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The nonequilibrium Green’s function formalism provides a versatile and powerful framework for
numerical studies of nonequilibrium phenomena in correlated many-body systems. For calculations
starting from an equilibrium initial state, a standard approach consists of discretizing the Kadanoff-
Baym contour and implementing a causal time-stepping scheme in which the self-energy of the
system plays the role of a memory kernel. This approach becomes computationally expensive at long
times, because of the convolution integrals and the large amount of computer memory needed to store
the Green’s functions. A recent idea for the compression of nonequilibrium Green’s functions is the
quantics tensor train representation. Here, we explore this approach by implementing equilibrium
and nonequilibrium simulations of the two-dimensional Hubbard model with a second-order weak-
coupling approximation to the self-energy. We show that calculations with compressed two-time
functions are possible without any loss of accuracy, and that the quantics tensor train implementation
shows a much improved scaling of the computational effort and memory demand with the length of
the time contour.

I. INTRODUCTION

Studies of nonequilibrium phenomena in lattice sys-
tems are stimulated by experiments on laser driven
solids [1] and cold atomic gases in modulated optical lat-
tices [2], as well as fascinating new theoretical concepts
like prethermalization [3] or nonthermal fixed points [4].
Theoretical and numerical investigations are often based
on the nonequilibrium Green’s function formalism [5],
which provides a versatile framework and direct access to
experimentally relevant probes. If the initial state of the
system is an equilibrium state, the Green’s functions are
defined on the so-called Kadanoff Baym (KB) contour,
which runs from time 0 to some time tmax along the real-
time axis, returns to time 0, and then extends to time−iβ
along the imaginary-time axis (where β = 1/T is the in-
verse temperature of the initial state) [6]. The interacting
lattice Green’s function Gk for momentum k is then the
solution of the Dyson equation Gk = G0

k +G0
k ∗Σk ∗Gk,

where G0
k is the noninteracting lattice Green’s function,

Σk is the self-energy and “∗” denotes a convolution on
the KB contour. In weak-coupling perturbation theories,
Σk is expressed diagrammatically in terms of G0

k or Gk

and its calculation may require additional convolutions.

Numerical calculations typically employ a discretiza-
tion of the KB contour and a time-stepping scheme which
starts from the initial equilibrium solution (imaginary-
time branch) [7, 8]. Such nonequilibrium Green’s func-
tion calculations can be conveniently implemented with
high-order integration schemes using, e. g., the NESSi
library [9]. A drawback of the approach is however the
rapid increase with tmax of the numerical cost for the
calculation of the convolutions (∼ t3max), and the large
amount of computer memory needed for storing two-
time or higher-order Green’s functions on a fine time grid
(∼ tnmax for n point functions).

Various strategies have been adopted to address these
challenges. One possibility is to resort to approximate

schemes, like the Generalized Kadanoff-Baym Ansatz
[10], in which the two-time Green’s function is approxi-
mately reconstructed from the density matrix. This ap-
proach has enabled nonequilibrium lattice simulations for
realistic systems [11], and there has been significant re-
cent progress in the development of GKBA implementa-
tions with linear tmax scaling [12, 13]. A more controlled
approximation, which works well if the self-energy decays
fast away from the diagonal t = t′, is the truncation of
the memory time in Σk(t, t

′) [14]. In this case the con-
volutions don’t need to be performed over the full KB
contour, but only over some time interval defined by the
cutoff time tcut, and also the storage requirement is re-
duced [15].

A recent and promising idea, which avoids any approx-
imations, is to apply memory compression techniques to
the nonequilibrium Green’s functions. Ref. 16 combined
a hierarchical low-rank representation of the Green’s
function with a time-stepping scheme and demonstrated
a memory reduction from O(t2max) to O(tmax) and an
improved scaling in the solution of Dyson equations.
This innovation allows to time-propagate nonequilibrium
Green’s function calculations to tmax which would be in-
accessible without compression. In a separate develop-
ment, quantics tensor train (QTT) representations of
multi-variable functions were introduced in Ref. 17 and
shown to enable high compression ratios for typical
nonequilibrium Green’s functions. This approach in prin-
ciple enables a simultaneous compression of the time
and space (or momentum) dependence of nonequilibrium
Green’s functions. In the context of diagrammatic many-
body calculations, it is however useful only if the entire
simulation, including the evaluation of the self-energy
and the solution of Dyson equations, can be implemented
in compressed form.

In this paper, we provide a proof-of-principles for
diagrammatic calculations based on QTT compressed
nonequilibrium Green’s functions by implementing self-
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FIG. 1: Second-order contribution to the self-energy in the
real-space representation. z and z′ are time points on the KB
contour C.

consistent second-order perturbative solutions of the two-
dimensional (2D) Hubbard model, both for equilibrium
and nonequilibrium setups. We employ Green’s functions
on the unfolded KB contour and focus on the compression
of the time-dependence. We explain the implementation
of the various steps in the diagrammatic calculation and
discuss the memory requirement and efficiency of our im-
plementation.

The paper is organized as follows. In Sec. II we de-
scribe the model studied and the methodology. Sec-
tion III presents test results for the solution of the equi-
librium and quenched 2D Hubbard model, while Sec. IV
is a short conclusion.

