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The study of frustration-free Hamiltonians and their relation to finite bond dimension matrix-product-states

(MPS) has a long tradition. However, fractional quantum Hall states do not quite fit into this theme, since the

known MPS representations of their ground states have infinite bond dimensions, which considerably obscures

the relations between such MPS representations and the existence of frustration-free parent Hamiltonians. This

is related to the fact that the latter necessarily are of infinite range in the orbital basis. Here we present a

Theorem taylored to establishing the existence of frustration free parent Hamiltonians in such a context. We

explicitly demonstrate the utility of this Theorem in the context of non-Abelian Moore-Read fractional quantum

Hall states, but argue the applicability of this Theorem to transcend considerably beyond the realm of conformal-

field-theory-derived matrix product states, or quasi-one-dimensional Hilbert spaces.

I. INTRODUCTION

The theory of fractional quantum Hall (FQH) effect is

widely regarded as a theory of beautiful wave functions that

are linked rather directly to effective quantum field theory de-

scriptions both for the bulk of the system and for the closely

related edge. The close link between microscopic wave func-

tion and effective theory can be brought about through pow-

erful mappings and conjectures, such as the Moore-Read

(MR) conjecture1. Given the great success of such map-

pings between model wave function and effective theory in

the exploration of possible phases in the FQH regime, it re-

mains perhaps somewhat under-appreciated that in specific

cases, model Hamiltonians can serve to significantly further

corroborate the universal physics of a given wave function

description. The fact that such model Hamiltonians are less

credited for the enormous success of the theoretical descrip-

tion of FQH states may be due to the fact that known instances

were largely limited to a subset of wave functions to which

Moore-Read type arguments can be directly applied: They

are lowest Landau level (LLL), holomorphic wave functions

that can be obtained as conformal blocks in some associated

rational conformal field theory. Originally, thus, well-studied

parent Hamiltonians in the field stabilized model wave func-

tions whose physics are well under control by the MR conjec-

ture. More recently, however, it has been demonstrated that

the class of FQH wave functions whose long-distance physics

can be fully exposed by a systematic study of zero mode

spaces of accompanying parent Hamiltonians is consider-

ably larger than previously thought. It contains, for example,

model Hamiltonians2 for the entire positive Jain sequence,

as well as non-Abelian parton-like wave functions.3–12 This

recent progress was made possible not merely by the identi-

fication of appropriate parent Hamiltonians, but also by the

development of new techniques to rigorously study their zero
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mode spaces. These developments were made necessary by

the presence of higher Landau level degrees of freedom that

destroy the holomorphic dependence of the wave function on

position variables. The latter is the reason why traditional

parent Hamiltonians in the LLL allow rigorous exploration

of their zero mode spaces by translating the problem into

the search for symmetric polynomials with certain additional

clustering conditions. In the more general cases recently

studied, this connection with symmetric polynomials is lack-

ing. The recent forays into the rigorous study of FQH parent

Hamiltonians of mixed Landau level states have shown that

the desirable properties of these Hamiltonians, namely, an

analytically accessible “topological” zero mode space, are in

no way tied to underlying symmetric polynomials or limited

to the applicability of the “polynomial-techniques” tradition-

ally used to establish these spaces. Indeed, it was only the

abandoning of these techniques that brought into focus a

potentially much larger class of solvable Hamiltonians shar-

ing similar properties. The characteristic of these new tech-

niques, which are equally applicable in the LLL and in the

broader context, is the fact that they put greater emphasis on

the second-quantized representation of FQH wave functions.

Special parent Hamiltonians of the kind considered here

have the property that they divide the Hilbert space into a fi-

nite energy subspace (with energies ideally bounded from be-

low by a gap) and a “topological” zero energy (“zero modes”)

subspace. The latter contains all the universal physics of the

underlying quantum Hall state. This is true both for the bulk

physics as well as the closely related edge theory. In the case

of the bulk, the zero mode space contains localized quasi-hole

excitations whose holonomies encode the exchange statistics

that characterize the low-energy physics in the bulk, and are

well-suited for applications as protected qubits in topological

quantum computation13,14. Localized quasi-hole states are

not angular momentum eigenstates, but can be expanded in

an angular-momentum zero mode eigenbasis. Such an eigen-

basis will be in one-to-one correspondence with states in the

edge conformal field theory (CFT)15. More concretely, the

number of zero modes at given angular momentum relative
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to the incompressible state matches precisely the number of

modes at the corresponding level in the edge CFT. A con-

fining potential proportional to total angular momentum then

renders small angular momentum Δ! (relative to the incom-

pressible state) zero modes the physical gapless edge excita-

tions of the system, whereas quasi-holes in the bulk can be

thought of as being formed by “high energy modes” in the

edge theory. The point is that up to angular momenta X! ∼
particle number # (where zero modes already represent bulk

excitations), the number of zero modes of the microscopic

model at given Δ! exactly matches the number of modes

at level Δ! in the effective edge theory. In such models,

thus, whenever the zero mode structure is under control, a

large amount of field-theoretic data can be obtained. (The

holonomies mentioned above, while also encoded in the zero

modes, are very challenging to calculate directly,16–18 but can

be simplified considerably with some assumptions19.)

It is well-known that when presented in the orbital (angu-

lar momentum) basis, i.e., in second quantization, fractional

quantum Hall parent Hamiltonians become one-dimensional

lattice models20,21. The long-range character of the interac-

tion in this presentation renders the rigorous study of zero

mode spaces non-trivial. It is for this reason that historically,

such models were studied from as first-quantized models in

two spatial dimensions, even though such a perspective some-

what obscures the relevant dynamical degrees of freedom22.

The guiding-center degrees of freedom fully encode the topo-

logical quantum order. The first clue to this realization was

the observation that rotational invariance is not necessary for

the FQH effect23. Subsequent works further explore the con-

sequences of abandoning rotational invariance by construct-

ing a basis of generalized pseudo-potentials for two-body

effective interactions24, examining its implications with band

mass anisotropy25–27, and the recent study of an emergent

universal property of FQH liquids28.

As we’ve argued, the recent extension of this class of mod-

els actually makes the “1D lattice” presentation indispens-

able. It is for the above reasons that we advocate the view

that known FQH parent Hamiltonians should be regarded

as a broader class of solvable 1D models whose signifi-

cance is on par with other analytically tractable models in

1D, such as 1D integrable models or models with a factor-

ized wave functions (the latter two categories having non-

trivial overlap29–32). From a “1D point of view”, one can

distinguish two approaches to these models: i) A hybrid

approach where a (linear) generating set for the zero mode

space is postulated/identified in first quantization, but then

the completeness of the space so generated is proven us-

ing second-quantized squeezing techniques. This approach

is extremely powerful in a mixed-Landau-level/parton state

situation, where said completeness is otherwise hard to es-

tablish. ii) A fully second-quantized machinery. Here, some-

what in the spirit of Ref. 22, the usual polynomial picture

characteristic of FQH trial states is completely abandoned,

and zero mode spaces are constructed and established en-

tirely in second quantization. The latter approach has so far

been sparsely explored. It has been achieved for the Laugh-

lin state33–35, and for composite fermion states2,36. We also

mention the rich Jack-polynomial literature37,38, which offers

a powerful way to achieve a second-quantized representation

of states with Jack polynomial wave functions. What we wish

to do here is to further explore the direct connection between

such a second-quantized representation, and the existence of

a 1D, second-quantized parent Hamiltonian. For this, we will

emphasize the matrix product state (MPS) representation for

fractional quantum Hall states. MPS39–41, which are one-

dimensional tensor networks, are also known as tensor-train

decomposition in computer science and mathematics42–45.

To our knowledge, while there have been seminal develop-

ments in understanding FQH states as MPS,46–53 it is only

for the Laughlin state that the existence of a frustration-free

parent Hamiltonian has been understood as a direct conse-

quence of the underlying MPS structure35. In contrast, we

note that in the context of short-ranged models, the existence

of a (finite bond dimension) MPS/tensor network40,41 ground

state is the bread-and-butter of the study of frustration-free

parent Hamiltonians, such as the AKLT model54. For FQH

parent Hamiltonians, this direct connection is considerably

obscured by the long-ranged character of the Hamiltonian

(in the 1D lattice formulation), and the related infinite bond-

dimension MPS. We feel that a more thorough understanding

of the direct relationship between the (infinite bond dimen-

sion) MPS structure of the ground state and the existence of

(long-ranged) frustration-free 1D parent Hamiltonian is in-

strumental for further progress. For one, it is through this

connection that the correspondence between edge theory and

zero mode spaces becomes most manifest. More impor-

tantly, we feel that a more thorough understanding may be

instrumental for further generalization. In this paper, we will

thoroughly expose this connection in the context of the non-

Abelian Moore-Read (MR) fractional quantum Hall state.1

That is, we show how the MPS structure of these states de-

fined in terms of CFT data allows for the understanding of the

existence of a frustration-free three-bodyparent Hamiltonian.

