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Excitons are neutral excitations that are composed electrons and holes bound together by their
attractive Coulomb interaction. The electron and the hole forming the exciton also interact with the
underlying atomic lattice, and this interaction can lead to a trapping potential that favors exciton
localization. The quasi-particle thus formed by the exciton and the surrounding lattice distortion is
called excitonic polaron. Excitonic polarons have long been thought to exist in a variety of materials,
and are often invoked to explain the Stokes shift between the optical absorption edge and the photo-
luminescence peak. However, quantitative ab initio calculations of these effects are exceedingly rare.
In this manuscript, we present a theory of excitonic polarons that is amenable to first-principles
calculations. We first apply this theory to model Hamiltonians for Wannier excitons experiencing
Fröhlich or Holstein electron-phonon couplings. We find that, in the case of Fröhlich interactions,
excitonic polarons only form when there is a significant difference between electron and hole effective
masses. Then, we apply this theory to calculating excitonic polarons in lithium fluoride ab initio.
The key advantage of the present approach is that it does not require supercells, therefore it can
be used to study a variety of materials hosting either small or large excitonic polarons. This work
constitutes the first step toward a complete ab initio many-body theory of excitonic polarons in real
materials.

I. INTRODUCTION

Excitons are composite quasiparticles formed when an
electron and a hole in a crystal bind together under the
effect of their attractive Coulomb interaction [1]. These
quasiparticles constitute one of the cornerstones of con-
densed matter physics, as they encode a wealth of in-
formation on quantum many-body effects and emergent
phenomena in solids [2]. Investigations of exciton photo-
physics range from the coherent manipulation of exotic
quantum phases in moiré quasicrystals [3] to Floquet en-
gineering of time crystals [4].

In some materials, the spatial fluctuations of the elec-
tric charge density of the exciton can polarize the sur-
rounding crystal lattice, and this distortion can promote
in turn the spatial localization of the exciton (Fig. 1). In
analogy to charged polarons, where an electron or hole
will be self-localized via induced lattice distortions [5, 6],
the new type of quasiparticle formed by the feedback
loop between exciton and crystal lattice is called exci-
tonic polaron [7–9]. Intuitively, an excitonic polaron can
be understood as as an exciton accompanied by a phonon
cloud. In materials where the interaction between exci-
tons and phonons is very strong, the same mechanism
leads to the emergence of self-trapped excitons, which
can be understood as intrinsic defect-like excited-states
of an otherwise perfect lattice [10–12]. Self-trapped exci-
tons in solids exhibit intriguing optical properties, such
as distinctive vibronic lineshapes that are typically ob-
served in molecular chromophores and light-harvesting
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FIG. 1. Schematic illustration of excitonic polaron. The exci-
ton is a neutral excitation, but spatial fluctuations of its net
charge density interact electrostatically with the ionic lattice.
In some materials, these interactions are sufficiently strong to
cause a lattice distortion, which in turn stabilizes the exciton,
leading to the formation of an excitonic polaron.

complexes [10, 12–14]. We note that the names “excitonic
polarons” and “self-trapped excitons” refer to the same
physical mechanism of polaronic stabilization of the ex-
citon. The difference between these two concepts resides
in the strength of the electron-phonon coupling, the re-
sulting phonon-induced localization of the exciton wave-
function, and the magnitude of the hopping barrier for
exciton migration. Therefore, in this article, we use the
two naming conventions interchangeably.
Unlike polarons, which can be described to a good ap-

proximation within a single-particle picture [15–18], ex-
citons are inherently of many-body character, thus mak-
ing the theoretical description of excitonic polarons much
more challenging than for polarons.
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In early work on excitonic polarons, Iadonisi and Bas-
sani considered the Wannier exciton model and Fröhlich
electron-phonon interaction [9]. They wrote the Hamil-
tonian of the excitonic polaron by including the kinetic
energies of electrons and holes, their mutual Coulomb at-
traction, their respective interaction with phonons, and
the energy of bare phonons. Within this model, they dis-
cussed solutions based on a trial wave function with pa-
rameters optimized variationally. This work contributed
to shaping the key conceptual aspects of the physics of
excitonic polarons; however, since the dispersions of the
exciton bands were not taken into account, this formal-
ism is biased to find localized solutions.

