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Fascinating new phases of matter can emerge from strong electron interactions in solids. In
recent years, a new exotic class of many-body phases, described by generalized electromagnetism
of symmetric rank-2 electric and magnetic fields and immobile charge excitations dubbed fractons,
has attracted wide attention. Besides having interesting properties in their own right, the models
with generalized electromagnetism are also closely related to gapped fracton quantum orders, new
phases of dipole-covering systems, as well as quantum information and quantum gravity. However,
experimental realization of the rank-2 U(1) gauge theory is still absent and even known practical
experimental routes are scarce. In this work, we propose a scheme of coupled optical phonons and
nematic degrees of freedom, as well as several concrete experimental platforms for their realizations.
We show that these systems can realize the electrostatics sector of the rank-2 U(1) gauge theory.
A great advantage of the proposed scheme is that it requires only the basic ingredients of phonon
and nematic physics, and hence may be applicable to a wide range of experimental realizations from
liquid crystals to electron orbitals.
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I. INTRODUCTION

At the forefront of modern physics lies the concept of
emergence – the spontaneous appearance of qualitative
changes in the behavior of large, complex systems that
can by no means be inferred by extrapolating the prop-
erties of only a few particles1. The emergent behavior is
codified by the new ‘laws’ in an effective theory, and the

emergent phases often transcend the traditional Landau–
Ginzburg paradigm of symmetry breaking. One example
of such an emergent phase are the spin liquids – exotic
states built on quantum superposition of product states,
characterized not by any order parameter, but by the
topological entanglement and topological order. A sub-
class of such spin liquids can be described by local con-
straints on the local degrees of freedom (DoF), leading
to the emergence of a gauge invariant description, and
thereby to topological orders, fractionalised excitations
and long-range entanglement2–5. A well-known exam-
ple is quantum spin ice on the pyrochlore lattice, which
realizes U(1) Maxwell gauge theory6. It hosts emer-
gent excitations mimicking the Maxwell electrodynamics:
photons, electric charges and even magnetic monopoles.
As such, it has been under intense theoretical3–15 and
experimental16–24 investigation.

Recently, a class of more exotic forms of emergent
electrodynamics proposed as effective theories for spin
liquid phases25–28 has attracted considerable attention.
As a generalization of Maxwell electrodynamics, it fea-
tures electric and gauge fields in the form of rank-2 (R2),
or generally higher-rank, symmetry tensors. The cor-
respondingly modified Gauss’s conservation laws result
in some unexpected, exciting properties. The electric
charge excitations dubbed fractons are intrinsically con-
strained from moving in the system, and foreshadow a
new class of gapped fracton quantum liquid order be-
yond topological order29–40. The rank-2 U(1) (R2-U1)
theories are also shown to be akin to gravity25,41–43, and
related to new phases of matter featuring dipole conserv-
ing dynamics44–48.

However, these remarkable properties come with a
cost: the central ingredient – local constraints applied
to tensors – is in a more complex form than the tra-
ditional Gauss’s law of Maxwell electromagnetism. To
enforce these constraints, complicated multi-body in-
teractions are required in many prototypical fracton
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FIG. 1. Realizing rank-2 U(1) electrostatics via op-
tical phonon-nematic coupling. a-c Examples of micro-
scopic objects with nematic degrees of freedom. d Bilayer
nematic as a representative experimental construction that re-
alizes the ideal model [Eq. (1)]. e Nematic layer trapped in an
artificial periodic potential as a representative experimental
construction. f The band structure of [Eq. (1)]. g Zoomed-in
view of the phonon-nematic band structure, in which the flat
band corresponds to the vector-charge-free nematic configu-
rations, and the upward dispersing bands correspond to the
charged nematic configurations.

models25,27,29,31–33,49,50, while experimental proposals re-
main scarce37,51,52. Therefore, concrete designs for ex-
perimental realizations of R2-U1 phases pose a significant
challenge, and overcoming this difficulty would constitute
a crucial step for future development of the field.

Here we propose a realistic experimental scheme to
achieve nematic liquid states described by the classical
limit R2-U1 theory, that is realizing the electrostatics
of such higher-rank theories. Phases of matter with ne-
matic DoF, such as liquid crystals, are good potential
candidates for this purpose since they are naturally rep-
resented by symmetric tensors – exactly those needed in
the R2-U1 physics. The challenge is to find a realistic ap-
proach toward the specific low-energy Hamiltonian that
would give rise to a nematic liquid state obeying the R2-
U1 Gauss’s law, instead of driving the system into an
ordered state.

In this work we show that this is readily achievable.

The ingredients in our model are quite common: Einstein
phonons and the most general coupling between phonons
and nematic DoFs. We demonstrate that integrating out
the phonon modes leads precisely to the sought Gauss’s
law-enforcing term on the remaining nematic DoFs. Be-
side the idealized effective theory, we present a few con-
crete experimental platforms where such a theory can
be realized. Our approach has the advantage of having
a wide range of applicability. The existence of nemat-
ics at different scales – from electron orbitals to organic
molecules, to soft matter – means that our proposed de-
sign can be realized in a variety of experimental plat-
forms. Different types of nematic matters available also
enable us to construct different versions of R2-U1 the-
ories. We hope that our work opens a gateway to ex-
perimental realizations of generalized higher-rank gauge
theories.

II. THE IDEALIZED MODEL.

A. Hamiltonian of nematic-phonon coupling

The idealized model Hamiltonian to realize the R2-
U1 physics via nematic-phonon coupling is composed of
three parts: optical phonons, the nematic degrees of free-
dom, and their coupling:

H = Hph +Hph-nem +Hnem

=
Π2

2mph
+
mphω

2
0

2
u · u− λεijΦij +M

∑
i≤j

Φ2
ij ,

(1)

where mph is the atomic mass density corresponding to
the phonon mode, u(r) is the lattice distortion of the Ein-
stein phonons (i.e., phonons with a flat energy dispersion
ℏω0), and Π is the canonically conjugate momentum. We
have suppressed the phonon polarization index and as-
sumed a single optical branch for simplicity. The second
term Hph-nem is the leading order coupling between the
nematic DoF described by the symmetric tensor Φij

53–57

and the strain tensor of the lattice distortion

εij(r) = ∂iuj(r) + ∂jui(r). (2)

The third term Hnem has the meaning of a mass term
for the nematic degrees of freedom and is assumed to be
positive-definite (M > 0). This term can also be thought
of as imposing a physical constraint on the tensor to be
of finite length, which occurs naturally in certain types
of nematic matter (see section VI for details). In this
work, we explicitly assume no spontaneous breaking of
the rotational symmetry, i.e. we always assume nematic
fluctuations without the long-range nematic order.58

In what follows, we suppress the dynamical terms asso-
ciated with the phonon and nematic degrees of freedom
(written here in the Lagrangian form)

Ldynamics =
mph

2
(∂tu)

2 +
m

2
(∂tΦ)2, (3)
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since we are chiefly interested in the classical sector of
the system. Above, m is the kinetic mass of the nematic
degrees of freedom. The role of these terms in the dy-
namics in a quantum system is discussed in more detail
in section VI below.