II. FORMALISM

A. Model and second-order perturbation theory

We consider the half-filled 2D Hubbard model on a
square lattice. The Hamiltonian is

H(t) =− v
∑
⟨ij⟩σ

c†iσcjσ + U(t)
∑
i

(ni↑ − 1
2 )(ni↓ − 1

2 ) (1)

with c†iσ the creation operator for an electron with spin
σ on site i, v the nearest-neighbor hopping, and U the
on-site interaction (which in the quench calculation de-
pends on time t). In the first term, ⟨ij⟩ denotes nearest-
neighbor sites. The dispersion of the noninteracting 2D
model is ϵk = −2v(cos kx + cos ky), where we set the lat-
tice constant a to unity. In the rest of the paper, we use
v = 1 as the unit of energy (ℏ/v ≡ 1/v as the unit of
time). We furthermore suppress the spin index, since we
will restrict the calculations to paramagnetic states.

As a simple but nontrivial example of a diagrammatic
calculation, we consider self-consistent second order per-
turbation theory, corresponding to the real-space self-
energy illustrated in Fig. 1. Introducing the polarization
bubble

Πij(z, z
′) = −Gij(z, z

′)Gji(z
′, z) (2)

formed by the interacting lattice Green’s functions

Gij(z, z
′) = −i⟨TCci(z)c†j(z′)⟩ (TC is the time ordering
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FIG. 2: Discretization of the three-legged KB contour C and
weight factors for the trapezoidal rule integration.

operator on the KB contour C = C1
⋃ C2

⋃ C3 and z de-
notes the contour time), we can express the self-energy
as

Σij(z, z
′) = U(z)Gij(z, z

′)Πij(z, z
′)U(z′). (3)

Fourier transformation of the space-translation invari-
ant functions Gij and Σij to momentum space (f(k) =∑

r e
−ikrf(r), f(r) = 1

N2
k

∑
k e

ikrf(k), N2
k denotes

the total number of sites or momentum points) yields
Gk(z, z

′) and Σk(z, z
′). The noninteracting Green’s func-

tion is determined by the dispersion ϵk and the Fermi
function fT for the initial temperature [6],

G0
k(z, z

′) = −i[θC(z, z
′)− fT (ϵk(0))]e

−i
∫ z
z′ dz̄ϵk(z̄), (4)

where θC(z, z′) is the step function defined on the KB con-
tour. With these, we can solve the lattice Dyson equation

Gk(z, z
′) = G0

k(z, z
′) + [G0

k ∗ Σk ∗Gk](z, z
′) (5)

(with the convolution integrals running over the whole
KB contour) to obtain an updated lattice Green’s func-
tion Gk, which can then be Fourier transformed to real
space and used to compute an updated self-energy. The
whole procedure is iterated until convergence is reached.

B. Discretized KB contour and matrix formulation

We first discuss a simple and straight-forward strat-
egy for solving Eqs. (2), (3) and (5), which relies on the
discretization of the KB contour and the matrix repre-
sentation of G, Σ and Π. We illustrate the discretized
contour in Fig. 2. The forward and backward branches
C1 and C2 are represented by (Nt + 1) grid points with
a spacing of dt = tmax/Nt, while the Matsubara branch
C3 is represented by (Nτ + 1) grid points with a spacing
dτ = β/Nτ (β is the inverse temperature). In Fig. 3 we
plot a typical example of an unfolded G in the space of z
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FIG. 3: Equilibrium unfolded Green’s function Gk(z, z
′) for

U = 2, β = 5, Nt = Nτ = 800 and k = (π, π). The top
(bottom) panel shows the real (imaginary) part. In the top
panel we also indicate the different Green’s function compo-
nents and symmetry relations with respect to different axes.

and z′. In the real part (top panel), we also indicate the
greater (G>), lesser (G<), left-mixing (G¬) and Matsub-
ara (GMat) components, which determine the whole ma-
trix via symmetry operations that can be easily deduced
from the color map, and which are indicated by the blue
arrows. (To better reveal the structures, the color bar is
limited to the range [−0.01, 0.01].) The function shown
corresponds to the equilibrium solution for k = (π, π),
U = 2, β = 5 and to a time-grid with Nt = 800 dis-
cretization steps on the real-time axis and Nτ = 800
steps on the Matsubara axis. There are thus a total of
2403 points on the unfolded KB contour. Storing such
a Green’s function with 24032 complex numbers requires
88.1 MB of memory. With the Fourier transformed un-
folded Green’s functions, Πij and Σij can be calculated
by element-wise products.

In the Dyson equation (5) one also needs to take
into account the direction of the time-integral in the
convolutions. In the discretized convolution integrals,
this can be done by introducing the diagonal matrix
τ(z, z′) = diag(dt/2, dt, . . . , dt, dt/2, −dt/2, −dt, . . .,
−dt, −dt/2, −idτ/2, −idτ , . . ., −idτ , −idτ/2), corre-
sponding to the trapezoidal integration rule [28]. The
weight factors associated with the different grid points

are illustrated in Fig. 2. With this, the Dyson equation
becomes the matrix equation

Gk = G0
k +G0

k ∗ τ ∗ Σk ∗ τ ∗Gk, (6)

where we denote the matrices in the discretized (z, z′)
space by an underline and the star symbols here rep-
resent matrix multiplications. In practice, it may be
convenient to combine the (possibly time-dependent)
interaction U(z) and τ(z, z′) into the diagonal matrix
Uτ (z, z

′) = diag(U(0)dt/2, U(dt)dt, . . . ) and to pull the
U -factors out of Eq. (3).
The solutions obtained with these discretized functions

and matrix equations will serve as a reference for the
quantics tensor train implementation discussed in the
next section.