In the area of ab initio calculations, excitonic polarons
have been investigated using the ∆SCF (self-consistent
field) method to obtain excited-state forces [19, 20]. The
limitation of this approach is that it misses electron-hole
correlations in the excitonic state [1, 21]. Coupled-cluster
calculations have also been reported, namely for the self-
trapped excitons in quartz [22], but the high computa-
tional cost limits the size of the clusters that can be in-
vestigated, and this leads to numerical uncertainty due
to convergence issues. The first attempt to compute self-
trapped excitons within a many-body Green’s function
framework was reported by Ismail-Beigi and Louie [12],
who succeeded to compute forces in the excited state by
differentiating the Bethe-Salpeter equation (BSE) Hamil-
tonian with respect to the atomic displacements. This
method was demonstrated for the self-trapped triplet ex-
citon in quartz. Depite being conceptually elegant and
numerically accurate, this approach requires performing
BSE calculations in large supercells for all but the small-
est excitonic polarons, making the computational cost
prohibitive in many systems of interest.

In previous work, some of us demonstrated that it
is possible to compute small and large polarons using
the Kohn-Sham band structures, phonon dispersions,
and electron-phonon matrix elements, and without us-
ing supercells [6, 15, 16]. The key concept of that ap-
proach is that the wavefunction and atomic displace-
ments of the polaron can be expressed as linear superpo-
sition of Kohn-Sham states and normal modes obtained
from unit-cell calculations. In this manuscript, we ex-
pand on this idea by tackling the calculation of excitonic
polarons and self-trapped excitons using a combination
of the BSE approach and linear-response calculations of
exciton-phonon couplings [23, 24]. Our aim is to provide
a formalism and computational method to compute exci-
tonic polarons using solely information calculated in the
crystal unit cell. A short summary of this methodology
is reported in the companion manuscript [25].

The manuscript is organized as follows: In Sec. II, we
derive the main formalism to compute excitonic polarons,
and establish the connection with BSE calculations and
with the calculation of electron and hole polarons. We
also present two alternative formulations of the theory,
which are most useful in the context of model Hamiltoni-
ans and ab initio calculations, respectively. In Sec. III we

apply the present theory to model Hamiltonians in order
to analyze the qualitative aspects of the solutions in sim-
ple cases. In particular, we discuss the Wannier exciton
in the presence of Fröhlich or Holstein electron-phonon
couplings. Section IV presents first-principles calcula-
tions of excitonic polarons for LiF as a first application
of this methodology. Here, we also discuss the gauge in-
variance of the theory, implementation details, and con-
vergence tests. In Sec. V, we draw our conclusions and
propose possible avenues for future work.
Throughout this manuscript, “electron-phonon cou-

pling” will generally denote the interaction between a
phonon and an electronic state, either occupied or empty.
However, in those cases where we need to differentiate be-
tween valence and conduction bands, we will use “hole-
phonon coupling” or “electron-phonon coupling”, respec-
tively.

II. AB INITIO THEORY OF EXCITONIC
POLARONS

We begin our derivation by expressing the total energy
of a distorted lattice in a neutral excited state as the sum
of its total energy in the electronic ground-state and the
BSE excitation energy, following Ref. 26:

E [Ψ(re, rh), {∆τκαp}] = EDFT [{∆τκαp}]

+

∫
sc

Ψ∗(re, rh)HBSE(re, rh; r
′
e, r

′
h)Ψ(r′e, r

′
h)dr. (1)

In this expression, we use the subscript “DFT” to indi-
cate that the total energy of the electronic ground state is
computed at the level density functional theory (DFT).
The formalism remains unchanged if this total energy is
computed using more accurate techniques. In Eq. (1),
HBSE is the BSE Hamiltonian for the distorted struc-
ture [1, 27]; Ψ(re, rh) is the exciton wavefunction, with
re and rh denoting the electron and hole coordinates,
respectively. The integral extends over the Born-von
Kármán (BvK) supercell, and the integration variable
dr is a short-hand notation for dredrhdr

′
edr

′
h. For small

atomic displacements, EDFT can be expressed in terms
of the matrix of interatomic force constants Cκαp,κ′α′p′ ,

EDFT [{∆τκαp}]

=E0 +
1

2

∑
καp

κ′α′p′

Cκαp,κ′α′p′∆τκαp∆τκ′α′p′ , (2)

where E0 denotes the ground-state energy of the undis-
torted structure, and ∆τκαp is the displacement of the
atom κ in the unit cell p along the Cartesian direction
α, with respect to the undistorted structure. The second
term in this equation is the elastic energy associated with
the lattice distortion. As in Ref. 6, the energy is trun-
cated to the second order in the displacements; despite
the neglect of anharmonicity, which is included in previ-
ous works based on supercells [17, 18], this approximation



3

proved successful in calculations of both small and large
polarons, comparing well with direct hybrid-functional
calculations [6, 15–18]. Note that, in this work, we de-
scribe nuclei within the adiabatic and classical approxi-
mation, as in DFT calculations. Strictly speaking, this
choice makes our formalism best suited to described the
strong coupling limit, as in the Pekar polaron model [17].
Combining Eqs. (1) and (2), we can write the total energy
as:

E [Ψ(re, rh), {∆τκαp}] = E0

+

∫
sc

Ψ∗(re, rh)HBSE(re, rh; r
′
e, r

′
h)Ψ(r′e, r

′
h)dr

+
1

2

∑
καp

κ′α′p′

Cκαp,κ′α′p′∆τκαp∆τκ′α′p′ . (3)

To obtain excitonic polarons, we require that the exci-
ton wavefunction and the atomic displacements minimize
the total energy in Eq. (3). We use the method of La-
grange multipliers, and set to zero the functional deriva-
tives of E [Ψ(re, rh), {∆τκαp}] with respect to Ψ(re, rh)
and {∆τκαp}, subject to the normalization constraint∫
sc
|Ψ(re, rh)|2dredrh = 1. By expanding HBSE up to

linear order in ∆τκαp and after some straightfoward al-
gebra, we arrive at the following coupled nonlinear eigen-
value problem:∫

sc

H0
BSE(re, rh; r

′
e, r

′
h)Ψ(r′e, r

′
h) dr

′
edr

′
h

+
∑
καp

∫
sc

∂Ĥ0
BSE(re, rh; r

′
e, r

′
h)

∂τκαp
Ψ(r′e, r

′
h) dr

′
edr

′
h ∆τκαp

= εΨ(re, rh), (4)

∆τκαp = −
∑

κ′α′p′

C−1
καp,κ′α′p′

×
∫
sc

Ψ∗(re, rh)
∂Ĥ0

BSE(re, rh; r
′
e, r

′
h)

∂τκ′α′p′
Ψ(r′e, r

′
h) dr, (5)

where H0
BSE is the BSE Hamiltonian for the undistorted

system, and the eigenvalue ε is the Lagrange multiplier.
Alternatively, the set of equations Eqs. (4) and (5) can

formally be combined in a single nonlinear problem for

the exciton wavefunction:∫
sc

dr′edr
′
h

[
Ĥ0

BSE(re, rh; r
′
e, r

′
h)

−
∫
sc

dr′Ψ∗(r′′e , r
′′
h)K({r})Ψ(r′′′e , r

′′′
h )

]
Ψ(r′e, r

′
h)

=εΨ(re, rh), (6)

with the kernel K({r}) being defined as:

K({r}) =
∑
καp

κ′α′p′

∂Ĥ0
BSE(re, rh; r

′
e, r

′
h)

∂τκαp

× C−1
καp,κ′α′p′

∂Ĥ0
BSE(r

′′
e , r

′′
h; r

′′′
e , r

′′′
h )

∂τκ′α′p′
, (7)

and {r} stands for (re, rh; r
′
e, r

′
h; r

′′
e , r

′′
h; r

′′′
e , r

′′′
h ).

A. Transition basis approach

By solving Eq. (6), in principle we can obtain the wave
function Ψ(re, rh) of the excitonic polaron. However, in
this form, a large BvK supercell is still needed in order to
describe this quasiparticle. To circumvent this difficulty,
we follow the standard approach employed for solving the
BSE equations: we expand Ψ(re, rh) in a transition basis
within the Tamm-Dancoff approximation [1, 21]:

Ψ(re, rh) =
1√
Np

∑
vc

Ãvcψ
0
c (re)ψ

0∗
v (rh). (8)

In this expression, ψ0
n denotes Kohn-Sham eigenstates of

the undistorted structure, and Np is the number of primi-
tive cells in BvK supercell. The subscripts v and c denote
valence and conduction states, respectively. For notation
brevity, we temporarily suppress the dependence of all
quantities on the crystal momentum; we will restore the
momentum in the final equations. Using Eq. (8), we
rewrite Eq. (6) as:

∑
v′c′

[
⟨vc| Ĥ0

BSE |v′c′⟩ −
∑
v′′c′′

v′′′c′′′

∑
καp

κ′α′p′

Ã∗
v′′c′′Ãv′′′c′′′C

−1
καp,κ′α′p′

〈
vc

∣∣∣∣∣∂Ĥ0
BSE

∂τκαp

∣∣∣∣∣ v′c′
〉〈

v′′c′′

∣∣∣∣∣∂Ĥ0
BSE

∂τκ′α′p′

∣∣∣∣∣ v′′′c′′′
〉]

Ãv′c′

=εÃvc. (9)

In the above expression, brakets have the following mean-
ing:

⟨vc| Ô |v′c′⟩

=

∫
sc

drψ0∗
c (re)ψ

0
v(rh)Ô(re, rh; r

′
e, r

′
h)ψ

0
c′(r

′
e)ψ

0∗
v′ (r′h),

(10)

where Ô is an operator that depends on the electron
and hole coordinates. The first term of Eq. (9) corre-
sponds to the matrix elemens of the BSE Hamiltonian in
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the undistrorted structure, and can be computed using
any package that implements the BSE method [28, 29].
To evaluate the second term in the square brackets, we
rewrite the matrix elements in the sum follows:〈

vc

∣∣∣∣∣∂Ĥ0
BSE

∂τκαp

∣∣∣∣∣ v′c′
〉

=−
〈
(∂τv)c

∣∣∣Ĥ0
BSE

∣∣∣ v′c′〉−
〈
v(∂τ c)

∣∣∣Ĥ0
BSE

∣∣∣ v′c′〉
−
〈
vc
∣∣∣Ĥ0

BSE

∣∣∣ (∂τv′)c′〉−
〈
vc
∣∣∣Ĥ0

BSE

∣∣∣ v′(∂τ c′)〉
+ ∂τ

〈
vc
∣∣∣Ĥ0

BSE

∣∣∣ v′c′〉 , (11)

with ∂τ being understood as ∂/∂τκαp . The first four
terms on the right-hand-side share the same structure,
therefore we focus on the first term as a representative
case. To recast this term in a manageable form, we ex-
press the variation of the Kohn-Sham wavefunctions us-
ing first-order perturbation theory [30], and we use the

definition of the BSE Hamiltonian
〈
vc
∣∣∣Ĥ0

BSE

∣∣∣ v′c′〉 =

(ϵc−ϵv)δcc′δvv′+
〈
vc
∣∣∣K̂0

BSE

∣∣∣ v′c′〉, where ϵn denote quasi-

particle energies of the undistorted structure and K̂0
BSE

is the BSE kernel [27]. We find:〈
(∂τv)c

∣∣∣Ĥ0
BSE

∣∣∣ v′c′〉
=

〈
v′|∂τ V̂SCF|v

〉
ϵv − ϵ′v

(ϵc − ϵ′v)δcc′ +
〈
(∂τv)c|K̂0

BSE|v′c′
〉
.

(12)

Now we consider the fifth term on the right-hand side of
Eq. (11),

∂τ

〈
vc
∣∣∣Ĥ0

BSE

∣∣∣ v′c′〉
=∂τ (ϵc − ϵv)δcc′δvv′ + ∂τ

〈
vc|K̂0

BSE|v′c′
〉
. (13)

and we combine Eqs. (12) and (13). By neglecting the
change of the BSE kernel upon lattice distortion as in
Refs. 23, 24, 26, we obtain:〈

vc

∣∣∣∣∣∂Ĥ0
BSE

∂τκαp

∣∣∣∣∣ v′c′
〉

=−

〈
v′

∣∣∣∣∣∂V̂SCF

∂τκαp

∣∣∣∣∣ v
〉
δcc′ +

〈
c′

∣∣∣∣∣∂V̂SCF

∂τκαp

∣∣∣∣∣ c
〉∗

δvv′ . (14)

The final set of equations is obtained by restoring the
dependence of all quantities on the crystal momentum:

Ψ(re, rh) =
1√
Np

∑
vckQ

ÃQ
vckψ

0
ck+Q(re)ψ

0∗
vk(rh), (15)

where k is the crystal momentum of the electron or hole,
and Q is the crystal momentum of the exciton. Since we

require the normalization condition
∫
sc
|ψnk(r)|2dr = 1,

we have the sum rule N−1
p

∑
vckQ

∣∣∣ÃQ
vck

∣∣∣2 = 1. In

Eq. (15) and in the following, summations over crys-
tal momenta run over uniform Brillouin-zone grids with
Np points. We employ the following standard relations
for the matrix of interatomic force constants and the
electron-phonon coupling matrix elements [15]:

(C−1)καp,κ′α′p′ =
1

N

∑
qν

eκα,ν(q)e
∗
κ′α′,ν(q)√

MκMκ′ω2
qν

eiq·(Rp−Rp′ ),

(16)

gmnν(k,q) =
∑
καp

√
ℏ

2Mκωqν
eκα,ν(q)e

iq·Rp

×

〈
ψ0
mk+q

∣∣∣∣∣∂V̂SCF

∂τκαp

∣∣∣∣∣ψ0
nk

〉
, (17)

where Mκ is the mass of atom κ; eκα,ν(q) is the polar-
ization vector of the phonon with momentum q, branch
ν, and frequency ωqν ; Rp is the lattice vector of the p-th
unit cell in the BvK supercell [30]. Using Eqs. (14)-(17),
Eq. (9) can be rewritten as follows:∑

v′c′k′

Q′

ÃQ′

v′c′k′

[
(H0

BSE)vkck+Q,v′k′c′k′+Q′δQ,Q′

− 2

Np

∑
qν

B̃ν G̃qν
vck,v′c′k′(Q,Q

′,q)

