
physics of Willis materials. One example regards the
unicity of the Willis coupling terms producing a given
acoustic field distribution. We note that in an active
Willis material (which is not bound by the requirement
~S = ~D existing in passive materials) there are in general

six Willis vector components for ~S and ~D which could
be used to manipulate the scattering of sound. Since
the equivalent fluid with embedded sources has only four
components that define the monopole and dipole sources

that replace the effects of ~S and ~D, it follows that there

are multiple choices of ~S and ~D that result in the same
scattered field distribution. This is better seen by notic-

ing that the Willis vector ~S appears in the wave equation
(10) as part of the definitions of scalars M and N in Eqs.

(8). For given values of M , N , ¯̄ρ, ~D, and p, Eqs. (8) form
a system of two equations in the three unknowns com-

prising the components of vector ~S. This is an underde-
termined system having, in general, multiple solutions.
Other insights into the physics of Willis metamaterials
will be revealed after we consider the validation of Eqs.
(11) in the next section.

Third, models of matter consisting of conventional flu-
ids with embedded sources have been shown to provide
design tools for active metamaterials composed of peri-
odic arrangements of sensors and drivers which realize
the monopole and dipole sources in a straight-forward
manner [26, 27]. This model extends the same benefits to
active Willis metamaterials. It provides the closed-form
relationship between the local acoustic fields and the em-
bedded source strengths. The relationship translates di-
rectly into the transfer functions between the sensors that
capture the local acoustic fields and the actuators that
produce the acoustic response in active metamaterials
realized with the sensor-driver architecture.

III. MODEL VALIDATION

We validate next the equivalence model represented by
Eqs. (11) by showing that it accurately calculates the
sound scattered by a finite metamaterial sample com-
posed of periodic arrangements of unit cells with known
effective material parameters. This is done by showing
that the scattered pressure fields from the physical meta-
material match very well those of the equivalent con-
tinuous material with embedded sources. To facilitate
numerical simulations of a physical Willis metamaterial
stucture composed of one-hundred-unit cells, we perform
this validation in 2D.

The unit cells that make up the physical metamaterial
are designed to be asymmetrical structures to induce
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anisotropy in the Willis coupling vectors and the mass
density tensor. There are many approaches to realize
acoustic Willis metamaterials [5, 6, 18, 28, 29]. Here we
choose the typical labyrinthine design shown in Fig. 2,
which was shown to lead to large Willis coupling terms
[7]. In the figure, the grey region is the solid inclusion,
and the white region is the background lossless air with
density ρ0=1.29 kg/m3 and speed of sound c0=343 m/s.
The solid inclusion is assumed to be orders of magnitude
stiffer and denser than air and thus its surface is well
approximated by a perfect reflector.

The unit-cell has the side lengths H , and the solid inclu-
sion has the side lengths dx and dy, the wall thickness t
and the channel width w. These values were chosen using
the following design procedure. It is common to consider
that physical metamaterials formed by periodic arrange-
ments of unit cells have effective material parameters if
these unit-cells are highly subwavelength structures [30].
As a rule of thumb, unit cell sizes smaller than a fifth of
the wavelength in both the material and the background
fluid usually suffice. Here we targeted the 2-4 kHz band-
width corresponding to wavelengths in air (λ0) between
85.75 mm and 171.5 mm. We thus choose the unit cell
size H = 11 mm, which is approximately one-tenth of
λ0=114.3 mm at 3.00 kHz. The meandered path length
was chosen to be approximately a quarter of the wave-
length at 3 kHz to produce significant Willis parameters
at this frequency. The inlet position was chosen on the
bottom left side of the cell to ensure Willis anisotropy in

the ~S = ~D vectors, i.e., 0 6= Sx 6= Sy 6= 0, where Sx and
Sy are the components of these vectors in the x and y
directions.

The mass anisotropy of the cell is determined by the
asymmetry in the inclusion dimensions. To assure large
differences between the mass density tensor components
in the principal axes ρxx and ρyy, we chose dx signifi-
cantly smaller than dy .