The spectrum of the diagonalized Hamiltonian in a
square lattice is shown on Fig. 1(f,g) (see Fig. 3 for the
square lattice set up). The false color indicates the distri-
bution on each band of the correlator ⟨Φxx(−q)Φyy(q)⟩,
whose meaning will be clarified in a later part of this
section.

By integrating out the Gaussian phonon modes, we
end up with the effective theory for the nematic DoF
only, described by the Hamiltonian

Hnem-eff = Λ(∂iΦij)(∂kΦkj) +M
∑
i≤j

Φ2
ij , (4)

where Λ = λ2/(2mphω
2
0). In the limit of sufficiently large

Λ≫ T relative to the temperature, the first term imposes
high energy cost for Φij configurations that violate the
constraint

∂iΦij = 0. (5)

Upon identifying the nematic DoF with the generalized
rank-2 electric field Φij ←→ Eij , its derivative becomes
associated with the generalized vector charge:

∂iΦij ←→ ρj ≡ ∂iEij , (6)

and the Eq. (5) becomes exactly the Gauss’s law for the
vector-charged R2-U1 theory. Hence the classical R2-U1
nematic liquid state is realized in the low energy sector
of the theory.

A more physical interpretation of the model is achieved
by noticing that

−λεijΦij = 2λu · ρ+ total derivative. (7)

This means the vector charge excitation ρ is linearly cou-
pled to the lattice distortion. The energy cost of the lat-
tice distortion induces, upon integrating out the lattice
DoF, the potential energy λ2ρ2/(2ρω2

0) for the charge
excitations.

B. Experimental signatures

To quantitatively show the emergence of R2-U1 elec-
trostatics, we study the model of Eq. (4) on a square
lattice under the on-site constraint

∑
i≤j Φij(r)

2 = 1

and examine its correlation function ⟨Φij(−q)Φkl(q)⟩ at
different temperatures using the Self-Consistent Gaus-
sian Approximation (SCGA, described in Methods). De-
pending on the microscopic origin of the nematics, there
are different ways to measure the correlation functions in
an experiment. For example, in liquid crystals, one can
use polarized light to obtain the so-called schlieren tex-
ture59,60, which can be used to reconstruct the real-space
configuration of the nematics.

The equal time correlation function ⟨Φij(−q)Φkl(q)⟩
in the R2-U1 phase is constrained by the Gauss’s law
qα⟨Φij(−q)Φkl(q)⟩ = 0, where α is one of the four in-
dices i, j, k, l and, the repeated index is summed over.
As a consequence the correlation is restricted to be pro-
portional to a highly anisotropic projector in the form
of

⟨Φij(−q)Φkl(q)⟩ ∝
1

2
(δikδjl + δilδjk) +

qiqjqkql
q4

− 1

2

(
δik

qjql
q2

+ δjk
qiql
q2

+ δil
qjqk
q2

+ δjl
qiqk
q2

)
.

(8)

In particular, ⟨Φxx(−q)Φyy(q)⟩ ∝ q2xq2y/q4 shows a char-
acteristic pattern dubbed “4-fold pinch point”61–63.

In Fig. 2, we present the correlation function
⟨Φxx(−q)Φyy(q)⟩, computed within the SCGA approach,
at different ratios of T/Λ. As the result demonstrates,
at high temperature, the system is a paramagnet and
the correlation function is essentially vanishing. At low
temperatures on the other hand, the 4-fold pinch point
emerges as the system enters the R2-U1 phase. The tran-
sition between the two phases is expected to be not a
phase transition but a crossover.

The same 4-fold pinch point is also visible in the
band structure of the diagonalized Hamiltonian shown
in Fig. 1(f,g). There, the flat band corresponds to the
nematic states obeying Gauss’s law. Note that the en-
ergy of this flat band is finite due to the non-zero mass
M in Eq. (4), and the lack of dispersion is due to the
fact that the mass term imposes a local constraint, i.e.
all such states are momentum independent. The 4-fold
pinch point is imprinted on the flat band, which is consis-
tent with the result from the Gaussian-integrated theory
[Eq. (4)].

C. Effects of perturbations

The idealized model of Eq. (1) is fine-tuned. For exam-
ple, if there are symmetry-breaking terms, the nematic
DoFs, instead of fluctuating subject to the Gauss’s law,
can become ordered at sufficiently low temperature (this
would require setting mass M < 0 and adding quartic
terms to the Hamiltonian in Eq. (1)). Hence, we must
address the question whether the idealized model can be
realized experimentally.

We remark that it should not be surprising that, gen-
erally speaking, the Hamiltonian realizing such classical
spin/nematic liquid requires fine-tuning. A well known
canonical example is the classical spin ice64, whose exact
macroscopic ground state degeneracy is the consequence
of fine-tuned interactions, and can be lifted by addition
of arbitrarily small terms to the Hamiltonian. The U(1)
gauge theory being gapless, there is no protection against
such terms in general. However, as long as these terms
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FIG. 2. Nematic correlation functions ⟨Φxx(−q)Φyy(q)⟩ for model in Eq. (4). The four panels show the correlation
functions, using a false-color map, computed via the Self-Consistent Gaussian Approximation (see Methods) on a square lattice
[Fig. 3] at different temperatures relative to the parameter Λ. The high temperature regime shown in d is a paramagnetic phase
with vanishing correlations. The low temperature regime shown in a is the rank-2 U(1) phase, manifested by the characteristic
4-fold pinch point pattern in the correlation function around q = 0, originating from the functional form ⟨Φxx(−q)Φyy(q)⟩ ∝
q2xq

2
y/q

4. b,c The 4-fold pinch points become gradually smeared due to thermal fluctuations at intermediate temperatures.

have a magnitude smaller than the experimentally ac-
cessible temperature, their effect is not strong enough
to drive the system into e.g. an ordered state, and the
relevant degrees of freedom fluctuate, subject to the con-
straint imposed by the Gauss’s law. This general prin-
ciple applies equally to the spin ice and to our model of
generalized higher-rank U(1) theory.

D. Effects of discrete crystalline symmetry

The coupling between lattice and nematic DOFs will
often lower the symmetry of the nematic order parameter
from U(1) to a discrete one. If the energy scale of of
such symmetry breaking is significantly lower than the
temperature of interest, it can be effectively neglected.
However, in the opposite case, more care is needed to
determine if the rank-2 U(1) Gauss’s law description still
holds.

Systems with discretized nematic DOFs can still be
in a rank-2 U(1) spin liquid phase, if the exponentially
degenerate ground states still exist, and is described by
the rank-2 U(1) Gauss’s law. This is similar to spin ice
and checkerboard ice spin liquids, which are Ising spin
systems described by Maxwell’s U(1) Gauss’s law ∂iEi =
0. The most essential requirement is that flipping a local
patch of spins follows the pattern of the magnetic field
B = ∇×A. In terms of the lattice spins, this is to flip
spins connected head-to-tail on a closed loop.