]
= εÃQ

vck, (18)

B̃qν =
1

Npℏωqν

∑
vck
Q

ÃQ∗
vck

[∑
c′

ÃQ+q
vc′k gcc′ν(k+Q+ q,−q)

−
∑
v′

ÃQ+q
v′ck−qgv′vν(k,−q)

]
, (19)

G̃ν
vck,v′c′k′(Q,Q′,q) =gcc′ν(k

′ +Q′,q)δq,Q−Q′δvv′δk,k′

− gv′vν(k,q)δq,k′−kδcc′δq,Q−Q′ ,
(20)

Equation (18) defines an eigenvalue problem for the coef-

ficients ÃQ
vck which make up the excitonic polaron wave-

function. The matrix to be diagonalized depends on the
atomic displacements via the coefficients B̃qν given by

Eq. (19), and the ÃQ
vck and B̃qν coefficients are cou-

pled by the coupling matrix elements G̃ν
vck,v′c′k′(Q,Q′,q)

given in Eq. (20). The ingredients required to solve
Eqs. (18)-(20) can be obtained from existing packages
that implement the BSE method and packages that cal-
culate electron-phonon couplings.

Equations (18)-(20) are most convenient to investi-
gate excitonic polarons within model Hamiltonians, as
we show in Sec. III C for the Wannier exciton model
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with Fröhlich electron-phonon interactions. However,
these equations are not optimal for ab initio calcula-

tions, because the dimension of the coefficients ÃQ
vck is

Nk × NQ × Nv × Nc, where Nk is the number of elec-
tron and phonon crystal momenta, NQ is the number
of exciton crystal momenta, Nv is the number of va-
lence bands, and Nc is the number of conduction bands.
This scaling can be prohibitive even for relatively coarse
Brillouin-zone grids. The origin of this problematic scal-
ing is that Eqs. (18)-(20) are designed to construct ex-
citonic polarons starting from Kohn-Sham electron and
hole wavefunctions, therefore they accomplish two goals
simultaneously: (i) to describe exciton formation out of
non-interacting electron-hole pairs, and (ii) to describe
phonon-induced localization of these excitons. An al-
ternative and computationally more convenient strategy
would be to first build excitonic states, and then to in-
corporate their interactions with the atomic lattice. This
alternative strategy, which we call the “exciton basis ap-
proach”, is described in the next section.

B. Exciton basis approach

The heavy computational cost related to Eqs. (18)-
(20) can effectively be avoided by performing a basis set
transformation, from the transition basis of Eq. (8) to
the following exciton basis:

ΩsQ(re, rh) =
∑
vck

asQvckψck+Q(re)ψ
∗
vk(rh), (21)

with the inverse transform:

ψck+Q(re)ψ
∗
vk(rh) =

∑
s

asQ∗
vck ΩsQ(re, rh). (22)

In these expressions, ΩsQ(re, rh) denotes exciton states of

the undistorted structure, asQvck are the BSE eigenvectors
for the undistorted structure, s is the index of the exciton
bands, and Q is the exciton momentum. The coefficients

asQvck fulfill the normalization condition
∑

vck

∣∣∣asQvck∣∣∣2 = 1.

In writing Eq. (21), we made use of the Tamn-Dancoff ap-
proximation, so that for each exciton momentum Q, the
number of exciton states equals the number of electron-
hole pairs in the BvK supercell [1, 21].

Using the transformation given by Eq. (21), the exci-
tonic polaron state can be expressed as a linear superpo-
sition of excitons in the undistorted structure:

Ψ(re, rh) =
∑
sQ

AsQΩsQ(re, rh). (23)

Accordingly, the coefficients AsQ can be understood as
the contributions of each excitonic state (of the undis-
torted structure) to the excitonic polaron. In this repre-
sentation, exciton self-localization and breaking of trans-
lational symmetry are possible because we allow for co-
herent superpositions of delocalized exciton states with
finite momenta.