C. Implementation with quantics tensor trains

1. Tensor train representation of two-time functions

A general strategy for compressing (multi-variable)
functions is the QTT representation, which was recently
presented and analyzed in the context of many-body cal-
culations in Ref. 17. We first briefly discuss the main idea
for a function f(z) which depends on a single variable z
defined on the interval [0, zmax]. Let us divide the time-
interval into Nz = 2R − 1 slices of length dz (2R time
points) and map the discretized times to binary numbers
(z1, . . . , zR)2 representing these grid points: (0, . . . , 0)2
corresponds to the first grid point z = 0 and (1, . . . , 1)2
to the last grid point z = zmax = Nzdz. Physically, this
procedure can be thought of as mapping the discretized
time interval onto the 2R dimensional Hilbert space of a
spin-1/2 system. The function f defined on this space
may now be represented as a tensor train (or matrix
product state [18, 19]), as illustrated in Fig. 4. Here,
the bond dimension D of the tensors is controlled by a
parameter ϵcutoff, which defines a cutoff in the singular
values retained in the construction of the tensor train.
Specifically, we measure the accuracy with respect to the
Frobenius norm | · · · | as

ϵcutoff =
|A− Ã|2
|A|2 , (7)

where A is the original tensor or MPS, and Ã is the trun-
cated MPS. We follow the common MPS convention and
define the approximation error in terms of the squared
deviation, see Appendix A of Ref. 17 for a more detailed
description.
The approach can be extended to multi-variable func-

tions, such as the two-time Green’s function G(z, z′) or
self-energy Σ(z, z′), by arranging the corresponding dig-
its of the binary representations of z = (z1, . . . , zR)2 and
z′ = (z′1, . . . , z

′
R)2 into the bit string (z1, z

′
1, . . . , zR, z

′
R)2

with R′ = 2R bits. In principle, the binary representa-
tion of the time variables could also be combined with
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FIG. 4: Illustration of the quantics tensor train representation
of the function f(z). First, the argument z is expressed in a
binary representation, which introduces the bits (or spins) zi,
i = 1, . . . , R. Then, the function defined on the 2R dimen-
sional space is decomposed into a tensor train.

binary representations of the space or momentum vari-
ables, but in the present study, we will restrict ourselves
to the quantics representation of the (contour) time vari-
ables.

It has been shown in Ref. 17 that generically, for rea-
sonable values of ϵcutoff, the scale separation inherent to
most physical functions leads to three distinct regimes
in the evolution of the bond dimension along the ten-
sor train. First, the bond dimension increases exponen-
tially, then reaches a plateau in the region associated
with intermediate scales, and eventually decreases since
the behavior on very short scales is often associated with
noise and lacks relevant information. As a result of this
structure, the tensor train representation enables a signif-
icantly compressed representation of the function, com-
pared to the original one on the discrete time grid, with
a practically negligible loss of accuracy.

2. Diagrammatic calculations with tensor trains

In order to perform diagrammatic calculations like the
second-order solution of the Hubbard model with com-
pressed objects, we must implement the relevant steps
in these calculations with quantics tensor trains. These
steps are (i) Fourier transformations, (ii) the calculation
of element-wise products, as in Eq. (2) with constant U ,
(iii) the multiplication with scalars, as in Eq. (3), and
the calculations of (iv) sums and (v) convolutions, as in
Eq. (5). In the following, we briefly explain the imple-
mentation of these fundamental operations.

a. Multiplication with scalar. Let f̂(z1, . . . , zR) =

f̂ (1)(z1) · . . . · f̂ (R)(zR) be a QTT representation of f(z).

Here, f̂ (j)(zj) represents an individual tensor and the
dot symbols indicate tensor products. To perform a
multiplication with a scalar a in the QTT representa-
tion, we can multiply any single one of the R tensors:

af̂(z1, . . . , zR) = [af̂ (1)(z1)] · . . . · f̂ (R)(zR) = . . . =

f̂ (1)(z1) · . . . · [af̂ (R)(zR)]. This operation does not change
the bond dimensions of the QTT.

b. Sum. A naive approach to sum two QTTs f̂1 and

f̂2, with maximum bond dimensions D1 and D2, respec-
tively, is to make use of direct sums of the two underlying

spaces. For f̂ = f̂1 + f̂2 ≡ f̂ (1)(z1) · . . . · f̂ (R)(zR), this

would result in

f̂ (j)(zj) = f̂
(j)
1 (zj)

⊕
f̂
(j)
2 (zj). (8)

For example, for j = 1 (j = R), the tensors are sim-
ply matrices, which means that we concatenate the two
columns (rows) of each site. This can however lead to
much redundancy, as the resulting maximum bond di-
mension is D = D1 +D2. To see this, consider the case

f̂2 = f̂1, where this approach leads to D = 2D1. On the
other hand, this sum is the same as a multiplication by a
factor 2, where the latter operation keeps the maximum
bond dimension at D = D1. After a sum, it is thus nec-
essary to re-compress the resulting QTT to a lower-rank
representation [18]. The number of operations for the
sum scales as O((D1 +D2)

3) [17].
c. Fourier transformation. Let fr(z) be functions of

z, where r is defined on a mesh of size N2 = N2
k . The

Fourier transform with respect to r of its QTT represen-

tation f̂r(z1, . . . , zR) is given by

f̂k(z1, . . . , zR) =
∑
r

eikr f̂r(z1, . . . , zR), (9)

which can be simply implemented as the sum over QTTs
multiplied by scalars. Here, we use a naive approach for
the Fourier transform. For large Nk, it may be beneficial
to combine the Fast Fourier Transform (FFT) algorithm
with QTTs.

d. Element-wise product. To perform an element-

wise multiplication of two QTTs f̂i(z) = f̂
(1)
i (z1) · . . . ·

f̂
(R)
i (zR), i = 1, 2, we transform the first one into a higher
rank diagonal representation [17]

f̂1(z1, z
′
1, . . . , zR, z

′
R) =(f̂

(1)
1 (z1) δz1,z′

1
) · . . .