The similar principle applies to rank-2 U(1) spin liq-
uids too. Here, let us give an example of such spin liquid
arising from discretized nematic DOFs. We consider a
square lattice, with nematic DOFs sitting on the vertices
and plaquette centers of the lattice (Fig. 3(a)). We then
assume the vertex nematics can only take finite range
of integer values (for example, −1, 0, 1) for its Φxx and

Φyy components, and the plaquette nematics for its Φxy

components, as a consequence of the lattice symmetry.
The phonon-intermediated interactions are ρ2x + ρ2y,

where

ρx = ∂xΦxx + ∂yΦyx,

ρy = ∂yΦyy + ∂xΦxy,
(9)

and on lattice, their discretized version becomes

ρx(R) =Φxx(R+ x̂/2)− Φxx(R− x̂/2)

+ Φyx(R+ ŷ/2)− Φyx(R− ŷ/2),

ρy(R) =Φyy(R+ ŷ/2)− Φyy(R− ŷ/2)

+ Φxy((R+ x̂/2))− Φxy((R− x̂/2)).

(10)

The definition of ρ is illustrated in Figs. 3(a,b). The
ground states are nematic configurations where the con-
dition ρx,y = 0 is satisfied at every site.

Next, we examine the ground state degeneracy struc-
ture. That is, we search for the minimal change of Φij

that takes one ground state configuration to another. We
found this operation, expressed in terms of operators Φ±

ij

that increase/decrese the value of Φij by one, to be that
shown in Fig. 3(e).

This is exactly the magnetic field for the rank-2 U(1)
theory,

B = ϵabϵcd∂
a∂cAbd. (11)

where Abd is the conjugate of Eij . To see this more
clearly, we notice that the two terms in B are

ϵcd∂
cAxd = ∂xA

xy − ∂yAxx (12)

ϵcd∂
cAyd = ∂xA

yy − ∂yAyx (13)

The first one corresponds to Fig. 3(c) and the second one
corresponds to Fig. 3(d). Hence B = ϵabϵcd∂

a∂cAbd is
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FIG. 3. The square lattice model with nematic degrees
of freedom. a, b Nematic degrees of freedom Φxx and Φyy

defined on the vertices of the lattice, with off-diagonal com-
ponents Φxy situated in the centers of the plaquettes. The
lattice representation of the vector charge ρ in Eq. (6) has
two components ρ = (ρx, ρy) which live on the x- and y-links
of the lattice, respectively, based on the four Φij surrounding
it. This model is used for computing the correlation func-
tions in Eq. (8) and throughout the paper. c,d Spin flipping
terms correspond to Eqs. (??,13) for discretized Φij . These
terms are products of four ϕ±

ij operators each. e Spin flip-
ping term that acts as the gauge-invariant magnetic field in
the generalized rank-2 electrodynamics (Eq. (11)). This term
is a product of twelve ϕ±

ij operators shown. When acting on
a Gauss’s law-obeying charge-free electric field configuration,
the state is mapped onto another charge-free configuration.

curl as four of such operations tiled together shown in
Fig. 3(e).

We can then conclude that this model of discretized
nematic DOFs is also in a rank-2 U(1) nematic liquid
phase.

More generally, whether the rank-2 U(1) nematic liquid
phase survives after the continuous nematic DOFs breaks
down to discrete ones depend on the specific details of the
symmetry breaking. Following the example above, one
can design rank-2 U(1) nematic liquid phases for discrete
nematic DOFs too.

III. ADVANTAGES AND CHALLENGES OF
THE IDEALIZED MODEL.

Several comments are in order before we continue with
the discussion of the more concrete experimental plat-
forms to realize the idealized Hamiltonian in Eq. (1).
First, this model has the advantage of being built upon
rather common elements: the Einstein phonon is the
zero-dispersion limit of an optical phonon, which is often
a good approximation. More generally, optical phonons
with small dispersions also work, since mild dispersion
will only contribute to the higher-order terms. Equally,
the nematics DoF are common microscopic objects, rang-
ing in their origin from molecular anisotropy in classi-
cal liquid crystals, to orbital electron DoF in transition-
metal compounds [cf. Fig. 1(a-c) and section VI]. The
tendency towards the nematic distortion can also be
emergent, for instance due to the Pomeranchuk insta-
bility of a Fermi surface65, discussed in more detail in
section VI. The phonon-nematic coupling in the second
term of Eq. (1) is the lowest order coupling that respects
the rotational symmetry of the system and is also gener-
ally expected, as seen in many other studies53–57. Hence
we expect it to be the dominant term in relevant experi-
ments.

We note that in previous theoretical studies, the
phonon-nematic coupling Hph-nem was written for acous-
tic, rather than optical phonons, as discussed in detail in
Refs. 55–57. There, although the coupling also yields a
4-fold anisotropic susceptibility similar to those shown in
Fig. 2, the resulting effective theory is not of the form of
the sought-after rank-2 U(1) electromagnetism. The rea-
son for demanding a finite (albeit possibly small) energy
ω0 of optical phonons is to ensure that integrating out
these higher-energy DoF is legitimate, leading to a finite
Λ ≡ λ2/(2mphω

2
0) in Eq. (4).

Generally, in a system with nematic and lattice degrees
of freedom, one naturally expects the coupling to the
acoustic phonons to be present. Such coupling would lead
to consequences described in the previous paragraph, un-
desirable for the purpose of rank-2 U(1) nematic liquid.
It is then necessary to design the system to avoid the tar-
get nematic degrees of freedom’s coupling with the acous-
tic phonons. In the following section, we discuss concrete
experimental setups that resolve this issue and engineer
the desired coupling between the nematics and optical
phonons. Briefly speaking, our construction introduces
additional layers/sublattice sites with the protection of
global mirror/inversion symmetry, so one symmetry sec-
tor had the gapped phonons coupled to the nematics as
desired.

IV. EXPERIMENTAL PROPOSALS

To address the practical problems mentioned in the
previous section, here we discuss more concrete experi-
mental proposals in a bottom-up fashion: we start with
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FIG. 4. A bilayer construction of two lattices with
nematic degrees of freedom. The atomic lattices are not
shown for clarity but are essential in hosting intra-layer acous-
tic phonons. The inter-layer coupling results in the phonon
splitting into two sectors: the acoustic in-phase mode (u+)
and the optical out-of-phase mode (u−) in Eq. (16). These
two phonon modes couple to the corresponding nematic DoFs
(Ψ+ and Ψ−) in the appropriate sectors. It is the coupling in
the out-of-phase optical sector in Eq. (17) that leads to the
rank-2 U(1) theory.

systems described by the conventional Hamiltonian in-
stead of the ideal one, and show how the ideal Hamilto-
nian can emerge by modifying these systems properly. In
particular, the acoustic phonon decouples from the part
described by the ideal Hamiltonian.

A. Bilayer construction

For two-dimensional systems, one solution we propose
is to construct systems with multiple sublattice sites.
Here we consider an example of coupling two layers to-
gether, with each hosting the common acoustic phonon-
nematic coupling [Fig. 1(d)].

Each single layer, in the most symmetric case, is de-
scribed by the Hamiltonian

Hac-ph-nem = 2ρv2(∂iu
X
j )(∂iu

X
j )−λεXijΦX

ij +M
∑
i≤j

(ΦX
ij )

2.

(14)
Here X = T,B corresponds to the top and bottom layer,
and the acoustic phonon modes have isotropic linear dis-
persion ωac = vq (again here the dynamical terms are
omitted).

We then consider the two layers coupled by the follow-
ing interaction:

Hint = gρ(uT − uB)2. (15)

Such interaction appears naturally from an inter-layers
atomic potential for the lattice sites penalizing their de-
viation from the equilibrium positions.