To see how the basis transformation in Eq. (21)
reduces the computational cost, we define AsQ =∑

vck Ã
Q
vcka

sQ∗
vck , and substitute Eq. (22) into Eqs. (18)-

(20). After some algebraic manipulations we find:∑
s′Q′

[
E0

sQδss′δQQ′ − 2

Np

∑
ν

BQ−Q′νGss′ν(Q
′,Q−Q′)

]
×As′Q′ = εAsQ, (24)

BQν =
1

NpℏωQν

∑
ss′

Q′

A∗
s′Q′AsQ′+QG∗

ss′ν(Q
′,Q),

(25)

where E0
sQ are the BSE eigenvalues of the undistorted

structure, and Gss′ν(Q
′,Q) denote exciton-phonon cou-

pling matrix elements as in Refs. 23, 24:

Gss′ν(Q,q) =
∑
vck

asQ+q∗
vck

[∑
c′

gcc′ν(k+Q,q)as
′Q

vc′k

−
∑
v′

gv′vν(k,q)a
s′Q
v′ck+q

]
. (26)

From Eq. (26) we see that the three grids for crystal
momentum k, phonon wavevector q, and exciton center-
of-mass momentum Q should be commensurate. More-
over, the k-grid should be equal to or denser than the
Q-grid, while the Q-grid should be equal to or denser
than the q-grid. For simplicity, in this work we use the
same grid for k,q and Q sampling in all first principles
calculations. For later reference, we call the quantity in
the square bracket of Eq. (24) as the “excitonic polaron
Hamiltonian”.
As compared with Eqs. (18)-(20), Eqs. (24)-(26) can

greatly reduce the cost of computing excitonic polarons.
In fact, the dimension of the solution vectors of the eigen-
value problem in Eq. (24) is Ns × NQ, where Ns is the
number of included exciton bands, which can be much
smaller than Nc × Nv × Nk if only a small number of
low-energy exciton bands contribute most significantly
to the excitonic polarons. In practical calculations, con-
vergence tests with respect to the number of exciton
bands must always be performed. This size is thus or-
ders of magnitude smaller than in the transition basis
(Nk ×NQ ×Nv ×Nc, cf. Sec. II A), making the problem
tractable in ab initio calculations. Also in this case, the
ingredients required to solve Eqs. (24)-(26) are the BSE
solutions for the undistorted structure and the electron-
phonon matrix elements. Both sets of quantities are eval-
uated using unit-cell calculations, and no supercells are
required.
Equations (24)-(26) also allow us to make the for-

mal connection with the previously-developed ab ini-
tio polaron equations [15]. In fact, if we formally re-
place the BSE Hamiltonian by the Kohn-Sham Hamilto-
nian, and the exciton-phonon coupling matrix elements
Gss′ν(Q,q) by the electron-phonon coupling matrix ele-
ments gmnν(k,q), Eqs. (24)-(26) reduce precisely to the
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polaron equations of Ref. 15. Finally, we would like to
emphasize again that our approach does not need super-
cells in real space. This is because by using a uniform grid
of, for example, N ×N ×N wavevectors in the Brillouin
zone, we will have Kohn-Sham states, vibrational eigen-
modes, and excitons that are defined on an equivalent
Born-von-Kármán supercell of size N ×N ×N primitive
cells. Since all our calculations (except for the final visu-
alization) are carried out in reciprocal space, there is no
need for explicit supercells.

C. Total energy and displacement pattern

The present formalism allows us to compute the to-
tal energy of the excitonic polaron Exp. To do so, we
first substitute Eq. (5) into Eq. (3), and then we write
the total energy in the transition basis with the help of
Eqs. (16) and (17):

Exp =
1

Np

∑
vck

v′c′k′

∑
Q,Q′

ÃQ∗
vckÃ

Q′

v′c′k′

×

[
(H0

BSE)vkck+Q,v′k′c′k′+Q′δQ,Q′

− 1

Np

∑
qν

B̃qν G̃ν
vck,v′c′k′(Q,Q′,q)

]
. (27)

The corresponding expression in the exciton basis is:

Exp =
1

Np

∑
ss′

QQ′

AsQ∗As′Q′

[
E0

sQδss′δQQ′

− 1

Np

∑
ν

BQ−Q′νGss′ν(Q
′,Q−Q′)

]

=ε+
1

Np

∑
qν

|Bqν |2ℏωqν . (28)

Furthermore, by combing Eqs. (5), (15)-(17), and (22),
we can write the atomic displacements accompanying the
excitonic polaron as:

∆τκαp = − 2

Np

∑
qν

Bqν

(
ℏ

2Mκωqν

)1/2

eκα,ν(q)e
iq·Rp .

(29)

Based on this expression, the coefficients Bqν can be in-
terpreted as the contributions of each normal vibrational
mode to the excitonic polaron. This expression is also
found in the case of the electron and hole polarons [15].

III. MODEL SYSTEMS

To gain insight into the nature of the solutions of
Eqs. (18)-(20) and Eqs. (24)-(26), we start by consid-
ering the Wannier exciton model [31, 32] in the presence

of Fröhlich electron-phonon interactions [33] or Holstein
electron-phonon interactions [34]. This analysis will al-
low us to identify qualitative trends and to rationalize
the ab initio calculations presented in Sec. IV.