In particular, such a Hamiltonian can be established without

resorting to the polynomial description of the MR state.

The remainder of this paper is organized as follows: In

Section II, we develop a comprehensive framework that es-

tablishes a connection between the infinite bond dimension

MPS of fractional quantum Hall states and the presence of

frustration-free parent Hamiltonians for such states. Our fo-

cus is on elucidating the overarching nature of this frame-

work and its potential applicability within a wider context.

In Sections III and IV, we apply this framework specifically

to non-Abelian Moore-Read (MR) fractional quantum Hall

states. In Section III, we review the Moore-Read state and

its CFT as well as associated expressions for the CFT-MPS

representation of this state and its zero-mode excitations. In

Section IV, we present the MR parent Hamiltonian in sec-

ond quantization and prove the two prerequisites required by

the inductive framework introduced in Section II. This proof

eliminates the necessity of any detour using first quantized-

polynomial techniques in demonstrating that the CFT-MPS

of the Moore-Read state is associated with a frustration-free

Hamiltonian. We conclude with final remarks and an outlook

in the Section V.
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II. GENERAL FRAMEWORK

In previous work35, beginnings of a framework were de-

veloped to connect the infinite bond dimension MPS of CFT-

fractional quantum Hall states to the existence of frustration-

free parent Hamiltonian for the same states. However, the

only state thoroughly examined in this framework has been the

Laughlin state (at general a = 1/@), and its quasi-hole/edge

type excitations. It is thus not clear what features of the for-

malism were generic, and what features were intrinsic to the

Laughlin state, arguably the simplest case of an FQH state.

In this Section, we will summarize the key ingredients used

in the proof that a given class of CFT-MPS wave functions

admits a frustration-free parent Hamiltonian. We will expose

the generic properties that will make generalization to other

classes of CFT-MPS wave function, and even more general

wave function constructions, straightforward in principle. In

subsequent sections, we will rigorously apply this framework

in the context of the non-Abelian Moore-Read (MR) frac-

tional quantum Hall states. In other words, we demonstrate

that by defining these states using a CFT-MPS, we can com-

prehend the existence of a frustration-free three-body parent

Hamiltonian, without resorting to traditional first-quantized

polynomial techniques.

To begin, we introduce a :-body Hamiltonian of the form

�: =
∑

A

)†
A )A , (1a)

where

)A =
∑

91... 9:

[A91... 9: 2 91 . . . 2 9: (1b)

is the destruction operator associated with a :-particle state

)A
† |0〉. Here, A is taken from some countable index set. Sim-

ilarly, the indices 98 label a basis of single-particle orbitals,

and are likewise taken from a countable index set.

One may further consider general Hamiltonians

� =

∑

:≤ 
�: (2)

with up to  -body interactions. This will be the case for

the Moore-Read parent Hamiltonians discussed below, with

 = 3. However, by positivity, imposing the zero mode

condition for � is equivalent to imposing the zero mode

conditions for all �: jointly. It suffices to study the zero

mode condition for one �: at a time. We thus now focus on

one such �: .

Let H# be the #-particle subspace of the Fock space.

Our task is accomplished if we show that for each # , the

subspace of zero modes H0

#
⊂ H# of the positive semi-

definite Hamiltonian �: is non-trivial. In this paper, we

propose and examine a particular strategy to achieve this.

Our results can be summarized by the following:

Theorem: Let W# ⊂ H# be #-particle subspaces. If

W: ⊂ H0

:
, and

2 9W# ⊂ W#−1 (3)

for all 9 and all # > :, then W# ⊂ H0

#
for all # ≥ :.

According to this theorem, we only have to establish that

the :-particle zero mode space is a non-trivial subspaceW: ≠

{0}, and that Eq. (3) holds for some likewise non-trivial

sequence of subspaces W#>: . Under the hood, the proof

of this theorem is an induction proof, where the condition

W: ≠ {0} represents the induction beginning, and Eq. (3)

facilitates the induction step. To see how this works, one need

only to observe that the following identity holds (Appendix

A):

)A (#̂−:) = (−1): b
∑

9

2∗9)A 2 9 (4)

where b = 1 for fermions, b = 0 for bosons, and #̂ =
∑

9 2
∗
9
2 9

is the particle number operator. More precisely, in writ-

ing this, we have assumed that the operators 2 9 are pseudo-

fermion or -bosons destruction operators55,56, respectively.

That is, together with the creation operators 2∗
9
, they satisfy

the familiar algebra 2 92
∗
9′−(−1) b 2∗9′2 9 = X 9 , 9′ . The only

subtle difference between these pseudo-particle operators and

ordinary particle operators is the fact that the Hermitian ad-

joint 2
†
9

of 2 9 need not agree with 2∗
9

(though there are linear

relations between these two sets of operators). Physically,

this corresponds to the situation where the orbitals associ-

ated with the 2 9 are not orthogonal and/or not normalized.

For this section, the reader not interested in pseudo-creation

and annihilation operators may restrict attention to the spe-

cial case 2
†
9
= 2∗

9
. For the following sections, it will, how-

ever, be important that all arguments will work for pseudo-

creation/annihilation operators as well as ordinary ones. In

either case, however, we will use the dagger † in Eq. (1a), to

ensure the Hermiticity and positive semi-definiteness of the

Hamiltonian. It is also worth emphasizing that the familiar

identity for the particle number operator given below Eq. (4)

does also hold for pseudo-particle operators.

The proof of the Theorem is now a straightforward induc-

tion: Consider the induction assumption W#−1 ⊂ H0

#−1,

for some # > :. Then, consider a |k# 〉 ∈ W# . By positive

semi-definiteness, the state |k# 〉 is annihilated by each term

)
†
A )A of �: , which, moreover, is equivalent to saying that it

is annihilated by each of the operators )A . The zero mode

condition |k# 〉 ∈H0

#
, which we wish to demonstrate, can

thus equivalently be stated as

)A |k# 〉 = 0 ∀ A . (5)

We show that this follows from the assumptions about |k# 〉
by considering the right hand side of the last equation, and

multiplying by #−: ≠ 0:

(#−:))A |k# 〉 = )A (#̂−:) |k# 〉
= (−1): b

∑

9

2∗9)A 2 9 |k# 〉

= 0, (6)
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In the second line, we utilized the identity given by equation

(4). The assumption 2 9 |k# 〉 ∈ W#−1 ⊂ H0

#−1, then im-

plies )A 2 9 |k# 〉 = 0, giving the last line. Eq. (5) then follows

from #−: ≠ 0, thus showing W# ⊂ H0

#
. The base case of

the induction, W: ⊂ H0

:
, was a prerequisite of the Theorem.

This completes the induction and proves the Theorem �.

In this section, we emphasize the general character of this

Theorem. Subsequent sections will be devoted to applica-

tions to CFT-MPS states in the mold of certain fractional

quantum Hall trial wave functions, specifically the Moore-

Read states. This is a natural playground for this theorem,

since, as we will argue, Eq. (3) is a natural property of such

trial wave functions, and at the same time, direct application

of the Hamiltonian is quite non-trivial (in the MPS represen-

tation).

For the general relation of this approach with others found

in the literature, a few additional remarks are in order. It is

clear that for :-body operators, # = : represents the small-

est # suitable for an induction beginning, as the zero-mode

property is trivial for # < :. We contrast this with the case

of Ref. 57, where a scheme was employed that is similar but

more tailored to the case where incompressible ground states

satisfy a certain recursion relation (note that this induction

assumption in that reference is about the incompressible state

only, not the full zero mode sector, and the induction step

proceeds by adding two particles). There, while : = 3, an in-

duction beginning of # = 6 was found necessary. We expect

the scheme introduced here to be considerably more general.

Indeed, we expect this scheme to apply to a large number of

CFT-MPS states formulated in the quantum Hall context. In

particular, we believe the property (3) to be a generic prop-

erty of such variational states. On physical grounds, such

states are expected to yield a complete set of incompressible

states and quasi-hole like excitations, and the removal of one

electron (or bosonic particle) can generically be understood

as the introduction of a certain cluster of quasi-holes. There-

fore, the right-hand side of Eq. (3) cannot lead outside the

zero mode space, and the equation follows, so long as the

W# represent a complete description of such zero modes.

Thus, Eq. (3) should be considered a requirement for a good

variational description in this context, and the task of finding

a parent Hamiltonian then boils down to finding a Hamilto-

nian of the generic form (2) for which induction beginnings

can be established. There is nothing, however, in this scheme

that is limited to lowest Landau (symmetric polynomial)wave

function with “nice clustering properties”. Thus, we expect

that this scheme may prove fruitful beyond the lowest Lan-

dau level, beyond the quantum Hall context, and beyond the

context of formally one-dimensional Hamiltonians.