. . . · (f̂ (R)
1 (zR) δzR,z′

R
). (10)

Then, the contraction over common indices∑
z′
1,...,z

′
R

f̂1(z1, z
′
1, . . . , zR, z

′
R) f̂2(z

′
1, . . . , z

′
R) (11)

yields the desired result. A naive implementation would
lead to an inefficient scaling O(D6). Fortunately, in prac-
tice, it is possible to reduce this to O(D4) (see Fig. 25(b)
in Ref. [17]) by making use of a fitting algorithm with a
two-site update for the contraction [20].
e. Convolution. Let f1(z, z

′) and f2(z, z
′) be two-

time functions defined on the KB contour. As
discussed in Sec. II B, the contour convolution∫
C dz f1(z, z) f2(z, z

′) can be implemented as the matrix
multiplication f

1
∗ τ ∗ f

2
, with τ a diagonal matrix. It

thus corresponds to two matrix multiplications. Here, we
explain how to implement a single matrix multiplication
corresponding to f

1
∗ f

2
. The contraction [17]∑

z1,z′
1,...,zR,z′

R

f̂1(z1, z
′
1, z1, z

′
1, . . . , zR, z

′
R, zR, z

′
R)

× f̂2(z1, z
′
1, . . . , zR, z

′
R) (12)
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of QTTs represents this matrix multiplication in com-

pressed form. Here, f̂2 is the QTT corresponding to f2

and f̂1 is an auxiliary QTT with new combined indices
on each site. Concretely, this can be done by first con-
tracting each pair of neighboring sites (of both QTTs)
and then contracting over the “column” and “row” in-
dices of the resulting QTTs. We refer to section III C in
Ref. 17 for a detailed description. This operation again
scales as O(D4) [17] if the fitting algorithm [20] is used.

III. RESULTS

A. Compressibility of Gk and Σk

To investigate the compressibility of typical
momentum-dependent Green’s functions Gk and
self-energies Σk, we consider the equilibrium solution
for U = 2, inverse temperature β = 5 and Nt, Nτ = 800
(self-consistent solution of Eq. (6)). In Fig. 5 we plot the
bond dimensions of the tensor train representation of the
k = (kx, ky) = (π, π) Green’s function and self-energy,
both for the functions defined on the unfolded KB
contour (similar to Fig. 3) and for the individual com-
ponents (lesser, retarded, left-mixing and Matsubara).
Here we use ϵcutoff = 10−15, which assures a highly
accurate QTT representation of the original functions.
Note that with the definition in Eq. (7), ϵcutoff = 10−15

corresponds to roughly 7 significant digits.
Focusing first on the results for the unfolded contour,

where the functions contain cusps and discontinuities, as
well as redundant parts, we observe an exponential in-
crease in the bond dimension up to a value of about 150
at the 9th link. This is followed by a rough “plateau”,
and eventually an exponential decrease in the bond di-
mensions. These bond dimensions correspond to a com-
pression ratio (ratio of the memory needed to store the
QTT and matrix representation) of 0.0135 for the Green’s
function and 0.0240 for the self-energy.
As shown in the same plots, the bond dimensions for

the tensor train representations of the individual com-
ponents are considerably smaller, and the plateau ap-
pears earlier. Nevertheless, because there is no redun-
dant information if we consider the components, the
compression ratios are not very different than for the
full functions: In the case of the Green’s function,
the results in Fig. 5 correspond to the compression ra-
tios 0.0409 (lesser), 0.0174 (retarded) and 0.0160 (left-
mixing). The corresponding values for the self-energy
are 0.0302 (lesser), 0.0364 (retarded) and 0.0275 (left-
mixing).

For the efficiency of the diagrammatic calculation in
the QTT form, the maximum bond dimension D is cru-
cial (see Sec. II C 2). Hence, even though the QTT repre-
sentation can reproduce functions with cusps and discon-
tinuities up to machine precision [17], these result show
that an efficient implementation of diagrammatic calcu-
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FIG. 5: Bond dimensions of the Green’s function (top) and
self-energy (bottom) on a logarithmic scale, as well as the re-
sults for the individual components, for cutoff ϵcutoff = 10−15.
The parameters are k = (π, π), U = 2, β = 5, Nt = Nτ = 800.
The QTT has R′ = 2R = 24 bits (R = 12 for each time vari-
able) in case of the full function, 20 bits for the retarded,
lesser, and left-mixing components, and 10 bits in case of the
Matsubara component. The dashed line represents the worst
case scenario without scale separation.

lations should make use of compressed components and
Langreth rules [24], rather than the functions defined on
the unfolded KB contour. More specifically, with 4 in-
dependent components and a maximum bond dimension
of 2x for these components, the maximum bond dimen-
sion of the full unfolded Green’s function or self-energy
can be estimated to be approximately 4 ·2x = 22+x. This
roughly explains the higher maximum bond dimension of
the functions defined on the unfolded contour in Fig. 5
(x ≈ 5.5 in the case of Σ, maximum bond dimension
≈ 25.5 for the components and ≈ 27.5 for the full func-
tions). Nevertheless, for the current proof-of-principle
calculations, we will proceed with compressed two-time
functions defined on the unfolded KB contour.