A. Wannier exciton model

In the Wannier model for excitons [32], the electronic
structure is composed of one valence band and one con-
duction band, both of which are described in the effective
mass approximation, as shown in Fig. 2(a). The electron
and hole interact via an effective kernel that is given by
the Coulomb interaction screened by the macroscopic di-
electric constant ϵ∞. With these choices, the effective
Hamiltonian of the Wannier exciton reads [35, 36]:

(H0
BSE)vkck+Q,vk′ck′+Q

=

(
ℏ2|k+Q|2

2me
+

ℏ2|k|2

2mh
+ Eg

)
δkk′

− e2

ϵ0ϵ∞
1

NpΩ

1

|k′ − k|2
. (30)

In this expression, Ω is the volume of the primitive cell,
e is the electron charge, ϵ0 is the permittivity of vacuum,
me and mh are the electron and hole effective mass, re-
spectively, and Eg is the fundamental gap of the system.
Equation (30) admits exact solutions [35]. To see this,

we transform the exciton eigenvector aQk into the Wannier
representation:

Φ(Re,Rh) =
1

Np

∑
kQ

ei(k+Q)·Ree−ik·RhaQk , (31)

having omitted the subscripts vc and s because we only
have one valence band and one conduction band. With
this transformation, the exciton wave function Ω(re, rh)
can be expressed as a linear combination of electron and
hole Wannier functions, wcRe

(re) and w
∗
vRh

(rh):

Ω(re, rh) =
1√
Np

∑
kQ

aQk ψck+Q(re)ψ
∗
vk(rh)

=
1√
Np

∑
ReRh

Φ(Re,Rh)wcRe
(re)w

∗
vRh

(rh).

(32)

We can now introduce the center-of-mass coordinate R
and the relative coordinate r:

R =
meRe +mhRh

me +mh
, r = Re −Rh, (33)

as well as the total mass M and the reduced mass µ:

M = me +mh,
1

µ
=

1

me
+

1

mh
, (34)
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(a) (b)

FIG. 2. Schematic illustration of the Wannier model for ex-
citons. (a) In the Wannier model, there is one parabolic va-
lence band and one parabolic conduction band, separated by
the quasi-particle band gap Eg. Both bands are described
by the effective mass approximation, and there is attractive
Coulomb interaction between electrons and holes screened by
the electronic dielectric constant ϵ∞. (b) The Wannier model
for excitons is analytically solvable. Upon changing the elec-
tron and hole coordinates into the center-of-mass reference
frame, the components of the eigenstates in the relative co-
ordinate arre hydrogenic wavefunctions, whose energies are
indicated by grey horizontal lines. The components of the
eigenstates in the center-of-mass coordinate are planewaves,
whose energies aree indicated by the black parabola (for the 1s
exciton). Accordingly, the free excitons are fully delocalized
in the center-of-mass coordinate, and localized in the relative
coordinate.

so as to recast the eigenvalue problem of the Wannier
exciton into an hydrogenic Schrödinger equation [35]
[Fig. 2(b)]. The ground-state solution of this equation
is the hydrogenic 1s wavefunction:

Φ1s(Re,Rh) =

√
1

πa30
eiQ·Re−|r|/a0 , (35)

E1s = Eg +
ℏ2|Q|2

2M
− µ

2

(
e2

4πϵ∞ϵ0ℏ

)2

, (36)

where a0 = 4πϵ∞ℏ2/µe2 is the exciton Bohr radius. Go-
ing back to the Bloch representation, we obtain the BSE

coefficients for this wavefunction:

aQk = 8

√
πa30
Ω

1(
a20|k+mhQ/M |2 + 1

)2 . (37)

B. Fröhlich and Holstein electron-phonon couplings

The Fröhlich interaction is a widely-used analytical
model to describe electrons coupled to long-wavelength
longitudinal optical modes in polar materials [33]. The
Fröhlich electron-phonon matrix element is given by [15,
17]:

g(q) =
i

|q|

√
e2

4πϵ0

4π

Ω

ℏωLO

2

1

κ
, (38)

where κ = (1/ϵ∞ − 1/ϵ0)−1 [37], ϵ0 is the static dielec-
tric constant including the ionic contribution, and ωLO

is the frequency of the longitudinal optical mode. This
model considers only intra-band couplings, and the cou-
pling strength depends only on the phonon wavevector
q [38, 39]. Thus, in the case of the Wannier exciton
model, the electron-phonon and hole-phonon coupling
have exactly the same form as given by Eq. (38).
The Fröhlich model is designed to describe long-

range polar interactions, and does not capture short-
range interactions [38]. To qualitatively analyze short-
range electron-phonon couplings, we consider the Hol-
stein model. In this model, the matrix elements are taken
to be constant throughout the Brillouin zone [34]:

gc(q) =
1√
Ω
gc, gv(q) =

1√
Ω
gv, (39)

with gc and gv being two materials-dependent parame-
ters. In the following, we study how the Fröhlich interac-
tion and the Holstein interaction as defined by Eqs. (38)
and (39) influence the formation of excitonic polarons.