III. MOORE-READ CFT

The framework detailed above generalizes the one intro-

duced in Ref. 35 to study the connection between Laugh-

lin state parent Hamiltonians and the MPS representation

of their ground states. The latter are arguably the simplest

in the CFT-MPS class. To demonstrate the generalizability

of this scheme along the lines of the preceding section, we

consider now the Moore-Read state as a concrete example.

That is, we wish to understand the zero-mode property of

this non-Abelian quantum Hall state and its bosonic as well

as Majorana-like excited states strictly from an MPS point

of view, given the state’s frustration free parent Hamiltonian.

The latter has, of course, originally been obtained from the

first-quantized, polynomial representation of these states.58

In this work, we will only use this polynomial representation

to review its relation to the MPS, but will otherwise not use

it.

To start, let us review the Moore-Read state and its con-

nection to CFT correlators. The Moore-Read state at filling

factor a = 1/@, omitting Gaussian factors, is given by the

following polynomial:1,14,59–61

k(I1, · · · , I# ) = 〈k4 (I# ) · · ·k4 (I1)〉 (7)

= Pf

(

1

I8−I 9

)
∏

8< 9

(

I8−I 9
)@
, (8)

where the particle operator for this state is the product of a

chiral Majorana field in the Ising CFT and the vertex operator

of a free massless chiral boson CFT:k(I) = j(I)×+ (I). The

bosonic or Coulomb sector is analogous to similar presenta-

tions for the Laughlin state. We proceed by summarizing

some of the most important properties of this CFT, and refer

the interested reader to other references62,6347,48,50,52. The

holomorphic (chiral) part of the vertex operator, +√@ (I) =:

48
√
@ q (I) :, generates the Jastrow factor1,48–53,62–65 in (8),

〈

+√@ (I# ) · · ·+√@ (I1)
〉

. (9)

More precisely, +√@ (I) is a primary field in a chiral-free

massless bosonic CFT in 1+13 with * (1) charge
√
@. It can

be given the mode expansion

+√@ (I) =
∑

_

+−_−ℎI
_, (10)

where ℎ = @/2 is the conformal dimension of +√@ . The

neutral excitations of this theory can be expressed in terms of

modes 0=, which are the modes of the chiral bosonic field,

q(I) = q0−800 log(I)+8
∑

=≠0

1

=
0=I

−= . (11)

The 0=’s obey the algebra: [q0, 00] = 8 and [0=, 0<] =

=X=+<,0. Additionally, their action on states can be described

as follows:

0= |#〉 = 0, = > 0

〈# | 0= = 0, = < 0 (12)

00 |#〉 =
√
@# |#〉 , (13)

where |#〉 is a primary state of the bosonic CFT.

In the Ising sector of the CFT, the Majorana field j(I)
can be chosen to have one of two monodromy properties62,63.
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With periodic or Neveu-Schwarz (NS) boundary condition,

the correlator of two j(I) is given by

〈j(I)j(F)〉 = 1

I−F , (14)

so the correlator of # of these fields generates the Pfaffian

〈out|j(I1) · · · j(I# )|0〉 = Pf

(

1

I8−I 9

)

. (15)

Here, the 〈out|-state must be defined with care depending

on whether the particle number is odd or even, where in the

former case, it must contain a Majorana mode. We give

details below. In this NS sector, on the plane, one has the

mode expansion of the chiral Majorana field

j(I) =
∑

=∈Z
j=−1/2I

−= , (16)

which implies

j=−1/2 =

˛

3F

2c8
F=−1j(F), = ∈ Z. (17)

The positive (negative) index modes annihilate the vacuum

when acting from the left (right):

j=−1/2 |0〉 = 0, = > 0

〈0| j=−1/2 = 0, = ≤ 0. (18)

These Majorana modes obey the anticommutation algebra

{

j=−1/2, j<−1/2
}

= X=+<,1, =, < ∈ Z. (19)

The correlator of two Majorana fields in the Ramond sector

(or antiperiodic sector) does not generate the Pfaffian func-

tion, so we will work only with the NS sector of this free

(Majorana) fermion theory. The twist operator of the Ising

CFT connects these two sectors.

Moreover, the twist operator is used for the creation of lo-

calized quasi-holes when inserted into the correlator. How-

ever, quasi-holes are always created in pairs,1 and a pair of

twist operators can fuse to the identity or to a j only. There-

fore, to generate a complete set of edge excitations, hence

zero modes, it should be sufficient to insert operators jA−1/2
into the Ising part of the correlator,47 as in the expression

〈

0|jA1−1/2 · · · jA�−1/2j(I# ) · · · j(I1) |0
〉

, (20)

apart from bosonic excitations that will similarly correspond

to insertions of the 0=, see below. In Eq. (20), the condition

(#−�) ∈ 2×N must also be satisfied to ensure that the

expression, which still can be written as a Pfaffian, is non-

zero. This implies that excitations jA−1/2 must be added in

pairs, except for a single extra factor that we may choose to

be j1/2 when # is odd (see below). Also, the restriction

to #−� even represents a superselection rule between the

charged (Coulombic) sector and the Majorana sector that is

somewhat reminiscent of global selection rules governing

spin-charge separation in the edge theory of Halperin states66.

The anti-commutation relation of jA−1/2 implies that in Eq.

(20), these modes have to be distinct from one another, except

for the extra j1/2 in the odd case, which we will, however,

absorb into the 〈out|-bra below. Also, we must have A8 ≥ 1

for non-zero result in Eq. (20), as stated by (18).

The CFT-MPS representation of the Moore-Read state can

be obtained by combining the Majorana field and the vertex

operator mode expansion in eqs. (16) and (10), respectively.

For details, we refer the reader to the pertinent literature.47–53

This yields the following expression:

k(I1, · · · , I# ) =
∑

{:8 }

∑

{_8 }

〈

j_#−:#−1/2 · · · j_1−:1−1/2
〉

×〈# |+−_#−ℎ · · ·+−_1−ℎ |0〉
#∏

8=1

I
:8
8

(21)

where {:8}, {_8} denote unrestricted sets of index-variables.

We can introduce an ordered set of index-variables via

(:8)# :

{

:# ≥ · · · ≥ :1 for bosons

:# > · · · > :1 for fermions,
(22)

and translate the Moore-Read state in (21) to a second-

quantized language by noticing that for fixed {:8}, the sum

over {_8} renders the product of correlators (anti-)symmetric

in the :8 for @ odd (even). Thus, the sum over {:8}
(anti-)symmetrizes the product over I

:8
8

, yielding a bosonic

(fermionic) occupation number eigenstate | (:8)# 〉 with the

:8-orbitals occupied:

|k# 〉 =
∑

(:8 )#
�(:8 )# | (:8)# 〉 , (23)

where

�(:8 )# =
1

∏

8 ;8 !

∑

{_8 }

〈

j_#−:#−1/2 · · · j_1−:1−1/2
〉

×〈# |+−_#−ℎ · · ·+−_1−ℎ |0〉 , (24)

Here, ;8 is the occupancy of the 8-th angular momentum state,

which is only relevant for bosons. For fermions ;8 ∈ {0, 1}.
The orbital basis elements | (:8)# 〉 are defined via

〈I1,· · ·, I# | (:8)# 〉=
1

#!

∑

f∈(#
( sgnf)@

#∏

8=1

I
:f8

8
. (25)

This implies that | (:8)# 〉 =
(√
#!

)−1
2∗
:1
...2∗

:#
|0〉, where 2∗

:

is a pseudo particle creation operator, which creates a particle

in a state with un-normalized wave function I: exp
(

−|I|2/4
)

.

As mentioned in Sec. II, the associated destruction operators

2: may be defined such that [2: , 2∗:′]± = X:,:′ holds. We

emphasize again that 2∗
:

is not the Hermitian adjoint of 2: ,

however, simple re-scaling 2: → N:2: , 2∗: → N−1
:
2∗
:

does

turn these pseudo creation/annihilation operators into ordi-

nary ones. In particular, the particle number operator is still

#̂ =
∑

: 2
∗
:
2: .
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A more concise notation for these coefficients can be

achieved by expressing them in terms of the modes of the

particle-field operator:

�(:8 )# =
1

∏

8 ;8 !
〈out|k−:#−ℎ−1/2 · · ·k−:1−ℎ−1/2 |in〉 , (26)

where

k−:−ℎ−1/2 =

∑

_

j_−:−1/2+−_−ℎ. (27)

The modes of this particle operator satisfy (anti-

)commutation relations for fermions and bosons, respectively.