Diagonalizing Hac-ph-nem +Hint, we find that the DoF
can be decomposed into the in-phase and out-of-phase

sectors labeled by +,− [cf. Fig. 4],

u± =
1√
2
(uT ± uB),

Φ± =
1√
2
(ΦT ±ΦB).

(16)

The two sectors decouple from each other. The “+” sector
is described again by the usual acoustic phonon-nematic
coupling as in Eq. (14), and hence is not of our inter-
est. The out-of-phase “−” sector describes the inter-layer
optical phonon, coupled to the corresponding inter-layer
nematic DoF:

H− = 2ρv2
∑
i

(∇u−i )
2+2gρu−·u−−λε−ijΦ

−
ij+M

∑
i≤j

Φ−
ij

2.

(17)
Here, the phonons associated with u− becomes gapped
because of the inter-layer coupling [Eq. (15)]. The last
three terms in Eq. (17) are exactly what we are after.
The first term induces the dispersion to the inter-layer
optical phonon. Integrating out the photons, this term
yields an additional, q-dependent contribution of the
order of O

(
λ2v2q4

ρg2 (Φ)2
)
. This is to be compared to

the principal term in the Gauss’s law, of the order of
O
(

λ2q2

ρg (Φ)2
)
. Hence, if the dispersion scale is small

compare to the gap, i.e., vq20 ≪ g (q0 ∼ 1/a denoting the
edge of the Brillouin zone), then the phonon bands will
be sufficiently flat, and we obtain the idealized model of
Eq. (1) to a good approximation, with Λ = λ2

ρg .

B. Mutliple sublattice sites

The essence of the proposal in the previous section is
that, when there are multiple sublattice sites in the sys-
tem, the total number of phonons increases accordingly,
yet only one set of them is acoustic, and the remaining
phonon branches will become gapped, as desired to ob-
tain the idealized model in Eq. (1). Similar approaches
can be designed following this principle. For example, a
single-layer nematic lattice with two sub-lattice sites per
unit cell can also work [Fig. 5(a)].

C. Artificial potential well

Another scheme we propose is to introduce an artifi-
cial potential for the nematic-site lattice displacements,
in order to break translational invariance and gap the
phonons directly. That is, we add a potential term

Hpot =
mphω

2
0

2
u · u (18)

to the lattice distortion, thus approximating the idealized
model in Eq. (1) when the phonon dispersion is mild.
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FIG. 5. Proposed experimental setups to realize the
ideal model of Eq. (1). a The multiple sublattice site con-
struction. Shown as an example is a hexagon lattice of ne-
matic degrees of freedom residing on two sublattice sites (blue
and red rods). b The artificial potential well construction.
The nematic layer (red rods) is sandwiched between two sub-
strates of heavy molecules (grey balls). The substrates serve
as sources of the artificial potential term [Eq. (18)] for the
lattice distortion u in the nematic layer.

The first realization of this idea is schematically illus-
trated in Fig. 1(e), wherein the nematic atoms/molecules
are placed in a periodic optical (laser) potential. Such pe-
riodic potential is a sophisticated experimental technique
in use already66–73.

Another possible realization is to sandwich the nematic
layer between the substrate layers of heavy molecules.
The latter would then introduce a potential term to the
nematics layer, as illustrated in Fig. 5(b).

V. BEYOND THE CLASSICAL MODEL

In this work we focused on how to achieve the electro-
statics sector of the rank-2 U(1) theory. This is a crucial
step toward the generalized quantum electrodynamics,
just as how the classical spin ice64 provides the under-
pinnings for the development of a quantum spin ice6,12.
Now let us briefly explain the effect of including phonon
and nematic dynamics in the system.

A. Phonon dynamics

Let us first examine the effect of phonon dynam-
ics. Following the procedure similar to that outlined
above Eq. (4), one can integrate the phonon kinetic term
mph
2 (∂tu)

2. This leads to the appearance in the La-
grangian of the dynamics for the nematic degrees of free-
dom of the form

Lcharge-dyn =
m

2
(Φ̇)2 + Λ̃(∂iΦ̇ij)(∂kΦ̇kj)

≡ m

2
(Φ̇)2 + Λ̃(∂tρ)

2,
(19)

where Λ̃ = λ2/(2mph) arises from integrating out the
optical phonons (in fact Λ̃ = ω2

0 Λ is proportional to the
coupling Λ introduced in Eq. (4)).

Note that the first term originates from the kinetic en-
ergy of the nematic degrees of freedom in Eq. (3). More
importantly, the second term is responsible for the dy-
namics of the charge of the rank-2 U(1) field theory. Be-
low, we shall consider the effect such terms have on the
generalized higher-rank U(1) electrodynamics.

B. Nematic dynamics

We now discuss the effect of the dynamical term in
the full-fledged rank-2 electrodynamics. We start with a
concrete example, and then discuss the general principles
applicable to all the implementations proposed above.

For concreteness, let us consider Φ living on the square
lattice. For better visualization, we place the Φxx, Φyy

components on the vertices, and shift Φxy = Φyx to
the centers of the plaquettes. This is illustrated in
Fig. 3(a,b). The generalized vector charges ρ = (ρx, ρy)
are then defined on the links of the lattice. Specifically, ρx
is defined on the x-oriented links as ρx = ∆xΦxx+∆yΦyx,
where ∆i is the lattice derivative. Similarly ρy is defined
on y-links as ρy = ∆yΦyy +∆xΦxy. The classical sector
of the Hamiltonian is

Hsq-cl = Uρ2 +M
∑
i≤j

Φ2
ij . (20)

Note that we have dropped the first kinetic term
∝ (Φ̇)2 in Eq. (19) because in the language of the gen-
eralized electrodynamics, Φ̇ plays the role of the vector
potential A, canonically conjugate to the electric field
E ≡ Φ. The nematic kinetic term in Eq. (19) therefore
translated into A2 term whose action on the ground state
manifold is trivial, hence we ignore it in what follows.

To introduce quantum dynamics, we instead argue by
the way of analogy that each component of the ten-
sor Φ could be thought of as corresponding to the Sz-
component of a quantum spin, and there is a generalized
“transverse field” applied to the nematic DoFs,

Hsq-dy = h
∑
i≤j

(Φ+
ij +Φ−

ij), (21)

where Φ±
ij are the raising and lowering operators of Φij .

Crudely speaking, Φ±
ij plays the role of the gauge field

operator A associated with the charge creation terms,
since they are canonically conjugate to the electric field
components E, and creates charges when applied to an
eigenstate of Φij .

A single operation of Φ±
xx or Φ±

yy will create charges in
the system. Within the restricted sub-Hilbert space of
the Gauss’s law-obeying states, operators Φ±

ij can only
act on the Hilbert space at a higher perturbative order,
such as to cancel all the charges created. An example we
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denote as Φ+
comp is shown in Fig. 3(e). There, a specific

product of twelve Φ±
ij operators connects one charge-free

electric field configuration to another. The fact that no
charge is created anywhere in the system is equivalent
to the statement that this composite product of 12 op-
erators is gauge invariant – that is, Φ+

comp (and also its
hermitian conjugate Φ−

comp) plays the role of the gener-
alized magnetic field of the R2-U1 theory.