One may also wonder how the compressibility ofGk de-
pends on the momentum k. To illustrate this, we plot in
Fig. 6 the maximum bond dimension of the QTT within
a quarter of the first Brillouin zone (BZ). The top left
panel shows the results for the function defined on the
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FIG. 6: Maximum bond dimension as a function of k in a
quarter of the first BZ for the full Green’s function Gk (top
left) and its lesser (top right), retarded (bottom left), and
left-mixing (bottom right) components. U = 2, β = 5, Nt =
Nτ = 800, ϵcutoff = 10−15.

unfolded contour, and the other panels for the lesser, re-
tarded, and left-mixing components. While the variation
with k is not very large in the case of the full Gk, we
find that the maximum bond dimension is lowest along
the Fermi surface. In the case of the lesser component,
the bond dimension is larger in the filled part of the BZ
(where the lesser spectrum has a peak) than in the empty
part (where the lesser spectrum is very small). In con-
trast, the retarded component, whose spectrum exhibits
a quasi-particle peak for all k, has an almost constant
maximum bond dimension in the entire BZ. In the case
of the left-mixing component, one finds a gradual increase
in the maximum bond dimension as one moves from the
unoccupied to the occupied part, with a maximum bond
dimension roughly half-way between the Fermi surface
and the Γ point.

The maximum bond dimensions for the self-energy and
its components are plotted as a function of k in Fig. 7.
While the bond dimensions for Σk are generally larger
than for Gk, as already seen in Fig. 5, the maximum
bond dimension is almost independent of k, even for the
components. This is because the self-energy expression
involves products of different Green’s function compo-
nents. For example, in real space, the lesser component
of Π is a product of the lesser and greater components of
G.

B. Exponential convergence with R

An attractive feature of the QTT compression is that
the accuracy of the compressed representation, and hence
time evolution, increases exponentially with increasing
R. This is demonstrated in Fig. 8, where we plot the
deviation between the QTT compressed Green’s function
with R′ = 2R bits and the matrix representation of the
Green’s function for the smallest time step (largest R).
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FIG. 7: Maximum bond dimension as a function of k in a
quarter of the first BZ for the full self-energy Σk (top left) and
its lesser (top right), retarded (bottom left), and left-mixing
(bottom right) components. U = 2, β = 5, Nt = Nτ = 800,
ϵcutoff = 10−15.
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FIG. 8: Exponential convergence of the QTT representation
with R. The figure plots SMAPE for the reference state
Gmatrix (circles). An offset C = 1.6 is added, because the ex-
ponential convergence is towards the infinite-resolution func-
tion G∞.

The reference Green’s function here is the same as in
Fig. 5, i.e. the converged interacting Gk(z, z

′) for k =
(π, π), U = 2, and β = 5. The deviations between the
Green’s functions from the two methods is provided by
the symmetric mean absolute percentage error (SMAPE)
defined as

SMAPE =
100

22R

∑
z,z′

|GQTT(z, z
′)−Gmatrix(z, z

′)|
|GQTT(z, z′)|+ |Gmatrix(z, z′)|

,

(13)
where GQTT (Gmatrix) is the Green’s function from the
QTT (matrix) implementation, and the sums are over
the discretized contour.
Since the reference Gmatrix itself has a finite resolution

(corresponding to R = 12), we plot the SMAPE result
in Fig. 8 with an offset C = 1.6, which represents the
deviation to the infinite resolution Green’s function G∞.
The offset was determined by fitting the SMAPE data
in the interval 7 ≤ R ≤ 12 to the function exp(−αR) −
C, which yields α = 0.62 ± 0.01 and C = 1.6 ± 0.1.
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The log-scale plot in Fig. 8 hence shows the exponential
convergence towards G∞.

C. Solution of the Dyson equation

We now use the QTT representations of G0
k and Gk

to construct the self-energy Σk and to iteratively solve
the Dyson equation (5) using the routines described in
Sec. II C 2. After the generation and compression of the
G0

k, we work exclusively with quantics tensor trains, and
convert the results to functions on the discretized un-
folded KB contour only for the purpose of comparison to
the reference data, which are obtained from the solution
of the matrix equation (6). Since the goal in this study
is to reproduce the matrix calculations with QTTs, we
solve the same discretized equations. In particular, the
convolution integrals are also solved with the trapezoidal
rule in the QTT implementation.

Figure 9 illustrates the convergence of an equilibrium
calculation in compressed form, and compares the results
to the reference values from the non-compressed matrix
calculation. These results are for the parameters U = 2
and 4, β = 2, tmax = 2, Nt = 400, Nτ = 220 (R = 10 bi-
nary digits, as 2(400+1)+(220+1)+1 = 1024 = 210 [22]),
N2

k = 202, ϵcutoff = 10−15 (left panels) and ϵcutoff = 10−8

(right panels), and maximum allowed bond dimension
Dmax = 120 (left) and Dmax = 100 (right). The top

panel shows the difference G
(l)
k −G

(l+1)
k , with l the iter-

ation step, evaluated on the unfolded contour with the
maximum norm | . . . |∞ (maximum of the absolute val-
ues of the elements of the matrix). The solution can be
considered as converged if this difference drops below a
certain value ϵ. For example, four significant digits cor-
responds to ϵ = 10−4, since the Green’s functions are of
the order of unity. With the maximum norm, this ac-
curacy is achieved after 6 (16) iterations for U = 2 (4)
and the two k-points presented in the figure, both for
ϵcutoff = 10−8 and ϵcutoff = 10−15. The lines in the figure
show the results from the tensor train calculations, and
the open circles those from the reference matrix calcu-
lation. The perfect agreement between the tensor train
implementation for the smaller ϵcutoff and the matrix cal-
culation demonstrates that there is no significant loss of
accuracy by switching to the compressed representation.