The relevant range of the :8’s as well as their total angular

momentum
∑

8 :8 are governed by conservation laws in the

CFT as well as the choice of in- and out-states, |in〉 and

|out〉. For the Moore-Read state, the proper choice, which

was implicitly assumed already in Eq. (8), is

〈out| = 〈out|j⊗〈out|+ (28)

where the states 〈out|j and 〈out|+ are associated with the

Majorana and Coulomb gas CFT sectors, respectively. For-

mally,

〈out|+ � 〈# | , (29)

and

〈out|j �
{

〈0| if # even,

〈0| j1/2 if # odd.
(30)

The mode j1/2 is necessary for describing a system with an

odd number of particles, and it corresponds to a Majorana

fermion that is located at infinity.47 The |in〉 state is defined

as the respective vacuum in both CFT sectors,

|in〉 = |0〉⊗ |0〉 . (31)

The bra 〈# | can be interpreted as the result of the background

charge operator acting on the Coulomb gas CFT vacuum bra,

ensuring charge neutrality. In the following, we will have

the need to evaluate expressions where 〈# | is acted upon

on the right by +−_−ℎ. This motivates the introduction of

an alternative set of neural bosonic modes that generate the

same algebra as the 0=>0. Indeed,+−_−ℎ removes one unit of

charge from 〈# |, so one may write

〈# |+−_−ℎ = 〈#−1|
@ (#−1) −_∑

;=0

1;
@ (#−1) −_, (32)

where 1;
:

are a collection of ; neutral excitations related to

the 0=>0 via35

1;: =

(

−√@
);

;!

∑

81+···+8;=:

081

81

082

82
· · ·

08;

8;
, 8 9 > 0 ⇒ : ≥ ;;

10: =

{

1, : = 0

0, : > 0.
(33)

Thus far, the MPS (23) generates the incompressble MR-

state, both for even and odd particle number. To generate a

complete set of zero modes for the frustration free MR-parent

Hamiltonian to be discussed below, we need to introduce

additional bosonic and fermionic mode operators modifying

the 〈out| bra, as anticipated earlier. Formally, a basis of zero

mode states can be obtained in MPS form via the following

Ansatz:

|k0= ···jA ···
#

〉 =
∑

(:8 )#
�=···A ···(:8 )#

| (:8)# 〉 , (34)

where the MPS coefficients have additional superscripts

= · · · A · · · to indicate the excitations that have been added

in the bosonic sector, =..., and in the Majorana sector, A...:

�=···A ···(:8 )#
=

1
∏

8 ;8 !

〈

out|0= · · · jA · · ·k−:#−ℎ−1/2 · · ·

· · ·k−:1−ℎ−1/2 |in
〉

. (35)

Here, 0= · · · jA · · · denotes and finite string of 0= and (even

number of) jA operators, e.g., 010204j3/2j5/2. If the asso-

ciated superscripts are omitted, i.e., the string is empty, we

are referring to the coefficients defined in Eq. (24) and (26),

which yield the incompressible MR state. In the following,

0= · · · jA · · · will always represent a string that may or may

not be empty in both the bosonic sector and the Majorana

sector, i.e., in particular, the notation (34) may or may not

refer to the incompressible state unless further specified. As

both the 0=- as well as jA -insertions increase the angular

momentum of the state by an amount equal to the respective

subscripts, the incompressible MR will be the “densest” zero

mode in the sense of lowest angular momentum.

IV. MOORE-READ HAMILTONIAN AND THE ZERO

MODE PROPERTY INDUCTION

As it is well established, the Moore-Read state is the dens-

est zero mode of a local 3-body parent Hamiltonian.58,67–70

For @ = 1 and @ = 2, the latter is easily expressed in terms of

delta-functions or derivatives thereof. Second quantized ex-

pressions for these cases have been given in the literature.71–73

In general, the 3-body operator must give positive energy to

any three particles in a state of relative angular momentum

3@−2 or less. Alternatively, it must give positive energy to

any three particles in a state of relative angular momentum

equal to 3@−3 if additional 2-body operators are present69.

There is no loss of generality in discussing the former variety.

We will discuss the relevant 2-body operators later below. A

second-quantized Hamiltonian giving finite energy to 3-body

states with relative angular momentum !rel ≤ 3@−2 can be

constructed as follows:

�3bd
1

@

=

∑

0≤ |C |<(3@−1)

∑

�≥0
)
C†
�
) C� , (36a)

where

) C� =
∑

<+=+?=�
5 C (<, =, ?)2<2=2? . (36b)
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The operator ) C
�

annihilates three particles in a state with

a total angular momentum of �, labeled by a multi-index

C = (C1, C2, C3), and 5 C is a polynomial in <, =, ? of degree

|C | = C1+C2+C3 (except in those cases where it vanishes) de-

fined by 5 C = S (<−=)C1 (<−?)C2 (=−?)C3 . Here, S denotes

the (anti-)symmetrizer in <, =, ? for @ odd (even). In the

sum in Eq. (36), it is also implied that all C8 ≥ 0. Despite

appearances, with the form factor being polynomial in the

separation between orbitals, this interaction is exponentially

cut off at very large distances. To see this, we pass to ordinary

creation/annihilation operators, which brings back the afore-

mentioned normalization factorsN: . Clearly�3bd
1/@ is positive

(semi-definite), and moreover is of the general form (1) with

: = 3 and the index A corresponding to the multi-index (C, �).
We re-state the zero mode condition (5) here for this special

case as

) C� |k
0= ···jA ···
#

〉 = 0, (37)

for all C and � that appear in the sum (36). To see that

this second quantized Hamiltonian has all the desired prop-

erties, we first observe that and Hamiltonian of the form

(36) should be regarded as just one representative of an en-

tire class of Hamiltonians with identical zero mode space.

Indeed, replacing the ) C
�

with new linearly independent lin-

ear combinations of themselves (in particular, at fixed �,

which is of greatest interest) leads to equivalent zero mode

conditions (37). Now, a 3-particle state with total angu-

lar momentum � and relative angular momentum !A can

be created by an operator whose adjoint is of the general

form (36b), i.e., with some form factor 5 (<, =, ?). The

latter will be a polynomial of degree !A . Now, any such

5 (<, =, ?) can be linearly generated from terms of the form

(<−=)C1 (<−?)C2 (=−?)C3 (<+=+?)C4, with !A =
∑

4

8=1 C8 . In

such expressions, however, the term (<+=+?)C4 is just a

constant when plugged into Eq. (36b). It follows thus that

the zero mode condition associated to any 3-particle state of

relative angular momentum less than 3@−1 can be obtained

from Eq. (37). One might still worry if by summing over all

possible C, we have kept “too many” zero mode conditions.

This, however, turns out not to be the case, since we will show

below that Eq. (36) has all the zero modes any “Moore-Read

parent Hamiltonian” is supposed to have.

As mentioned, the MR-state and its hole-like excita-

tions/edge excitations are also annihilated by certain two-

body operators, which we discuss next. Let

�2bd
1

@

=

∑

0≤C<@−1
(−1)C=(−1)@−1

∑

�

&
C†
�
&C� , (38a)

where

&C� =

�/2∑

G=−�/2
GC2�/2−G2�/2+G , (38b)

and C now labels an ordinary non-negative integer. For C =

0, 1, one obtains the Haldane pseudo-potential projections

onto relative angular momenta 0 (bosons) and 1 (fermions),

respectively. Again, this becomes manifest by passing from

pseudo creation/annihilation operators to ordinary ones. For

C > 1, the relation with Haldane pseudo-potentials becomes

more complicated, however, the zero mode condition derived

from Eq. (38),

&C� |k
0= ···jA ···
#

〉 = 0, (39)

for all C and � appearing in Eq. (38), is exactly equivalent

to that obtained by summing the Haldane pseudo-potential

projections with indices less than @−1 (keeping only oven or

odd ones as in Eq. (38)). This is so since in order to pass to

bona fide Haldane pseudo-potentials, we only need to form

certain linearly independent new linear combinations of the

&C
�
, and reason in the same way as done above for the 3-body

case.

Although this section primarily considers the disk geom-

etry, the same principles are applicable to other genus-zero

geometries, such as the cylinder and sphere. In these ge-

ometries, the MR state remains consistent, characterized by

appropriately defined pseudofermions74. Going to genus-one

geometries, such as the torus geometry, is not straightforward

but is worth exploring in the future. The MPS representa-

tion of several FQH states has also been explored in various

geometries50, as well as for the Haldane-Rezayi state in the

torus geometry.75

We note now that the combined Hamiltonian

� 1

@
= �2bd

1

@

+�3bd
1

@

, (40)

which serves as a parent Hamiltonian for the Moore-Read

state at filling factor 1/@, is a  = 3 special case of the

general Hamiltonian discussed in Sec. II, with : = 2 and

: = 3 terms present. The zero mode condition of � 1

@
is

the combined zero mode condition associated with �2bd
1

@

and

with �3bd
1

@

. We may thus study its zero modes by connecting

with the Theorem of Sec. II, where we identify the spaces

W# with the spaces spanned by the MPS states |k0= ···jA ···
#

〉
(for given #). To show that these states are zero modes, all

we need to do is hence to ensure that the prerequisites of the

Theorem are met. That is, we demonstrate the induction step

(3), and the induction beginnings for these classes of MPS.

Only the induction beginnings must be done separately for

�2bd
1

@

and for �3bd
1

@

. The inductions step (3) is universal. We

thus begin with the latter.