Putting everything together, the generalized rank-2
electrodynamics is realized by the Hamiltonian

Hsq-full = Λ̃(∂tρ)
2 + Uρ2 +M

∑
i≤j

Φ2
ij + µ(Φ−

comp+Φ+
comp)

∼ Λ̃(∂tρ)
2 + Uρ2 +E2 +B2 (22)

Now let us comment on the general properties of the
quantum dynamics of the nematic R2-U1 theory. Like
in a quantum spin ice, the emergent magnetic field usu-
ally involves multiple operators, and is generated per-
turbatively via the product of transverse field operators
which preserve the Gauss’s law. Other types of dynamics,
for example the exchange-type terms, can also fulfill this
purpose. In the conventional Maxwell U(1) theory, these
composite operators are simply loops of the dynamical
operators, forming a lattice realization of the magnetic
flux

∮
A dl =

∫∫
B dσ. In R2-U1 theory, the compos-

ite operators become more complicated as shown in the
square lattice example above.

Although the long wavelength theory will remain the
same, the available quantum dynamical terms will de-
pend on the details of the lattice geometry and the micro-
scopic implementation of the nematic DoF. It is also pos-
sible that the quantum dynamics leads the system into
other ordered phases instead of R2-U1 electrodynamics
(this is true of the quantum spin-ice as well). The exact
consequences will have to be discussed on a case-by-case
basis.

VI. DISCUSSION: MICROSCOPIC ORIGIN OF
THE NEMATICS.

In our construction, we tacitly assumed that the ne-
matic DoF are described by a symmetric tensor with
all its independent components, of which there are 3 in
the two-dimensional systems and 5 in three-dimensional
ones. Depending on the microscopic origin of the nemat-
ics, the number of DoF in the symmetric tensor repre-
sentation may be fewer than those numbers. Below, we
provide several concrete examples of the various micro-
scopic realizations of the nematic DoFs.

Liquid crystals. The first canonical example of the ne-
matic degrees of freedom is that of a classical liquid crys-
tal. In 2D, such as shown schematically in Fig. 1(b), the
nematicity is described by a director of a fixed length,
encoded in a 2× 2 symmetric matrix

Φ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
. (23)

Note that the matrix is traceless and unimodular (reflect-
ing the fact that director is of unit length), and as a re-
sult, nematic DoF are described not by three but by a sin-
gle independent parameter, the azimuthal angle θ. The
idealized theory presented in the beginning still holds,
however the lack of the necessary rank-2 DoFs means the
proper R2-U1 electrostatics cannot be realized.

Pomeranchuk instability in metals. Another example
of the nematicity is the spontaneous distortion of the
Fermi surface (see e.g. Fig. 1(c)), known as the Pomer-
anchuk instability65, which in the simplest case of an
isotropic (circular in 2D) Fermi surface is described by
the quadrupole density operator74:

ΦFS(q) =
1

k2F
ψ†(q)

(
q2x − q2y qxqy
qxqy q2y − q2x

)
ψ(q), (24)

where ψ†(q) and ψ(q) are the electron cre-
ation/annihilation operators at momentum q. The
above matrix is also traceless, yielding the traceless
R2-U1 theory upon integration of the phonon modes
coupled to ΦFS as in Eq. (1). The elliptic Fermi surface
distortion thus has two independent DoFs: Φxx and Φxy,
which can also be cast in the form of a complex order
parameter Qei2θ = Φxx + iΦxy, with the amplitude Q
proportional to the eccentricity of the ellipse and angle
±θ its azimuthal direction.

We note that in the above example, the presence of the
underlying crystalline lattice can pin the Fermi surface
distortion along particular direction(s), such as shown in
Fig. 1(c). For instance, pinning to ±x or ±y directions
on the square lattice introduces a potential Ulat(θ) =
−U0 cos(2θ) for the azimuthal angle. The resulting rank-
2 theory would then become discrete, described by a 4-
state Potts model on a square lattice (rather than the
continuous U(1) parameter). Nevertheless, for temper-
atures and energy scales above U0, the classical theory
could be approximately described as having a continuous
U(1) symmetry.

A remark is due: in this and in other examples of
metallic systems with nematic degrees of freedom, cou-
pling of the latter to the conduction electrons must be
considered carefully, especially in two spatial dimensions.
In particular, at the nematic quantum critical point,
when the parameter M → 0 in the Hamiltonian (1),
this coupling renormalizes the Green’s function of the
conduction electrons, resulting in a non-Fermi liquid be-
haviour and in turn affecting the universality class of the
nematic phase transition75 (see also Ref. 76 for review,
as well as recent numerical studies77,78 and references
therein). These consideration lie outside of the scope of
the present work, and we will always assume a large and
positive quadratic coefficient M , where these complica-
tions do not arise.

Orbital order in Mott insulators. Another example is
that of d-electron orbital ordering in Mott insulators such
as K2CuF4

79 and LaMnO3
80 (Fig. 1(a)). Ignoring for the

moment the crystal electric field (CEF) effects, which
generically lift the orbital SO(3) symmetry, the five d
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orbitals corresponding to the |l = 2;m = −2,−1, . . . , 2⟩
spherical harmonics form a degenerate manifold, out of
which an orbital-nematic order can appear if the sym-
metry is spontaneously broken. These orbital degrees of
freedom form a symmetric, traceless tensor representa-
tion of the group SO(3) describing rotations in the orbital
Hilbert space (the l = 0, 1 representations are the trace
and anti-symmetric components of this matrix). In the
disordered, symmetry-preserving phase, these orbital de-
grees of freedom can be used to construct classical rank-
2 electrostatics as outlined in this work. Moreover, by
virtue of being intrinsically quantum objects, such mod-
els are also good candidates for constructing quantum
electrodynamics of R2-U1 theory. This line of argument
can be expanded to higher multipole ordering, such as
octupolar (rank-3) order observed in CexLa1−xB6

81 and
hexadecupolar (rank-4)82 and even higher rank-5 order
parameters83 proposed to explain the so-called hidden
order in URu2Si284.

When the CEF effects are considered, the initial degen-
eracy of the d-orbital multiplet is lifted, however as long
as the symmetry is not too low and the crystalline point
group allows for higher-dimensional irreducible represen-
tations (irreps), the description in terms of the higher-
rank tensor survives, as we shall now discuss.

Multidimensional irreps of the crystalline symmetry.
This is a generic example of the (discrete) nematic or-
der is realized on crystalline lattices with n-fold irre-
ducible representations (n = 2, 3) of the point group.
For instance, hexagonal systems (with point groups C6

and D6 in 2D) allow two-dimensional irreducible repre-
sentations and hence the nematic order parameter can
be parametrized by Φ = Φ0(cos(2θ), sin(2θ)), which can
be cast in the form of a traceless rank-2 tensor as in
Eq. (23). This well known fact has been exploited re-
cently in the discussion of nematicity in the twisted bi-
layer graphene, where coupling to acoustic phonons (dif-
ferent from the optical phonons in our case) was also
considered57. Generically, the lattice pinning will result
in a discrete Potts model description of the nematic DoF,
analogous to the previous case, and upon integrating out
the (optical) phonons, the resulting rank-2 theory will be

a discrete one.
When designing possible experimental realizations

of the nematic-phonon coupling, one should thus be
aware of the consequence of such discretization and the
decreased number of the DoF (as exemplified by the
traceless condition in example 2 and 3 above), since too
few DoF may result in ordered phases or states with
subsystem symmetries only. This however could also be
a blessing in disguise, since it means we have a wider
range of R2–U1 theories accessible in an experiment.
A particularly interesting type of such theories, for
instance, is built in 3D from tensors with all diagonal
components vanishing. Such “hollow” rank-2 theories
turn out to be the gateways toward gapped fracton
order uppon “Higgsing" the rank-2 U(1) degrees of
freedom34,35. The resulting gapped fracton orders hold
a great potential for applications in quantum memory
storage.