For ϵcutoff = 10−8, at step l = 4, one notices some
deviation between the matrix and QTT implementation,
which however does not compromise the further conver-
gence. Indeed, the maximum norm | . . . |∞ is very sensi-
tive to fluctuations in the difference between two Green’s
functions, and overemphasizes deviations which are con-
fined to small regions in the two-time plane. A global pic-
ture of the deviations between the Green’s functions from
the two methods is provided by the SMAPE estimate
defined in Eq. (13). This estimate yields a consistently
small percentage error, independent of iteration number
l, as shown in the bottom panels of Fig. 9, which con-
firms that the two implementations produce essentially

identical results. Furthermore, by reducing the cutoff
sufficiently, one achieves perfect agreement between the
tensor train implementation and the matrix calculation
for the maximum norm, which demonstrates that there
is no significant loss of accuracy by switching to the com-
pressed representation.
The speed of convergence does not depend strongly

on the momentum k. On the other hand, for larger U ,
where the interacting Green’s functions differ more from
the noninteracting ones, the convergence slows down con-
siderably. This could be potentially improved with ded-
icated mixing schemes, such as the Broyden method
[23]. One should note, however, that self-consistent sec-
ond order perturbation theory becomes unreliable for
U ≳ bandwidth/2 = 4, so that the larger U value shown
in Fig. 9 is at the upper end of the range of applicability.
The real and imaginary parts of G0

k and the converged
Gk for U = 2 and 4 are plotted for β = 2 and k = (π, π)
in Fig. 10. As expected, the deviations from the nonin-
teracting result (top panels) increase with increasing U .
For a better visualization of small structures, we restrict
the color bars to [−0.01 : 0.01].

D. CPU and RAM demand

The simulations were carried out on 128 Core AMD
EPYC 7742 2.25 GHz processors with 768 GB of random
access memory (RAM) using codes written in Julia 1.8.5.
The QTT computations are implemented with the help
of the ITensors.jl [21] library. We measure the CPU
demand using the timed function and report the time for
the last iteration. The total physical RAM used (in the
full calculation) is measured using the reportseff Slurm
command.
In Fig. 11 we show how the CPU and memory demand

scales with the number of discretization steps for fixed
β = 2 and tmax = 2, U = 2 and N2

k = 202 (Nk = 20
momentum points along each axis). In the case of the
matrix calculations, the effort grows like a power-law of
the matrix size, or exponentially ∼ (2R)b with increasing
number of digits (per time variable) R in the binary rep-
resentation. Naively, one would expect that the memory
demand grows quadratically (b = 2) and the CPU time
with the third power (b = 3). The measured exponent for
the memory demand is lower, because the matrices are
still too small to fully dominate the RAM allocation. In
the case of the CPU scaling, b < 3 because our implemen-
tation of the Fourier transformation is rather inefficient,
so that operations other than matrix multiplications ac-
count for a significant share of the CPU time.
The QTT calculation, on the other hand, shows a sat-

uration in both the CPU and memory demand beyond a
certain value of R. Once all the physically relevant struc-
tures are fully resolved in the discretized form, the com-
plexity of the QTT based calculation no longer increases
by adding further digits (using a finer mesh), in contrast
to the matrix calculation. As a result, even though the
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FIG. 9: Top panels: Maximum norm error for G

(l)

k⃗
− G

(l+1)

k⃗
as a function of iterations l for U = 2 and 4, β = 2, (kx, ky) =

(3.14, 3.14) and (1.57, 1.26) (near the Fermi surface). The circles show the results of the QTT implementation and the lines
indicate the reference data from the matrix implementation. Bottom panels: SMAPE for GQTT and Gmatrix as a function of
iterations l, for the same parameters. We use ϵcutoff = 10−15 for the left panels and ϵcutoff = 10−8 for the right ones.

FIG. 10: Real (left) and imaginary (right) noninteracting
(top) and interacting (middle: U = 2, bottom: U = 4)
Green’s functions for β = 2 and k = (π, π). We restrict
the color bar to the interval [−0.01, 0.01] to emphasize small
structures.

QTT implementation is not competitive for small time
grids, it eventually outperforms the matrix implementa-
tion.

In the top panel of Fig. 12, we show the maximum
bond dimension as a function of increasingly fine mesh
size (R), for converged solutions (iteration l = 7) and
k = (π, π). The maximum bond dimension changes little
with R, and even exhibits a slight decrease. The func-
tions with larger R allow a better representation of the
translation invariant structures, which may explain this
behavior. In our simulations, we set the maximum bond
dimension to D = 100, but as can be seen from Fig. 12,
the actual bond dimensions are below this value, which
means that the CPU and RAM demands are only con-
trolled by the cutoff ϵcutoff = 10−8.