A. The induction step

From the above, we need to prove Eq. (3) for the specific

situation at hand. Note that for this step, we will not require

detailed knowledge of the operators ) C
�

and &C
�
. Instead,

the zero mode property will apply to any Hamiltonian of

the generic makeup of Eqs. (36) and (38) (including :-body

generalizations) for which the induction beginningW: ⊂ �0

:
can be proven. Hence, we defer the latter and turn to the
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induction step, 2 9W# ⊂ W#−1. The crucial ingredient is

thus to analyze the action of an annihilation operator 2: on

the MPS state (34). Therefore, we investigate

√
#2: |k0= ···jA ···#

〉=
∑

(:8 )#−1

〈out| 0= · · · jA · · ·k−:−ℎ−1/2

×

#−1
︷                              ︸︸                              ︷

k−:#−ℎ−1/2 · · ·k−:1−ℎ−1/2 |in〉 |(:8)#−1〉 , (41)

where we moved the particle mode k−:−ℎ−1/2 with index

: appearing in the MPS representation of |k0= ,jA1 ,jA2
#

〉, Eq.

(34), all the way to the left. This is possible because the

particle operator modes k−:−ℎ−1/2 (anti-)commute for @ odd

(even). (Moving k−:−ℎ−1/2 then compensates a minus sign

possibly arising from the action of 2: .) Then, using the

following (anti-) commutation relations,

[

0=, k−:−ℎ−1/2
]

=
√
@
∑

_

j_−:−1/2+−_+=−ℎ

=
√
@k−(:−=) −ℎ−1/2, (42)

[0=, +−_−ℎ] =
√
@ +−_+=−ℎ, (43)

{

j;−1/2, k−:−ℎ−1/2
}

=

∑

_

{

j;−1/2, j_−:−1/2
}

+−_−ℎ

= +−(:−;+1)−ℎ, (44)
[

+−_−ℎ, +−`−ℎ
]

@
=

[

+−_−ℎ, k−:−ℎ−1/2
]

@
= 0 (45)

where [O1,O2]@ = O1O2+(−1)@O2O1, we can pull the elec-

tron operator mode k−:−ℎ−1/2 even further to the left. The

commutator [j;−1/2, +−_−ℎ] = [j;−1/2, 0=] = 0 because

j;−1/2 and +−_−ℎ (or 0=) are entities living in different CFT

sectors. When utilizing the relations (42-44), it is clear that

new terms appear, where either a k-mode or a +-mode is

either acting directly on 〈out| on the right, or is still separated

from 〈out| by a string of modes 0= and/or jA−1/2. How-

ever, with each application of the commutators, the string of

modes 0= and/or jA−1/2 separating the k-mode or +-mode

from 〈out| will get shorter. Hence, eventually, we will have

only terms left where a k−:−ℎ−1/2 or a +−_−ℎ is acting di-

rectly on 〈out| on the right, followed by a (possibily empty)

string of modes 0= and/or jA−1/2, followed by the string

k−:#−ℎ−1/2 · · ·k−:1−ℎ−1/2 present in Eq. (41). We should

thus evaluate 〈out| k−:−ℎ−1/2 and 〈out|+−_−ℎ. It turns out

in treating the former we will automatically cover the latter.

Hence we consider

〈out| k−:−ℎ−1/2 = 〈out|
∑

:<_≤@ (#−1)
j_−:−1/2+−_−ℎ. (46)

The modes j_−:−1/2 and+−_−ℎ operate on distinct CFT sec-

tors. Therefore, we can split the expression in the following

manner:

〈out| k−:−ℎ−1/2 =

∑

:<_≤@ (#−1)
〈out|j j_−:−1/2⊗〈out|+ +−_−ℎ .

(47)

Now, applying +−_−ℎ to the #-particle state 〈out|+ = 〈# |
yields a (#−1)-particle 〈out|+ = 〈#−1| state along with a

collection of bosonic excitations 0= with = > 1, as exposed

in Eq. 32. The net result is that Eq. (46) can be written as

〈out|j⊗〈#−1|
@ (#−1)∑

_=:+1

@ (#−1) −_∑

;=0

j_−:−1/21
;
@ (#−1) −_ . (48)

The case 〈out|+−_−ℎ is similar, but without the j-modes, and

without the sum over_. As the modes 1;
@ (#−1) −_ are express-

ible in terms of the 0= via Eq. (33), in the end we are left with a

string 0′= . . . j′A times k−:#−ℎ−1/2 · · ·k−:1−ℎ−1/2 between

the |in〉 and the (#−1)-particle 〈out| (this requires pulling a

j1/2 out of the original #-particle 〈out|j, Eq. (30), if # is

odd.) Putting things together, we infer that Eq. (41) yields a

superposition of terms of the form |k0
′
= ···j′A ···

#−1 〉, that is

√
#2: |k0= ···jA ···#

〉 =
∑

0′= ···j′A ···
|k0

′
= ···j′A ···

#−1 〉 , (49)

where the sum goes over all strings that are generated in

the process described above. As by definition, the stated

|k0= ···jA ···
#

〉 span the spaces W# , this proves Eq. 3 for the

case under consideration, and we are done with the induction

step.

B. The induction beginning: three-particle zero mode

property

The Theorem in Sec. II relies on another prerequsite,

the condition W: ⊂ �0

:
. Technically, this serves as the

induction beginning. Interestingly, it is the only aspect of the

theorem that explicitly depends on the Hamiltonian. As we

are, in principle, applying the Theorem separately to�2bd
1

@

and

�3bd
1

@

, we must establish two separate induction beginnings.

We begin with the (more challenging) case of three-particle

Hamiltonina�3bd
1

@

. In the present sub-section, thus,�0

#
refers

to the zero mode spaces of �3bd
1

@

. The condition W: ⊂ �0

:

is the equivalent to Eq. (37) for # = 3, that is, for all states

|k0= ···jA ···
3

〉, with, in principle, an arbitrary number of bosonic

and/or Majorana excitations present. We may, however, in

general limit the number of each type of excitations, bosonic

or Marorana, to be no more than the number of particles #:

A MPS with # particles and more than # edge excitations in

either Majorana or bosonic sector can always be expressed as

a linear combination of #-particle MPS with no more than #

excitations of each kind. The proof of this statement for the

bosonic CFT sector is the same as the one presented for the

edge excitations in the Laughlin states in Ref. 35. The proof

for the Majorana sector is provided in Appendix B. Hence,

any three-particle Moore-Read state with more than three

excitations in each CFT sector can be expressed as a linear

combination of states with no more than three excitations

in each sector. Nonetheless, we still need to demonstrate
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the validity of the zero mode condition for the cases where

≤ # excitations are present in each sector, for # = 3 and

# = 2, according to Eqs. (37) and (39), respectively. For

# = 3, there are three different scenarios: one Majorana

mode; one Majorana mode, including j1/2, and one, two, or

three bosonic modes; and three Majorana modes with one,

two, or three bosonic modes. Similarly, for the two-body

Hamiltonian, we need to prove that the zero mode condition

holds for the two-particle states in two different cases: one

or two bosonic modes with no Majorana modes; and two

Majorana modes with one or two bosonic modes.

Let us first focus on the case where there is only one ex-

citation in the Majorana sector. The coefficients of the MPS

representation of the three-particle Moore-Read state (24)

with a single excitation in the Majorana sector, jA−1/2, are:

�A:1 ,:2,:3=
1

∏

8 ;8 !

∑

_1,_2 ,_3

〈

jA−1/2j_3−:3−1/2j_2−:2−1/2j_1−:1−1/2
〉

×〈3|+−_3−ℎ+−_2−ℎ+−_1−ℎ |0〉 (50)

where ;8 is the number of occurrences of 8 among :1, :2, :3.

If A = 1 we recover the three-particle densest Moore-Read

state coefficients. Plugging in the results from Appendix B

and C, we find:

�A:1,:2 ,:3 =
1

∏

8 ;8 !

(
∑

_2>:2

ℎ@ (:1−A+1, _2,−_2+:2+:3+1)

−
∑

_1>:1

ℎ@ (_1, :2−A+1,−_1+:1+:3+1)

+
∑

_1>:1

ℎ@ (_1,−_1+:1+:2+1, :3−A+1)
)

. (51)

Here, ℎ@ is a real function and is defined in Eq. (C7).

The above equation (51) can be expressed in a more sym-

metrical form as follows:

�A:1,:2 ,:3 =
(−1)@
∏

8 ;8 !

∑

_>0

(

ℎ@ (_+:2, :1−A+1,−_+:3+1)

−(−1)@ℎ@ (_+:1, :2−A+1,−_+:3+1)

+ℎ@ (_+:1, :3−A+1,−_+:2+1)
)

, (52)

where we rearrange the summation over _ to start at zero

for each of the three terms, and permute the arguments of

ℎ@ while using the (anti-)symmetry in the arguments, adding

a factor of (−1)@ for each permutation. All non-zero co-

efficients possess angular momentum equal to :1+:2+:3 =

3@+A−2. The densest #-particles Moore-Read state has total

angular momentum ! = @(#−1)−⌊#/2⌋, where ⌊⌋ denotes

the integer part. As a consequence, the Majorana excitation

jA−1/2 raises the overall angular momentum of the three-

particle system by A−1.