The other geometrical parameters were chosen iteratively
by requiring large mass density and Willis parameter
anisotropies in the metamaterial. For each choice of geo-

metrical parameters, the effective ¯̄ρ, ~S and ~D were calcu-
lated from sound reflection and transmission simulations
through one unit cell in a 1D setting using an established
procedure [10, 11, 31]. The components of these effective
material parameter tensors were computed considering
propagation in the x and y directions as described in
[32]. Furthermore, although being a scalar term, B was
also obtained independently from sound propagation in
the x and y directions to confirm that they have very
similar values for both directions.

The final geometrical design parameters are dx = 5.75
mm, dy = 8.00 mm, t = 0.8 mm and w = 0.4 mm,
the length of the meandering paths is 29.7 mm, approxi-
mately one-quarter of λ0 = 114.3 mm at this frequency.
Fig. 3 shows the extracted relative effective material pa-

rameters for this cell defined as ¯̄ρ∗ = ¯̄ρ/ρ0, B
∗ = B/B0,

~S∗ = ~S/Z0 and ~D∗ = ~D/Z0 where ρ0 = 1.29 kg/m3,
B0 = 0.152 MPa and Z0 = 442.5 Pa· s/m are the mass
density, bulk modulus and characteristic impedance of
air. In the frequency range 2.80 - 3.12 kHz, the cell size
is larger than a fifth of the wavelength in the metamate-
rial, the homogenization theory becomes less accurate,
and thus the effective material parameters lose physi-
cal meaning. In this band, the metamaterial displays
phononic crystal characteristics showing either high dis-
persion (light gray area in Fig. 3) or a band gap (textured
gray in the figure). Here we are primarily interested in
the frequencies outside of this band where the homog-
enization theory is accurate. By doing so, we also dis-
regard the non-local components of the Willis coupling
terms, which make these coupling terms vary with im-
pinging wave direction, as discussed in [33].
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FIG. 2. Schematic diagram of the unit-cell with H = 11 mm,
dx = 5.75 mm, dy = 8.00 mm, t = 0.8 mm and w = 0.4 mm.
The grey region is the rigid solid inclusion, and the white
region is the background lossless air with density ρ0 = 1.29
kg/m3 and speed of sound c0 = 343 m/s.

Owing to the constitutive equations defined in Eqs. (1),
the unit-cell simulations reveal that for lossless Willis me-
dia, ¯̄ρ∗ and B∗ are real for all propagating frequencies

and that ~S∗ and ~D∗ are purely imaginary. Therefore,

Fig. 3 shows the real values of mass density ℜ( ¯̄ρ∗) and
bulk modulus ℜ(B∗), and the imaginary values of Willis

coupling vectors ℑ(~S∗) and ℑ( ~D∗) over the frequency

range 2 – 4 kHz. The imaginary parts of ~S∗ and ~D∗ may
mean that the impulse momentum depends on the rate of
change of the volumetric strain and the acoustic pressure
depends on the particle acceleration, as discussed in [18].

In this case, the Willis coupling terms ~S and ~D would be

replaced by jω~S and jω ~D in the constitutive equations
(1) and, therefore, the redefined Willis coupling terms
become real. In this work, we chose the form of the con-
stitutive equations shown in Eqs. (1) as this form is more
widely used.

Figure 3 confirms that the unit-cell has significant
anisotropy in the mass density [Fig. 3(a)] and Willis cou-
pling vectors [Figs. 3(c) and 3(d)]. The extracted bulk
modulus (Fig. 3(b)) assumes the same values outside
of the shaded regions, which confirms the metamaterial
behaves acoustically as a fluid. Finally, as expected for

passive lossless media, it is seen that ~S = ~D.