One may be more interested in increasing tmax with
a fixed (small enough) time step dt, rather than in-
creasing the number of discretization steps with fixed
tmax. We performed a similar analysis with dt = 0.005,
dτ = 0.009, β = 1, Nτ = 108 fixed in the QTT
calculation. We increase R and adjust Nt such that
2R = (Nτ + 1) + (2Nt + 2) + 1 [22]. In the QTT cal-
culations, we again set the cutoff to ϵcutoff = 10−8. As
shown Fig. 13, the CPU and memory demand shows a
similar trend as reported in Fig. 11. In particular, the
memory demand in the QTT calculation grows only mod-
erately for large R, in contrast to the matrix implemen-
tation, where it increases almost quadratically with the
total number of discretization steps (∼ tmax for large R).
The crossing point is between R = 8 and R = 9, which
corresponds to a short time contour with Nt < 200. The
CPU demand in the QTT implementation also increases
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FIG. 11: CPU and memory demand as a function of increas-
ing mesh size for fixed β = 2, tmax = 2 (iteration l = 7 for
the CPU measurement). On the horizontal axis, we report
the number of digits R in the binary representation, which
corresponds to 2R time discretization points on the contour
C. Fitting the results for the matrix implementation to (2R)b

yields the exponent b = 1.70± 0.03 (1.57± 0.04) for the CPU
(RAM) scaling. In the QTT calculation, we set the maximum
bond dimension to D = 100 and the cutoff to ϵcutoff = 10−8.

much more slowly with increasing R than in the matrix
calculation. It becomes lower than that of the matrix
implementation for R ≳ 11 (Nt ≳ 1000).

In the bottom panel of Fig. 12, we show the maximum
bond dimension for the converged solutions as a func-
tion of tmax, for the k-point k = (π, π). Again, even
though we limit the bond dimensions to D = 100 in our
calculations, this is value is not reached for R ≤ 12, so
that the numerical effort is controlled by ϵcutoff = 10−8.
The maximum bond dimension increases with increasing
length of the contour and reaches D = 51 for R = 12
(for the corresponding G0, we have D = 24). In contrast
to the previous simulations, where we decreased the dis-
cretization step for fixed tmax, the functions here become
more complex with increasing tmax, with a larger num-
ber of damped oscillations. The measurements indicate
that the bond dimension increases faster than linearly,
but we have not enough data points to determine a re-
liable exponent. If the trend seen in the figure contin-
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FIG. 12: Top panel: Maximum bond dimension of the con-
verged Green’s function (l = 7) with k = (π, π) as a function
of increasingly fine grid, corresponding to the setup of Fig. 11.
Bottom panel: Maximum bond dimension of the converged
Green’s function (l = 7) with k = (π, π) as a function of max-
imum time tmax, corresponding to the setup of Fig. 13.

ues, we would reach D ≈ 100 for R = 13, making the
simulations too costly for practical applications. It will
thus be important to devise and test optimizations, such
as component-wise implementation or patching schemes,
which allow to reduce the maximum bond dimension.

E. Interaction ramp

In this section, we show results for an interaction ramp
calculation, starting from the noninteracting state. On
the real-time axis, the interaction is ramped up as

U(t) =
Ufinal

1 + exp(−κ(t− tramp)/tmax)
, (14)

where tramp = tmax/10 and the steepness of the ramp is
controlled by κ/tmax (we choose κ = 0.5 and tmax = 2).
The convergence of Gk is illustrated for Ufinal = 2 and
4, initial β = 2 and for the momenta k = (π, π) and
(1.57, 1.26) in Fig. 14. Here, we use the same parame-
ters as in Fig. 9 (ϵcutoff = 10−15 and Dmax = 120). The
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FIG. 13: CPU and memory demand as a function of increas-
ing number of digits R in the binary representation. The
corresponding values of Nt are indicated in the brackets on
the horizontal axis (tmax = Ntdt). Here, β = 1, dτ = 0.009,
and Nτ = 108 are fixed. Fitting to (2R)b yields the exponent
b = 2.098 ± 0.003 (1.78 ± 0.06) for the CPU (RAM) scaling.
In the QTT calculation, we set the maximum bond dimension
to D = 100 and the cutoff to ϵcutoff = 10−8.

convergence behavior is similar to the equilibrium calcu-
lation (Fig. 9), but less monotonous in the case of U = 4
and k = (1.57, 1.26). Again, the agreement between the
QTT and matrix implementation is excellent, which con-
firms that also in nonequilibrium situations, the compres-
sion does not lead to any significant loss of accuracy As
discussed previously, the maximum norm might detect
some local fluctuations, which however do not represent
a significant deviation between the QTT and matrix im-
plementations. Indeed, SMAPE for GQTT and Gmatrix

yields consistently low percentage errors for all iterations
l, as shown in the lower panel of Fig. 14.
The real and imaginary parts of the converged k =

(π, π) Green’s function, are shown in Fig. 15 for the
ramp to Ufinal = 4. In contrast to the equilibrium results,
this function now exhibits clearly non-time-translation-
invariant features. For example, in the lesser component
(z1 ≤ z2 ≤ tmax), the black area is no longer parallel to
the diagonal z1 = z2.
In Fig. 16, we show the evolution of the kinetic energy
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FIG. 14: Top panel: Maximum norm error for G

(l)
k − G

(l+1)
k

as a function of iterations l for interaction ramps U(t) to the
indicated values of Ufinal, β = 2 in the initial state, (kx, ky) =
(3.14, 3.14) and (1.57, 1.26) (near the Fermi surface). The
lines are the result of the QTT implementation and the circles
indicate the reference data from the matrix implementation.
Bottom panel: SMAPE for GQTT and Gmatrix as a function
of iterations l, for the same parameters.

per site

Ekin(t) =
−2i

N2
k

∑
k

ϵkG
<
k (t, t). (15)

This energy contribution is negative in the initial equi-
librium state, and increases during and after the ramp,
due to the correlation induced band renormalization, and
also due to heating. Once the correlated electronic struc-
ture of the interacting system is roughly established, the
kinetic energy becomes approximately constant and ap-
proaches the thermalized value after strongly damped
(overdamped) oscillations, as expected for a moderately
correlated metallic system [25]. Also in the case of
Ekin(t), the results calculated in the QTT and matrix
implementations agree, which demonstrates that realis-
tic nonequilibrium simulations, including the calculation
of relevant observables, can be implemented with com-
pressed functions.