The zero mode condition (37) and (39) can be shown by

directly applying the ) C
�

(and &C
�

) to the three-particle MR

state. We focus first on the three-body Hamiltonian part:

) C� |k
jA
3
〉 = ) C�

∑

{:8 }

∏

8 ;8 !

3!
�A:1,:2 ,:32

∗
:1
2∗:22

∗
:3
|0〉 . (53)

The three annihilation operators in ) C
�

are contracted with

the three creation operators in the |:3, :2, :1〉. The ex-

change of two of any two arguments of the form fac-

tor, 5 C , of ) C
�
, adds a factor-phase (−1)C . Therefore we

can make the replacement 5 C (<, =, ?)2<2=2?2∗:12
∗
:2
2∗
:3

≡
3(1−(−1)@(−1)C ) 5 C (<, =, ?)X?,:1X=,:2X<,:3 in the resulting

sum. As the symmetry of the form factors (−1)C in Eq. 36

is constrained to be the same as that of the particle statistics

(−1)@−1, we have (1−(−1)@(−1)C ) = 2. Consequently, we

can express the above equation as follows:

〈0| ) C� |k
jA
3
〉 =

∑

<+=+?=�
5 C (<, =, ?)

(

∏

8

;8 !

)

�A?,=,< . (54)

Observing the commutation properties of ℎ@ as detailed in

Appendix C and the symmetry of 5 C , (−1)C , we find that

we may make the replacement (∏8 ;8 !) 5 C (<, =, ?)�A?,=,< ≡
3 5 C (<, =, ?)∑2@

_=1
ℎ@ (_+=, ?−A+1, <−_+1) inside the sum

over <, =, ?. The factor of three arises from the presence of

three ℎ@ functions in Eq. (52). Therefore, we can express the

equation above as follows:

〈0| ) C� |k
jA
3
〉 = 3

(−1)@
∏

8 ;8!

∑

<+=+?=�
5 C (<, =, ?)

×
2@∑

_=1

ℎ@ (_+=, ?−A+1, <−_+1) = 0. (55)

Appendix D demonstrates that the above expression evaluates

to zero.

Let’s now examine a situation where there exists a single

bosonic mode excitation and one Majorana excitation. This

analysis will also show that extending the procedure to two or

three bosonic modes is straightforward. The MPS coefficient

for a single excitation in each CFT sector, represented by the

superscripts A, ;, can be expressed as:

�
A ,;

:1,:2 ,:3
=

1
∏

8 ;8 !

∑

_1,_2 ,_3

〈

jA−1/2j_3−:3−1/2j_2−:2−1/2j_1−:1−1/2
〉

×〈3|0;+−_3−ℎ+−_2−ℎ+−_1−ℎ |0〉 . (56)

By utilizing the commutation relation provided in Eq. (43),

we can derive the following expression for the bosonic-sector

correlator by commuting 0; to the right:

〈

0;+−_3−ℎ+−_2−ℎ+−_1−ℎ
〉

=
√
@
〈

+−_3+;−ℎ+−_2−ℎ+−_1−ℎ
〉

+
√
@
〈

+−_3−ℎ+−_2+;−ℎ+−_1−ℎ
〉

+√@
〈

+−_3−ℎ+−_2−ℎ+−_1+;−ℎ
〉

.

(57)

After the substitution of this expression into Eq.(56) and

shifting summation variables, we can rewrite the 3-particles

MPS coefficient with a single bosonic and a single Majorana

excitation as follows:

�
A ,;

:1,:2 ,:3
=
√
@
(

�A:1 ,:2,:3−;+�
A
:1,:2−;,:3+�

A
:1−;,:2,:3

)

.

(58)
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Hence, we conclude that the state, with MPS coefficients as

defined in Eq. (56), can be expressed as follows:

∑

(:8 )3
�
A ,;

:1,:2 ,:3
|:3, :2, :1〉 =

√
@?;

∑

(:8 )3
�A:1,:2 ,:3|:3, :2, :1〉 ,

(59)

where (:8)3 is defined in 22 and ?; is the operator ?; =
∑

: 2
∗
:+;2: , whose action within the variational subspace we

thus see to have the same effect as the addition of a bosonic

field 0; in the MPS description. It is well known34 that more

generally, this operator facilitates the multiplication with the

power-sum polynomial
∑#
8=1 I

;
8

in first quantization.

It turns out that the state in Eq. (59) is annihilated by ) C
�
.

This happens because

[) C� , ?;] =
∑

<+=+?=�−;
6C ,; (<, =, ?)2<2=2? (60)

Here, the form factor 6C ,; (<, =, ?), defined as 6C ,; (<, =, ?) =
5 C (<, =, ?+;)+ 5 C (<, =+;, ?)+ 5 C (<+;, =, ?), has the same

symmetry as 5 C (<, =, ?), and likewise depends only on the

variables (<−=), (<−?), and (=−?). The operator on the

left-hand side of equation 60 thus closely resembles ) C
�
, dif-

fering only in the form factor and the decreased total angular

momentum from � to �−;. In equation (55), we had previ-

ously proven that ) C
�

annihilates three-particle states with one

Majorana mode, for an arbitrary value of �. Since 6C ,; shares

the same essential properties with 5 C , the same demonstra-

tion can be performed by substituting 5 C with 6C ,;. Therefore,

when ) C
�

is applied to the state in question, the result is zero.

This argument can be repeated systematically in the presence

of multiple bosonic modes excitations.

We can apply the same methodology used for the case with

one Majorana mode to obtain the outcome for the state of

three particles with three excitations in the Majorana sector,

specifically, jA3−1/2, jA2−1/2, and jA1−1/2. This state’s MPS

coefficient is

�
A1 ,A2 ,A3
:1 ,:2,:3

=
1

∏

8 ;8 !

(

ℎ@ (:1−A1+1, :2−A2+1, :3−A3+1)

−(−1)@ℎ@ (:2−A1+1, :1−A2+1, :3−A3+1)
+(:1, :2, :3) → (:2, :3, :1)

+(:1, :2, :3) → (:3, :1, :2)
)

. (61)

The operators) C
�

can be applied to the MR state with three

excitations in the Majorana sector, similar to what was done in

equation (54). However, this time, the resulting replacement

inside sums over of<, =, and ? is
∏

8 ;8! 5
C(<, =, ?)�A1,A2 ,A3?,=,< ≡

6 5 C(<, =, ?)ℎ@ (?−A1+1,=−A2+1,<−A3+1). This yields:

〈0| ) C� |k
jA1 ,jA2 ,jA3
3

〉= 6
∑

<+=+?=�
5 C (<, =, ?)

×ℎ@(?−A1+1, =−A2+1, <−A3+1) = 0 (62)

Appendix E demonstrates that the above equation evaluates

to zero.

It remains again to consider the introduction of bosonic

modes 0=. Introducing any number of 0= modes to the

bosonic sector will solely result in negative integers being

added to each index of the vertex operators. For instance, the

first term in equation (61) would be a linear combination of

terms ℎ@ (:1−A1−=1+1, :2−A2−=2+1, :3−A3−=3+1). It is

evident that we can redefine A8+=8 → A8 . Given that the A′
8
B

are essentially arbitrary, the MPS coefficients that are writ-

ten in Eq. (61) above already account for the addition of

any number of edge excitations in the bosonic sector when

considering three excitations in the Majorana sector.

C. The induction beginning: two-particle zero mode property

It remains to fully demonstrate the application of the The-

orem to the 2-body Hamiltonian �2bd
1

@

. To this end, we must

also establish W: ⊂ �0

:
for this case, where, in this sub-

section, the �0

#
denote the zero mode spaces of �2bd

1

@

. To do

so, we start with the general MR MPS state of two particles,

which can be expressed as

|k0= ...,j; ...
2

〉 =
∑

:1,:2

�
{A ,=}
:1 ,:2

|:1, :2〉 , (63)

where the indices A, = represent the edge excitations in the

Majorana and bosonic sector, respectively. It is important

to note that any MR state of two particles can be written

as a linear combination of states with two or no Majorana

excitations up to two arbitrary bosonic excitations. We first

demonstrate the zero mode condition for a state with two

excitations in the Majorana sector. The corresponding MPS-

coefficient is:

�
A1,A2
:1,:2

=

∑

_1,_2

〈

jA1−1/2jA2−1/2j_2−:2−1/2j_1−:1−1/2
〉

×〈2|+−_2−ℎ+−_1−ℎ |0〉 . (64)

Utilizing equation (B9) in Appendix B for the correlator of

Majorana modes, we obtain:

�
A1 ,A2
:1 ,:2

= 〈2|+−(:2−A2+1)−ℎ+−(:1−A1+1)−ℎ |0〉
−〈2|+−(:2−A1+1)−ℎ+−(:1−A2+1)−ℎ |0〉 . (65)

Note that each of these MPS coefficients (where A8 ≥ 1) are

exactly in the same form as the Laughlin 2-particles MPS co-

efficients described in Ref. 35, where the zero mode condition

has already been proven for the same two-body Hamiltonian.