Having designed a Willis unit cell with known effective
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FIG. 3. Non-dimensional effective material parameters ex-
tracted from 1D unit-cell simulations: (a) ℜ(ρ∗xx) and ℜ(ρ∗yy),
(b) ℜ(B∗), (c) ℑ(S∗

x) and ℑ(S∗
y) and (d) ℑ(D∗

x) and ℑ(D∗
y).

material parameters, we validate our equivalence model
for Willis media by comparing the acoustic fields scat-
tered by a metamaterial composed of periodic arrange-
ments of this unit-cell and its equivalent continuous fluid
with embedded sources and acoustic properties provided
by Eqs. (11).

The metamaterial is the 10 by 10 lattice of unit cells
shown in Fig. 4(a) such that it forms a square with side
L = 110 mm or almost a wavelength in air. The meta-
material was ensonified by a line source placed at the
coordinate (x, y) = (576, 576) mm and of frequency 2.8
kHz (i.e., the frequency just to the left of the left shaded
region in Fig. 3). The complex acoustic pressure distri-
bution scattered by the physical metamaterial is shown
in Fig. 4(a).

The effective material parameters at this frequency are
obtained from Fig. 3 and assume the following val-
ues: ℜ(ρ∗xx) = 3.06 and ℜ(ρ∗yy) = 2.02, ℜ(B∗) = 0.65,
ℑ(S∗

x) = ℑ(D∗
x) = 0.52 and ℑ(S∗

y) = ℑ(D∗
y) = 0.22.

These values were plugged into Eqs. (11) to calculate the
effective properties of the equivalent continuous material
with embedded sources. The acoustic pressure scattered
by this equivalent material is shown in Fig. 4(b).

It can be seen from Figs. 4(a) and 4(b) that the pres-
sure fields scattered from the equivalent continuous mate-
rial are in excellent agreement with those scattered from
the physical Willis metamaterial. More importantly,
the close-up views of the pressure fields obtained inside
the Willis metamaterial match equally well those in the
equivalent medium as illustrated in Figs. 4(c) and 4(d).
These results confirm the effectiveness of the equivalence
model summarized by Eqs. (11).

To further validate this model, we performed this com-
parison in the entire band from 2 kHz to 4 kHz and
recorded the acoustic pressure amplitude and phase at
two points inside and outside the metamaterial labeled
A and B in Fig. 4. The magnitude (|ps|) and phase (φ)

A

B B

A

(a) (b)

(c) (d)

�

�

�

�

FIG. 4. Scattered pressure fields from (a) the Willis medium
and (b) the acoustically equivalent continuous material with
embedded sources at f = 2.80 kHz. Close-up views of the
scattered pressure fields inside (c) the Willis medium and (d)
equivalent material. The plots present the raw fields com-
puted by COMSOL Multiphysics.

of the scattered pressure fields for the Willis media and
its equivalent continuous material counterpart are shown
in Figs. 5(a) and 5(c) for point A and Figs. 5(b) and
5(d) for point B. The simulations inside the continuous
material match very well the fields obtained in the Willis
metamaterial over the entire frequency range with the
exception of a few regions discussed below where some
discrepancies occur.

For point A, there is a mismatch in the phase values for
3.39 ≤ f ≤ 3.42 kHz (Fig. 5(c)). This is expected because
the pressure field amplitudes approach zero and thus the
phase values lose relevance. Moreover, for point B, the
equivalent material shows spikes in the scattered pressure
amplitude |ps| and phase φ in a narrow band around f =
3.10 kHz where the bulk modulus B approaches the term
M given by Eq. (8) and jωp approaches N to maintain
a finite value of the source terms Qm and ~qd. At these
frequencies, Eqs. (11) become very sensitive to numer-
ical errors in the computation of the acoustic pressure.
As mentioned before, the effective material parameters
shown in Fig. 3 lose physical meaning in the gray band
shown in Fig. 3 (2.80 - 2.94 kHz) where the metamate-
rial display phononic crystal characteristics. Neverthe-
less, it is remarkable to see that the good match between
the fields scattered by the physical metamaterial and its
equivalent model in this band. This observation suggests
that, for this specific metamaterial, the homogenization
theory holds for cell sizes significantly larger than a fifth
of the wavelength inside the metamaterial.
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FIG. 5. The scattered pressure magnitudes at (a) point A and
(b) point B and the scattered pressure phases at (c) point A
and (d) point B for the Willis metamaterials (solid line) and
the equivalent material (dashed line).