In summary, we presented a theoretical model with
simple ingredients that can realize the emergent rank-2
U(1) electrostatics via optical phonon-nematic coupling.
Given the intimate connection between this rank-2 gen-
eralized electrodynamics and the exotic fracton phases
of matter26,28 which have recently garnered much atten-
tion, the present work thus paves the way towards natu-
ral implementations of the fracton matter in the exper-
iment. Given the simplicity of the ingredients (optical
phonons and nematic DoF), we hope this proposal may
be realized in various settings, from liquid crystals to
bilayer systems, to polar molecules in a periodic opti-
cal potential, and we have outlined several such possi-
ble constructions. The present proposal yields a classical
rank-2 theory, which is a necessary first step on the path
towards truly quantum rank-2 electrodynamics and frac-
ton physics. We have outlined a possible route towards
such quantum theory by incorporating the dynamics of
the generalized magnetic fields into our nematic model.

Acknowledgements. The authors thank Leo Radzi-
hovsky for discussions. This work was supported by the
National Science Foundation Division of Materials Re-
search under the Award DMR-1917511.

∗ hy41@rice.edu
1 P. W. Anderson, Science 177, 393 (1972).
2 P. Anderson, Materials Research Bulletin 8, 153 (1973).
3 L. Balents, Nature (London) 464, 199 (2010).
4 L. Savary and L. Balents, Reports on Progress in Physics

80, 016502 (2017).
5 Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89,

025003 (2017).
6 M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev.

B 69, 064404 (2004).
7 A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim, Phys.

Rev. Lett. 100, 047208 (2008).
8 O. Benton, O. Sikora, and N. Shannon, Phys. Rev. B 86,

075154 (2012).
9 L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202

(2012).
10 N. Shannon, O. Sikora, F. Pollmann, K. Penc, and

P. Fulde, Phys. Rev. Lett. 108, 067204 (2012).
11 Z. Hao, A. G. R. Day, and M. J. P. Gingras, Phys. Rev.

B 90, 214430 (2014).
12 M. J. P. Gingras and P. A. McClarty, Reports on Progress

in Physics 77, 056501 (2014).
13 Y. Kato and S. Onoda, Phys. Rev. Lett. 115, 077202

(2015).
14 G. Chen, Phys. Rev. B 96, 195127 (2017).
15 C.-J. Huang, Y. Deng, Y. Wan, and Z. Y. Meng, Phys.

mailto:hy41@rice.edu
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/ http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1038/nature08917
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://link.aps.org/doi/10.1103/PhysRevB.69.064404
http://link.aps.org/doi/10.1103/PhysRevB.69.064404
http://link.aps.org/doi/10.1103/PhysRevLett.100.047208
http://link.aps.org/doi/10.1103/PhysRevLett.100.047208
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.075154
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.075154
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/ 10.1103/PhysRevLett.108.067204
http://dx.doi.org/10.1103/PhysRevB.90.214430
http://dx.doi.org/10.1103/PhysRevB.90.214430
http://stacks.iop.org/0034-4885/77/i=5/a=056501
http://stacks.iop.org/0034-4885/77/i=5/a=056501
http://dx.doi.org/10.1103/PhysRevLett.115.077202
http://dx.doi.org/10.1103/PhysRevLett.115.077202
http://dx.doi.org/10.1103/PhysRevB.96.195127
http://dx.doi.org/ 10.1103/PhysRevLett.120.167202


10

Rev. Lett. 120, 167202 (2018).
16 H. D. Zhou, C. R. Wiebe, J. A. Janik, L. Balicas, Y. J. Yo,

Y. Qiu, J. R. D. Copley, and J. S. Gardner, Phys. Rev.
Lett. 101, 227204 (2008).

17 K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys.
Rev. X 1, 021002 (2011).

18 T. Fennell, M. Kenzelmann, B. Roessli, M. K. Haas, and
R. J. Cava, Phys. Rev. Lett. 109, 017201 (2012).

19 K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M. B.
Stone, E. Nishibori, and H. Sawa, Nature Communications
4, 1934 (2013).

20 R. Sibille, E. Lhotel, V. Pomjakushin, C. Baines, T. Fen-
nell, and M. Kenzelmann, Phys. Rev. Lett. 115, 097202
(2015).

21 J.-J. Wen, S. M. Koohpayeh, K. A. Ross, B. A. Trump,
T. M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D. M.
Pajerowski, J. R. D. Copley, and C. L. Broholm, Phys.
Rev. Lett. 118, 107206 (2017).

22 J. D. Thompson, P. A. McClarty, D. Prabhakaran, I. Cabr-
era, T. Guidi, and R. Coldea, Phys. Rev. Lett. 119, 057203
(2017).

23 R. Sibille, N. Gauthier, H. Yan, M. Ciomaga Hatnean,
J. Ollivier, B. Winn, U. Filges, G. Balakrishnan, M. Ken-
zelmann, N. Shannon, and T. Fennell, Nature Physics 14,
711715 (2018).

24 B. Gao, T. Chen, D. W. Tam, C.-L. Huang, K. Sas-
mal, D. T. Adroja, F. Ye, H. Cao, G. Sala, M. B. Stone,
C. Baines, J. A. T. Verezhak, H. Hu, J.-H. Chung, X. Xu,
S.-W. Cheong, M. Nallaiyan, S. Spagna, M. B. Maple,
A. H. Nevidomskyy, E. Morosan, G. Chen, and P. Dai,
Nature Physics 15, 1052 (2019).

25 C. Xu, Phys. Rev. B 74, 224433 (2006).
26 M. Pretko, Phys. Rev. B 96, 035119 (2017).
27 A. Rasmussen, Y.-Z. You, and C. Xu, arXiv e-prints ,

arXiv:1601.08235 (2016), arXiv:1601.08235 [cond-mat.str-
el].

28 M. Pretko, Phys. Rev. B 95, 115139 (2017).
29 C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).
30 N. Shannon, G. Misguich, and K. Penc, Phys. Rev. B 69,

220403(R) (2004).
31 J. Haah, Phys. Rev. A 83, 042330 (2011).
32 S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 92, 235136

(2015).
33 S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 94, 235157

(2016).
34 D. Bulmash and M. Barkeshli, Phys. Rev. B 97, 235112

(2018).
35 H. Ma, M. Hermele, and X. Chen, Phys. Rev. B 98, 035111

(2018).
36 R. M. Nandkishore and M. Hermele, Annual Review of

Condensed Matter Physics 10, 295 (2019).
37 K. Slagle and Y. B. Kim, Phys. Rev. B 96, 165106 (2017).
38 G. B. Halász, T. H. Hsieh, and L. Balents, Phys. Rev.