Therefore,

&<� |kjA1 ,jA2
2

〉 = 0. (66)

By analogy with the MR state with three particles,we can also

redefine A1 and A2 upon introduction of one or two bosonic

excitations. Using the result from equation 66 shows that

the 2-particle MR state with two Majorana and two bosonic

excitations then satisfies the zero mode condition for the two-

body Hamiltonian&<
�

.
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In the following, we will prove that this statement remains

valid for the MR state of two particles and exclusively bosonic

excitations. The MPS of this state is

�
=,;

:1,:2
=

∑

_1,_2

〈

j_2−:2−1/2j_1−:1−1/2
〉

〈2|+−_2+=−ℎ+−_1+;−ℎ |0〉

=

:1∑

_=0

〈2|+−(−_+:1+:2+1)+=−ℎ+−_+;−ℎ |0〉 . (67)

This equation’s second line is obtained through the con-

traction of two Majorana fields:
〈

j_2−:2−1/2j_1−:1−1/2
〉

=

X_1−:1+_2−:2 ,1, under the additional constrain that _2−:2 ≥
1. To calculate the correlator of two vertex modes, we

can use the last equation from Appendix B of Ref. 35:

〈2, 0|+−0−ℎ+−1−ℎ |0〉 = X@,0+1(−1)1
(@
1

)

. Consequently, we

obtain:

�
=,;

:1,:2
= X@−1+=+;,:1+:2 (−1):1−;

(

@−1
:1−;

)

. (68)

To obtain this closed form, we utilized the identity of the

alternating sums and differences of binomial coefficients up

to :, which states that

:∑

_=0

(−1)_
(

@

_

)

= (−1):
(

@−1
:

)

. (69)

Plugging in the coefficient from equation (68) into equation

(63), we obtain

〈0|&<� |k0= ,0;
2

〉=
�/2∑

G=−�/2
G<
�
=,;

:1 ,:2

2
〈0| 2�/2−G2�/2+G2∗:12

∗
:2
|0〉

(70)

=

�/2∑

G=−�/2
G<
�:1,:2

2

(

X�/2+G,:1X�/2−G,:2

+(−1)@−1X�/2−G,:1X�/2+G,:2
)

(71)

=

�/2∑

G=−�/2
G<X@−1+=+;,:1+:2 (−1):1−;

(

@−1
:1−;

)

X�/2+G,:1X�/2−G,:2

(72)

= X@−1+=+;,�

@−1+=∑

G=−;

(

G− @−1+=−;
2

)<

(−1)G
(

@−1
G

)

(73)

= 0 if < < @−1 (74)

Here, in going to the final line we used Eq. (D7), cf. Ref.

76. The &<
�

operators in the Moore-Read two-body Hamil-

tonian (equation 38) are limited to < < @−1. This implies

that the 2-particle Moore-Read state with two or fewer (=, ;

can assume zero value) bosonic excitations satisfies the zero

mode condition. Hence, we have shown that the two-body

Hamiltonian in equation 38 stabilizes the Moore-Read state

with any number of excitations in both CFT sectors.

Taken together, we have now shown using the Theorem that

the MPS states lie in the intersection of the zero mode spaces

of both�2bd
1

@

and �3bd
1

@

, thus, the MPS variational spaces W#

comprise zero modes of the full Hamiltonian � 1

@
, Eq. (40).

V. CONCLUSION

We have proven a Theorem that may establish the existence

of a frustration free parent Hamiltonian in situations where

where the direct application of such a Hamiltonian to trial

ground state wave functions presents significant challenges.

A major motivation for this Theorem derives from scenarios

in which trial wave functions take the form of infinite bond

dimension MPS generated by conformal field theory, as are

well-known to emerge in the realm of fractional quantum Hall

physics. The neeed for such a Theorem is evident from the

fact that traditional MPS with finite bond dimensions have

historically been well-suited for constructing parent Hamil-

tonians. Conversely, the connection between these Hamilto-

nians and infinite-dimensional MPS has remained somewhat

unclear in the fractional quantum Hall literature. We have

extensively discussed the utility of our theorem in the context

of the non-Abelian Moore-Read state. We submit that this

utility extends beyond lowest-Landau level conformal field

theory inspired wave functions. For instance, in mixed Lan-

dau levels, there exists an abundance of promising parton

states77–86 that should meet the same conditions required by

our Theorem whenever a parent Hamiltonian exists. There is,

moreover, no particular reason why our Theorem should be

limited in application to the fractional quantum Hall regime

or, more generally, to quasi-one-dimensional Hamiltonians.

We are thus hopeful that the progress made in this paper may

open up new avenues for the creation of solvable models.
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Appendix A: The product of )A and #̂

In this appendix, we demonstrate Eq. 4. This identity can be simply obtained by calculating the product between the

operators )A and #̂ as follows:

)A #̂ =

∑

91... 9:

∑

9

[A91 ... 9: 2 91 . . . 2 9: 2
∗
92 9

=

∑

91 ... 9:

∑

9

[A91... 9: 2 91 . . .
(

X 9: , 9+(−1) b 2∗92 9:
)

2 9

=

∑

91 ... 9:

[A91 ... 9: 2 91 . . . 2 9: +(−1)
b

∑

91... 9:

∑

9

[A91 ... 9: 2 91 . . . 2
∗
92 9: 2 9

...

=:
∑

91 ... 9:

[A91 ... 9: 2 91 . . . 2 9: +(−1)
: b

∑

91... 9:

∑

9

[A91 ... 9: 2
∗
92 91 . . . 2 9: 2 9

=:)A +(−1): b
∑

9

2∗9)A 2 9 .

In the second line, we used the canonical commutation relation between 2∗
9

and 2 9: . In the fourth line, we repeatedly applied

the commutation relation for 2∗
9

and 2 98 , where 8 = 1, . . . , :−1. It’s important to note that 2 98 2 9 = (−1) b 2 92 98 , ensuring that

each term with the string of operators 2 91 . . . 2 9: has the phase (−1) b canceled out. The final result is derived by invoking the

definition of )A .

Appendix B: Wick expansion of correlators

This appendix presents the Wick expansions of the correlators of the modes in the Majorana sector that are used in the

main text. These are, in particular, related to MPS coefficients for two and three particles with considering one, two, or

three Majorana excitations, respectively. Furthermore, we demonstrate that a Moore-Read MPS with # particles and with any

number of excitations in the Majorana sector can be expressed as a linear combination of such MPS with only # excitations.

The correlator of the three particles Majorana modes with one excitation is given by:

〈0|jA1−1/2j;3−1/2j;2−1/2j;1−1/2 |0〉 = 〈0|jA1−1/2j;3−1/2 |0〉 〈0|j;2−1/2j;1−1/2 |0〉
−〈0|jA1−1/2j;2−1/2 |0〉 〈0|j;3−1/2j;1−1/2 |0〉
+〈0|jA1−1/2j;1−1/2 |0〉 〈0|j;3−1/2j;2−1/2 |0〉 (B1)

= \ (;2−1)X;3,−A1+1X;1,−;2+1−\ (;1−1)X;2,−A1+1X;1,−;3+1 (B2)

+\ (;1−1)X;1,−A1+1X;2,−;3+1 (B3)

where A1 ≥ 1, and

\ (G) =
{

0, if G < 0,

1, if G ≥ 0.
(B4)

is the Heaviside function. This effectively restricts the Majorana mode indexes to:

;2 ≥ 1, for the first term

;1 ≥ 1, for the second term

;1 ≥ 1, for the third term. (B5)
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The correlator of the three particles Majorana modes with three excitations is:

〈0|jA3−1/2jA2−1/2jA1−1/2j;1−1/2j;2−1/2j;3−1/2 |0〉 = 〈0|jA1−1/2j;1−1/2 |0〉 〈0|jA2−1/2j;2−1/2 |0〉 〈0|jA3−1/2j;3−1/2 |0〉
−〈0|jA1−1/2j;2−1/2 |0〉 〈0|jA2−1/2j;1−1/2 |0〉 〈0|jA3−1/2j;3−1/2 |0〉
+〈0|jA1−1/2j;2−1/2 |0〉 〈0|jA2−1/2j;3−1/2 |0〉 〈0|jA3−1/2j;1−1/2 |0〉
−〈0|jA1−1/2j;3−1/2 |0〉 〈0|jA2−1/2j;2−1/2 |0〉 〈0|jA3−1/2j;1−1/2 |0〉
+〈0|jA1−1/2j;3−1/2 |0〉 〈0|jA2−1/2j;1−1/2 |0〉 〈0|jA3−1/2j;2−1/2 |0〉
−〈0|jA1−1/2j;1−1/2 |0〉 〈0|jA2−1/2j;3−1/2 |0〉 〈0|jA3−1/2j;2−1/2 |0〉 (B6)

= X−A1,;1−1X−A2 ,;2−1X−A3,;3−1−X−A1,;2−1X−A2 ,;1−1X−A3,;3−1
+X−A1,;2−1X−A2,;3−1X−A3 ,;1−1−X−A1,;3−1X−A2,;2−1X−A3 ,;1−1
+X−A1,;3−1X−A2,;1−1X−A3 ,;2−1−X−A1,;1−1X−A2,;3−1X−A3 ,;2−1 (B7)

where A8 ≥ 1, in the terms above.