We further validate our equivalent medium model by
computing the average rate of change of energy inside
the medium over a period and showing it is zero for
the lossless metamaterial. According to the conserva-
tion of energy, the average rate of change of energy can
be computed by integrating the acoustic intensity vec-

tor ~I = 0.5ℜ(p~v∗) over a closed surface surrounding the
effective medium. The details of this calculation, the es-
timated acoustic intensity vector and the rate of change
of energy relative to the power incident are presented in
the Supplemental Material [34] (see also reference [35]
therein). This calculation shows that the energy rate of
change is negligible compared to the impinging power in
the entire band of interest where the homogenization the-
ory holds, i.e., excluding the gray region in Fig. 3. This
confirms once more the validity of our equivalent medium
model.

The excellent match between the simulated acoustic pres-
sure for the Willis metamaterial and its equivalent contin-
uous counterpart demonstrates directly that the effective
material parameters retrieved from one cell simulations
maintain validity in the bulk metamaterial composed of
large numbers of cells. This remarkable result confirms
that the acoustic behavior of the labyrinthine Willis cell
shown in Fig. 2 is not influenced by the other cells sur-
rounding it. This result is not surprising. The Willis cou-
pling terms are expected to be influenced by the length
and shape of the meandered channel inside the solid in-
clusion rather than by external factors. Also, metama-
terials made of solid non-resonant rectangular inclusions
were shown to have the same effective acoustic properties
as the individual cell spawning it [32]. For example, it
was shown that the extracted effective material proper-
ties of such a non-resonant metamaterial varying in thick-
ness from 1 to 4 unit-cells along the propagation direction
are essentially the same in the frequency band where the
unit-cell size is significantly smaller than the wavelength
[32]. This observation implies that the behavior of indi-

vidual cells remains uninfluenced by interactions between
them. However, this important property may not hold
for other metamaterial cells. For example, it was shown
that cells based on Helmholtz resonators [36] possess dis-
tinct effective material properties compared depending
on whether the cells are placed at the edge or in the
middle of the metamaterial. In this case, imparting the
effective properties extracted from a single cell to a bulk
metamaterial yields significant errors. Importantly, the
equivalence model and the validation method presented
in this work constitute a straight-forward procedure to
obtain insight into when one cell effective properties ex-
tend to bulk metamaterials.

IV. CONCLUSION

In this study, we derived the wave equation in a general
inhomogeneous, anisotropic acoustic Willis medium and
showed that it is identical to the wave equation in a con-
ventional fluid with continuous distributions of monopole
and dipole sources. To maintain maximum generality,
the derivation did not make assumptions about the re-
lationship between the Willis coupling vectors and thus
is applicable to both passive and active media. This re-
sult shows that the physics of Willis materials can be
efficiently analyzed by studying its equivalent conven-
tional fluid for which efficient solvers of the wave equa-
tion exist in 1D, 2D, and 3D. This approach was vali-
dated through the excellent match between the acoustic
pressure scattered by a physical Willis metamaterial and
its continuous equivalent. This equivalence gave insights
into the physics of acoustic Willis media. For example, it
showed that there exist multiple pairs of Willis coupling
vectors that can produce identical sound scattering, but
these Willis coupling terms are typically characteristic of
the active media. Moreover, the equivalence also demon-
strated directly that the bulk metamaterials obtained by
periodic arrangements of a popular type of anisotropic
labyrinthine unit cell of known effective material param-
eters maintain the effective acoustic properties of the cell.
This implies that single cell design is a very effective tool
for the design of large metamaterials involving this type
of cell.

Due to its ability to efficiently perform simulations
of sound scattered by acoustic Willis materials, the
approach will allow researchers to apply advanced
methods developed for conventional media (e.g., based
on machine learning) to design and characterize Willis
media.
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“Fundamentals of acoustic Willis media,”
Wave Motion 112, 102930 (2022).
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