Lett. 119, 257202 (2017).
39 A. T. Schmitz, H. Ma, R. M. Nandkishore, and S. A.

Parameswaran, Phys. Rev. B 97, 134426 (2018).
40 A. Kubica and B. Yoshida, (arXiv:1805.01836).
41 O. Benton, L. D. C. Jaubert, H. Yan, and N. Shannon,

Nature Communications 7, 11572 (2016).
42 M. Pretko, Phys. Rev. D 96, 024051 (2017).
43 H. Yan, Phys. Rev. B 99, 155126 (2019).
44 M. Pretko and L. Radzihovsky, Phys. Rev. Lett. 120,

195301 (2018).
45 A. Gromov, Phys. Rev. Lett. 122, 076403 (2019).

46 Y. You, J. Bibo, F. Pollmann, and T. L. Hughes, “Fracton
critical point in higher-order topological phase transition,”
(2020), arXiv:2008.01746 [cond-mat.str-el].

47 Z. Zhou, X.-F. Zhang, F. Pollmann, and Y. You, “Fractal
quantum phase transitions: Critical phenomena beyond
renormalization,” (2021), arXiv:2105.05851 [cond-mat.str-
el].

48 Y. You, F. J. Burnell, and T. L. Hughes, Phys. Rev. B
103, 245128 (2021).

49 C. Xu and P. Hořava, Phys. Rev. D 81, 104033 (2010).
50 C. Xu and M. P. A. Fisher, Phys. Rev. B 75, 104428 (2007).
51 G. B. Halász, T. H. Hsieh, and L. Balents, Phys. Rev.

Lett. 119, 257202 (2017).
52 Y. You and F. von Oppen, Phys. Rev. Research 1, 013011

(2019).
53 R. A. Cowley, Phys. Rev. B 13, 4877 (1976).
54 U. Karahasanovic and J. Schmalian, Phys. Rev. B 93,

064520 (2016).
55 I. Paul and M. Garst, Phys. Rev. Lett. 118, 227601 (2017).
56 V. S. de Carvalho and R. M. Fernandes, Phys. Rev. B 100,

115103 (2019).
57 R. M. Fernandes and J. W. F. Venderbos, Science Ad-

vances 6, eaba8834 (2020).
58 Otherwise (if mass M < 0) one would need to include

quartic terms of the type [Tr(Φ2)]2 to stabilize the theory.
59 J. Nehring and A. Saupe, J. Chem. Soc. Faraday Trans.

2(68), 1 (1972).
60 C. Chiccoli et al., Phys. Rev. E 66, 030701(R) (2002).
61 A. Prem, S. Vijay, Y.-Z. Chou, M. Pretko, and R. M.

Nandkishore, Phys. Rev. B 98, 165140 (2018).
62 H. Yan, O. Benton, L. D. C. Jaubert, and N. Shannon,

Phys. Rev. Lett. 124, 127203 (2020).
63 O. Benton and R. Moessner, “Topological route to new and

unusual coulomb spin liquids,” (2021), arXiv:2103.10817
[cond-mat.str-el].

64 S. T. Bramwell and M. J. P. Gingras, Science 294, 1495
(2001).

65 I. I. Pomeranchuk, Zh. Eksp. Teor. Fiz. 35, 524 (1958),
[Sov. Phys. JETP 8, 361 (1958)].

66 R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, in
Advances In Atomic, Molecular, and Optical Physics (El-
sevier, 2000) pp. 95–170.

67 I. Bloch, Nature Physics 1, 23 (2005).
68 M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and

I. Bloch, Nature 415, 39 (2002).
69 W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and

M. Greiner, Nature 462, 74 (2009).
70 B. Yang, H. Sun, C.-J. Huang, H.-Y. Wang, Y. Deng, H.-N.

Dai, Z.-S. Yuan, and J.-W. Pan, Science 369, 550 (2020).
71 M. P. MacDonald, G. C. Spalding, and K. Dholakia, Na-

ture 426, 421 (2003).
72 I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.

80, 885 (2008).
73 A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
74 V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev.

B 64, 195109 (2001).
75 M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127

(2010), publisher: American Physical Society.
76 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P.

Eisenstein, and A. P. Mackenzie, Annual Review of
Condensed Matter Physics 1, 153 (2010), _eprint:
https://doi.org/10.1146/annurev-conmatphys-070909-
103925.

77 Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg,

http://dx.doi.org/ 10.1103/PhysRevLett.120.167202
http://dx.doi.org/10.1103/PhysRevLett.101.227204
http://dx.doi.org/10.1103/PhysRevLett.101.227204
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/ 10.1103/PhysRevLett.109.017201
http://dx.doi.org/10.1038/ncomms2914 http://10.0.4.14/ncomms2914 https://www.nature.com/articles/ncomms2914{#}supplementary-information
http://dx.doi.org/10.1038/ncomms2914 http://10.0.4.14/ncomms2914 https://www.nature.com/articles/ncomms2914{#}supplementary-information
http://dx.doi.org/ 10.1103/PhysRevLett.115.097202
http://dx.doi.org/ 10.1103/PhysRevLett.115.097202
http://dx.doi.org/10.1103/PhysRevLett.118.107206
http://dx.doi.org/10.1103/PhysRevLett.118.107206
http://dx.doi.org/10.1103/PhysRevLett.119.057203
http://dx.doi.org/10.1103/PhysRevLett.119.057203
http://dx.doi.org/10.1038/s41567-018-0116-x
http://dx.doi.org/10.1038/s41567-018-0116-x
http://dx.doi.org/10.1038/s41567-019-0577-6
http://dx.doi.org/10.1103/PhysRevB.74.224433
http://dx.doi.org/10.1103/PhysRevB.96.035119
http://arxiv.org/abs/1601.08235
http://arxiv.org/abs/1601.08235
http://dx.doi.org/10.1103/PhysRevB.95.115139
http://dx.doi.org/10.1103/PhysRevLett.94.040402
http://dx.doi.org/10.1103/PhysRevB.69.220403
http://dx.doi.org/10.1103/PhysRevB.69.220403
http://dx.doi.org/10.1103/PhysRevA.83.042330
http://dx.doi.org/ 10.1103/PhysRevB.92.235136
http://dx.doi.org/ 10.1103/PhysRevB.92.235136
http://dx.doi.org/ 10.1103/PhysRevB.94.235157
http://dx.doi.org/ 10.1103/PhysRevB.94.235157
http://dx.doi.org/10.1103/PhysRevB.97.235112
http://dx.doi.org/10.1103/PhysRevB.97.235112
http://dx.doi.org/10.1103/PhysRevB.98.035111
http://dx.doi.org/10.1103/PhysRevB.98.035111
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://dx.doi.org/10.1103/PhysRevB.96.165106
http://dx.doi.org/10.1103/PhysRevLett.119.257202
http://dx.doi.org/10.1103/PhysRevLett.119.257202
http://dx.doi.org/10.1103/PhysRevB.97.134426
https://arxiv.org/abs/1805.01836
http://dx.doi.org/10.1038/ncomms11572
http://dx.doi.org/10.1103/PhysRevD.96.024051
http://dx.doi.org/10.1103/PhysRevB.99.155126
http://dx.doi.org/10.1103/PhysRevLett.120.195301
http://dx.doi.org/10.1103/PhysRevLett.120.195301
http://dx.doi.org/10.1103/PhysRevLett.122.076403
http://arxiv.org/abs/2008.01746
http://arxiv.org/abs/2105.05851
http://arxiv.org/abs/2105.05851
http://dx.doi.org/10.1103/PhysRevB.103.245128
http://dx.doi.org/10.1103/PhysRevB.103.245128
http://dx.doi.org/ 10.1103/PhysRevD.81.104033
http://dx.doi.org/10.1103/PhysRevB.75.104428
http://dx.doi.org/10.1103/PhysRevLett.119.257202
http://dx.doi.org/10.1103/PhysRevLett.119.257202
http://dx.doi.org/10.1103/PhysRevResearch.1.013011
http://dx.doi.org/10.1103/PhysRevResearch.1.013011
http://dx.doi.org/10.1103/PhysRevB.13.4877
http://dx.doi.org/10.1103/PhysRevB.93.064520
http://dx.doi.org/10.1103/PhysRevB.93.064520
http://dx.doi.org/10.1103/PhysRevLett.118.227601
http://dx.doi.org/10.1103/PhysRevB.100.115103
http://dx.doi.org/10.1103/PhysRevB.100.115103
http://dx.doi.org/10.1126/sciadv.aba8834
http://dx.doi.org/10.1126/sciadv.aba8834
http://dx.doi.org/ 10.1103/PhysRevB.98.165140
http://dx.doi.org/10.1103/PhysRevLett.124.127203
http://arxiv.org/abs/2103.10817
http://arxiv.org/abs/2103.10817
http://dx.doi.org/10.1126/science.1064761
http://dx.doi.org/10.1126/science.1064761
http://dx.doi.org/ 10.1016/s1049-250x(08)60186-x
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/ 10.1038/415039a
http://dx.doi.org/ 10.1038/nature08482
http://dx.doi.org/10.1126/science.aaz6801
http://dx.doi.org/10.1038/nature02144
http://dx.doi.org/10.1038/nature02144
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.89.011004
http://dx.doi.org/10.1103/PhysRevB.64.195109
http://dx.doi.org/10.1103/PhysRevB.64.195109
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1103/PhysRevB.82.075127
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925
http://dx.doi.org/10.1146/annurev-conmatphys-070909-103925