The correlator of the two particles Majorana modes with two excitations is:
〈

jA1−1/2jA2−1/2j;2−1/2j;1−1/2
〉

= 〈0|jA1−1/2j;1−1/2 |0〉 〈0|jA2−1/2j;2−1/2 |0〉
−〈0|jA1−1/2j;2−1/2 |0〉 〈0|jA2−1/2j;1−1/2 |0〉 (B8)

= X;1,−A1+1X;2,−A2+1−X;2,−A1+1X;1,−A2+1 (B9)

As mentioned before, the equations presented above require that A8 ≥ 1 since 〈0| jA8−1/2 would otherwise be zero.

We will now demonstrate that any number of excitations in the three-particle Moore-Read state can be expressed in terms

of one or three excitations. Suppose we add two more excitations, jA4−1/2 and jA5−1/2, to the correlator of the three particles

Majorana modes with three excitations. Because there are three modes from three particles and five excitation modes in total,

when we apply Wick’s theorem, each term in the expansion will contain a factor that involves the correlator of two Majorana

modes with excitation indices,
〈

jA8−1/2, jA 9−1/2
〉

. However, because of the anticommutation relation for the jA ’s and the

relations (18), this factor will be either zero or one. Thus, we have demonstrated that any combination of excitations can always

be expressed as a linear combination of three excitations or fewer. Moreover, for # particles, # Majorana mode excitations or

fewer are required.

Appendix C: Three-vertex correlator

In this appendix, we will compute the correlator of three vertex operators and express it in terms of a simple real function,

ℎ@. This result is useful in demonstrating the zero mode property of the Moore-Read state with three particles. The correlator

of three vertex modes is:

〈3|+−0−ℎ+−1−ℎ+−2−ℎ |0〉 =
1

(2c8)3
˛

3I1

I0+1
1

˛

3I2

I1+1
2

˛

3I3

I2+1
3

〈3|+ (I1)+ (I2)+ (I3) |0〉 (C1)

=
1

(2c8)3
˛

3I1

I0+1
1

˛

3I2

I1+1
2

˛

3I3

I2+1
3

(I1−I2)@ (I1−I3)@ (I2−I3)@ (C2)

=

@∑

:1,:2 ,:3=0

(−1):1+:2+:3
(

@

:1

) (

@

:2

) (

@

:3

)
˛

3I1

2c8

˛

3I2

2c8

˛

3I3

2c8

I
2@−:1−:2
1

I0+1
1

I
@+:1−:3
2

I1+1
2

I
:2+:3
3

I2+1
3

(C3)

=

@∑

:1,:2 ,:3=0

(−1):1+:2+:3
(

@

:1

) (

@

:2

) (

@

:3

)

X2@−:1−:2 ,0X@+:1−:3,1X:2+:3,2 (C4)

= X3@,0+1+2

@∑

:=0

(−1):+2
(

@

:

) (

@

0+:−@

) (

@

1−:

)

(C5)

The binomial expansion was applied in the second line to obtain the expression in the third line. It is important to note that the

following restrictions must be imposed to ensure non-zero results:

0 ≤ 0, 1, 2 ≤ 2@. (C6)

These restrictions arise due to the addition of a background charge of three units in the out-state and zero units in the in-state,

which constrains the angular momentum associated with any vertex mode above35. To reduce notation, we define:

ℎ@ (0, 1, 2) � 〈3|+−0−ℎ+−1−ℎ+−2−ℎ |0〉 . (C7)
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The commutation properties of the modes of the vertex operator are also reflected by the (anti-)symmetry of the real function

ℎ@ as follows: ℎ@ (0, 1, 2) = (−1)@ℎ@ (1, 0, 2) = (−1)@ℎ@ (2, 1, 0) = ℎ@ (2, 0, 1).

Appendix D: # = 3 zero mode property with single Majorana mode

In this appendix, we demonstrate that the three-body operator ) C
�

annihilates a Moore-Read state with three particles and a

single Majorana mode excitation. In this proof, we compute the overlap of the resulting zero-particle state ) C
�
|kA

3
〉 with the

vacuum. This overlap is:

〈0|) C� |k
jA
3
〉=3X3@+A−2,�

∑

<+=+?=�

2@∑

_=1

(<−=)C1 (<−?)C2 (=−?)C3
@∑

:=0

(

@

:

)

(−1):−_+<+1
(

@

:+=−@+_

) (

@

−:+?−A+1

)

(D1)

=3
∑

0≤:,?≤@

3@+A−2∑

==0

(−1):−? (3@−:−2=−?−1)C1(=−:−?−A+1)C2(3@−2:−=−2?−A)C3
(

@

:

)(

@

?

) @∑

_=1+=+:−@
(−1)−_

(

@

_

)

(D2)

=−3
∑

0≤:,?≤@

3@+A−2∑

==0

(−1)@−?−= (3@−:−2=−?−1)C1(=−:−?−A+1)C2(3@−2:−=−2?−A)C3
(

@

:

)(

@

?

)(

@−1
:+=−@

)

(D3)

=−3
∑

0≤:,?≤@

@−1∑

==0

(−1):+=+? (:−2=−?+@−1)C1(@+=−2:−?−A+1)C2(2@−:−=−2?−A)C3
(

@−1
=

)(

@

?

)(

@

:

)

(D4)

=0 ♦ (D5)

We performed a change of variables on ? → ?+A−1+: and _→ _−1−=−:+@ in the second line - the range of the sums are

changed using that the binomial coefficient is 0 if its lower index is negative, and following to restrict the range of the sum. In

the third line, we used the identity

@∑

_=1+ 9
(−1)−_

(

@

_

)

= −(−1)− 9
(

@−1
9

)

. (D6)

One can derive this identity by splitting the Kronecker delta sum realization, X@,0 =
∑@

_=0
(−1)−_

(@
_

)

, into two parts: from 0 to

9 and from 9+1 to @. Then, by applying the alternating sum and difference of binomial coefficient up to : identity (Eq. (69)),

the desired result is obtained. In the fourth line, we substituted the variable = and adjusted the limits of the sum. The final

result, in the fifth line, was obtained using the relation76

V∑

8=0

(−1)8
(

V

8

)

8U = 0 for 0 6 U < V, (D7)

Expanding the polynomial in equation (D4) into monomials on the variables :, =, and ?, we observe that for each monomial,

at least one of the powers of :, =, or ? is less than @ or @−1, since the maximum power of the polynomial is C = 3@−3. Using

the relation in Eq. (D7), we can conclude that at least one sum in :, =, or ? is zero. Therefore, the overlap above is zero.

Appendix E: # = 3 zero mode property with three Majorana modes

In this appendix, we demonstrate that the three-body operator ) C
�

annihilates a Moore-Read state with three particles and

three Majorana modes excitations. In this proof, we compute the overlap of the resulting zero-particle state ) C
�
|kA

3
〉 with the
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vacuum. This overlap is:

〈0|) C� |k
jA1 ,jA2 ,jA3
3

〉= 6X�,3@+A1+A2+A3−3

@∑

:=0

∑

<+=+?=�
(<−=)C1 (<−?)C2 (=−?)C3 (−1):+<−A3+1

(

@

:

) (

@

?−A1+1+:−@

)(

@

=−A2+1−:

)

(E1)

= 6X�,3@+A1+A2+A3−3

@∑

:=0

�−A1+1+:−@∑

?=−A1+1−:−@

�−A2+1−:∑

==−A2+1−:

�∑

<=0

(

@

:

) (

@

=

) (

@

?

)

(−1):+<−A3+1 (−:+<−=−A2+1)C1
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(E3)

= 0 ♦ (E4)

We performed a change of variables in the first line and then used the binomial factor to restrict the range of the sum to obtain

the second line. The result in the third line was obtained using a similar argument as in Appendix D. Expanding the polynomial

in equation (E3) into monomials on the variables :, =, and ?, we observe that for each monomial, at least one of the powers of

:, =, or ? is less than @ or @−1, since the maximum power of the polynomial is C = 3@−3. Using the relation in Eq. (D7), we

can conclude that at least one sum in :, =, or ? is zero. Therefore, the overlap above is zero.
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