IV. CONCLUSIONS

We demonstrated and tested the implementation of
nonequilibrium Green’s function based diagrammatic
many-body calculations with QTT compressed two-time
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FIG. 15: Real (top) and imaginary (bottom) part of the
converged Green’s function for the interaction ramp U(t) to
Ufinal = 4, β = 2 in the initial state, and k = (π, π).

functions. Using self-consistent second order perturba-
tion theory for the 2D Hubbard model as a simple but
relevant application, we explained the implementation
of the different calculation steps (Fourier transforma-
tion, scalar multiplication, element-wise product, sum
and convolution) and used these routines to construct the
second-order self-energy and to solve the lattice Dyson
equation. In the present proof-of-principles study, we
employed two-time functions defined on the unfolded KB
contour, and restricted the QTT compression to the time
dependence of these functions. To test and benchmark
our calculations, we compared the QTT implementation
to the matrix implementation with two-time functions
defined on the discretized KB contour.

Our investigation confirmed that the calculations with
compressed objects reproduce the results from the ma-
trix implementation up to high precision. An analysis of
the CPU and RAM scaling revealed that the QTT im-
plementation is not competitive with the matrix version
for short time contours, but that it exhibits a more favor-
able scaling with increasing length of the time contour.
For fixed tmax, the memory and CPU demands in the
QTT implementation saturate once the number of digits
in the binary representation is high enough that all rele-
vant structures can be resolved. The QTT calculation is
also not very sensitive to tmax, as long as the maximum
bond dimension needed for the accurate representation of

FIG. 16: Kinetic energy of the lattice system subject to an
interaction ramp U(t) to Ufinal = 2 and 4. The lines (circles)
show the results from the QTT (matrix) implementation. The
initial inverse temperature is β = 2, κ = 0.5 and tmax = 2.

the functions grows slowly with increasing number (R) of
binary digits. In practice, for the present model and im-
plementation, the QTT calculation outperforms the ma-
trix calculation for R ≥ 9 (RAM) and R ≳ 11 (CPU)
or tmax/dt ≳ 200 and tmax/dt ≳ 1000, which are num-
bers of time points that are easily surpassed in realistic
applications based on discretized contours.

Since the computational effort for the relevant QTT
operations scales steeply with the maximum bond di-
mension D, practical applications to (nonequilibrium)
Green’s function schemes should not employ the func-
tions defined on the unfolded KB contour, but rather the
lesser, retarded, left-mixing and Matsubara components
[6, 9], since this will allow to reduce D by approximately
a factor of 4.

The QTT based approach is more naturally combined
with a self-consistency loop which updates the func-
tion on the full time contour, than with a time-stepping
scheme. For large tmax, the convergence properties of
this approach will have to be further investigated. Also,
the dependence of the maximum bond dimension D on
the length of the contour needs to be studied in differ-
ent relevant contexts, including quenches, periodically
driven models, and systems with distinct characteristic
timescales linked, e. g., to prethermalization [3] or non-
thermal fixed points [4].

It is possible that some form of coarse-graining, divide-
and-conquer or patching will help to speed up the conver-
gence. Furthermore, this will reduce the bond dimension
for each patch, and will allow efficient patch-wise mas-
sive parallelization. A possible advantage of the divide-
and-conquer QTT approach is that a given patch can
be large, as long as its bond dimension stays reason-
ably small (e.g. D ≲ 100), while the time resolution
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is exponentially high with respect to R, with negligible
discretization errors. Another interesting direction for
method development is the combination with tensor cross
interpolation (TCI) [26, 27]. The combination of quantics
and TCI (QTCI) [27] may accelerate the convolutions in
the calculations of self-energies and the solution of Dyson
equations. Also, QTCI can be naturally combined with
the divide-and-conquer approach.

A feature that distinguishes the QTT approach
from the hierarchical low-rank matrix representation of
Ref. [16] is the possibility, at least in principle, to com-
press the dependence on momentum or orbital degrees
of freedom by adding corresponding digits to the binary
representation. If this can be done effectively, it would
solve one of the major bottlenecks of nonequilibrium lat-
tice simulations, namely the large memory cost for stor-
ing momentum-dependent two-time functions. However,
it is not a priori clear how to combine these various bits
into a QTT which still optimally exploits scale separa-
tion. A poor choice may result in large bond dimensions
and hence inefficient calculations. In realistic applica-
tions, the above-mentioned combination of the QTT ap-
proach with patching schemes might yield the optimal
balance between simplicity (all degrees of freedom in a

single QTT) and efficiency (low bond dimensions). In
fact, such a divide-and-conquer QTT approach can be
regarded as a generalization of the hierarchical low-rank
matrix representation: The former uses a QTT with ex-
ponentially high resolution for each patch, while the lat-
ter uses a low-rank matrix decomposition with a fixed
resolution.

Systematic explorations of different patching ap-
proaches and multi-variable compression schemes are
needed to gain more insights into the strengths and lim-
itations of the various methods.
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