11

Phys. Rev. X 6, 031028 (2016), publisher: American Phys-
ical Society.

78 X. Y. Xu, Z. H. Liu, G. Pan, Y. Qi, K. Sun, and Z. Y.
Meng, J. Phys.: Condens. Matter 31, 463001 (2019), pub-
lisher: IOP Publishing.

79 D. I. Khomskii and K. I. Kugel, Solid State Communica-
tions 13, 763 (1973).

80 R. Shiina, T. Nishitani, and H. Shiba, J. Phys. Soc. Jpn.
66, 3159 (1997), publisher: The Physical Society of Japan.

81 D. Mannix, Y. Tanaka, D. Carbone, N. Bernhoeft, and
S. Kunii, Physical Review Letters 95, 117206 (2005).

82 K. Haule and G. Kotliar, Nature Physics 5, 796 (2009).
83 H. Ikeda, M.-T. Suzuki, R. Arita, T. Takimoto,

T. Shibauchi, and Y. Matsuda, Nature Physics 8, 528
(2012).

84 J. A. Mydosh, P. M. Oppeneer, and P. S. Riseborough,
J. Phys.: Condens. Matter 32, 143002 (2020), publisher:
IOP Publishing.

85 S. V. Isakov, K. Gregor, R. Moessner, and S. L. Sondhi,
Phys. Rev. Lett. 93, 167204 (2004).

Appendix A: Brief Review of Rank–2 U(1) Gauge
Theory

We start by briefly reviewing a version of rank–2 U(1)
gauge theory, which is to be realized in the models we
propose in this paper.

As its name suggested, the R2–U1 gauge theory uses
rank–2 tensors Eij and Aij as its electric and gauge field
instead of vectors. More specifically, the tensor field is
symmetric,

Eij = Eji , Aij = Aji . (A1)

The charge is a vector defined as

ρi = ∂kEki . (A2)

The low-energy sector of the theory has to be charge-free,

∂kEki = 0, (A3)

which dictates the form of the gauge invariance condition

Aij → Aij + ∂iλj + ∂iλj . (A4)

The magnetic field is the simplest object that is gauge-
invariant,

Bij = ϵiabϵjcd∂
a∂cAbd. (A5)

One can now write down the Hamiltonian for the R2-
U1 gauge theory as

HR2-U1 = U∂kEki∂
lEli + EijEij +BijBij

= Uρ2 +E2 +B2
(A6)

Here we assumed the Einstein’s summation rule while
not caring about the super- and sub-scripts.

Our aim in this paper is to find out a general, and
experimentally realistic routes to realize the classical part
of this Hamiltonian

HR2-U1-cl = Uρ2 +E2. (A7)

The quantum dynamics, i.e. the B2 term, is also possible
to realize, but is highly dependent on the specific set up
of the physical system. It will not be a focus of this
paper.

Appendix B: Self-consistent Gaussian
Approximation.

The Self-Consistent Gaussian Approximation (SCGA)
is an analytical method that treats the nematics in the
large-N limit, which is known to produce rather accurate
results in the spin/nematic liquid phases. Our calculation
follows closely the exposition in Ref. 85. We first treat Φij

as independent, freely fluctuating DoF. The Hamiltonian
in the momentum space is written as

ELarge-N =
1

2
Φ̃HLarge-N Φ̃T , (B1)

written in terms of the triad of nematic components (for
the two-dimenstional model) Φ̃ = (Φxx,Φyy,Φxy). The
matrix HLarge−N is the Fourier transformed interaction
matrix from Eq. (4):

HLarge-N = 2Λ

 C2
x 0 CxCy

0 C2
y CxCy

CxCy CxCy C2
x + C2

y

 , (B2)

where Cx and Cy are the momentum dependent
functions. For the square lattice model [Fig. 3],
Cx = 2 sin(qx/2), Cy = 2 sin(qy/2), with the lattice con-
stant set to 1.

We then introduce a Lagrange multiplier with coeffi-
cient µ(β) to the partition function to obtain

Z = exp

(
−1

2

∫
BZ

dq
∫

dΦ̃Φ̃ [βHLarge-N + µ(β)I] Φ̃T

)
,

(B3)
where β denotes the inverse temperature. The purpose
of the term µ(β)Φ̃IΦ̃T (I stands for the identity ma-
trix) is to impose, on average, an additional unimodular
constraint on the nematic DoF, such that

⟨Φ2
xx +Φ2

yy +Φ2
xy⟩ = 1. (B4)

For a given temperature T = 1/β, the value of µ(β) is
numerically obtained by searching for its value that must
satisfy the constraint∫

BZ
dq

3∑
i=1

1

λi(q) + µ(β)
= ⟨Φ2

xx+Φ2
yy+Φ2

xy⟩ = 1, (B5)

where λi(q), i = 1, 2, 3 are the three eigenvalues of
βHLarge-N (q).
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With µ fixed, the partition function is completely
determined for a free theory of Φ̃, and all correlation

functions in Fig. 2 can be computed from extracting
the corresponding components in [βHLarge-N + µ(β)I]−1.