C. Total energy in the transition basis approach

The transition basis approach outlines in Sec. II A is
particularly useful in the case of the Fröhlich interaction
to gain insight into the mechanisms that lead to the for-
mation of the excitonic polaron. To see this, we evaluate
the total energy of the excitonic polaron in by combining
Eq. (15) with Eq. (31):
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Exp =− 1

Np

∑
Re,Rh

Φ∗(Re,Rh)
ℏ2∇2

Re

2me
Φ(Re,Rh)−

e2

8πϵ0

1

κ

∑
Re,R′

e

ne(Re)ne(R
′
e)

|Re −R′
e|

− 1

Np

∑
Re,Rh

Φ∗(Re,Rh)
ℏ2∇2

Rh

2mh
Φ(Re,Rh)−

e2

8πϵ0

1

κ

∑
Rh,R′

h

nh(Rh)nh(R
′
h)

|Rh −R′
h|

− 1

Np

∑
Re,Rh

e2

4πϵ0ϵ∞
|Φ(Re,Rh)|2

|Re −Rh|
+ 2

e2

8πϵ0

1

κ

[ ∑
Re,Rh

nh(Rh)ne(Re)

|Rh −Re|

]
+ Eg, (40)

having defined the electron and hole densities as:

ne(Re) =
1

Np

∑
Rh

|Φ(Re,Rh)|2, (41)

nh(Rh) =
1

Np

∑
Re

|Φ(Re,Rh)|2. (42)

In Eq. (40), terms are arranged in a such a way that
direct comparison with the Landau-Pekar model of po-
larons can be made [15, 40, 41]: The first line describes
the energetics of an electron polaron, and the second line
describes the energetics of a hole polaron. The first term
on the third line, which contains purely electronic screen-

ing, describes the Coulomb attraction between the elec-
tron and hole, which binds the electron and hole polarons
together. The second term on the third line, which con-
tains the ionic contribution to the screening, describes
the weakening of the electron and hole interactions with
the lattice resulting from charge compensation in the ex-
citon state. Thus, the formation of excitonic polaron can
be thought of as a two-step process, in which the first step
is the formation of independent electron polaron and hole
polaron, and the second step involves the binding of these
polarons by their mutual Coulomb attraction, accompa-
nied by the weakening of the lattice distortion from the
partial cancellation of the electron and hole charge den-
sities.
An alternative way to interpret Eq. (40) is obtained by

combining together all terms proportional to 1/κ:

Exp =− 1

Np

∑
Re,Rh

Φ∗(Re,Rh)

[
ℏ2∇2

Re

2me
+

ℏ2∇2
Rh

2mh

]
Φ(Re,Rh)−

1

Np

∑
Re,Rh

e2

4πϵ0ϵ∞
|Φ(Re,Rh)|2

|Re −Rh|

− e2

8πϵ0

1

κ

∑
R,R′

∆n(R)∆n(R′)

|R−R′|
+ Eg, (43)

where ∆n(R) = ne(R) − nh(R) is the net charge den-
sity of the exciton. Note that this charge density can
be positive or negative at different regions, leading to
partial cancellation in the last term of Eq. (43) and a
weakening of the polaronic stabilization mechanism. This
indicates that it might be harder to form excitonic po-
larons than charged polarons. In this form, the first line
describes the standard Wannier exciton energy, in the
absence electron-phonon interactions. The second line
describes the stabilization energy provided by the inter-
action of the net charge density of the exciton with the
ionic lattice, as in the Landau-Pekar model of polarons.
We note that in both Eq. (40) and Eq. (43), the total
energy does not depend on the phonon frequency ωLO in
the Fröhlich electron-phonon coupling [Eq. (38)]. This is
because the ωLO is canceled out by the prefactor in BQν

[Eq. (20)]. The absence of the phonon frequency in the

energy is a consequence of the adiabatic approximation,
and is similar to what is found in the strong-coupling
solution of the Fröhlich polaron problem [5, 15].
Overall, Eqs. (40) and (43) show that we can think of

excitonic polarons in the Wannier-Fröhlich model in one
of two ways: (i) a particle formed from the binding of
electron and hole Pekar polarons; (ii) a particle formed
from the interaction of a Wannier exciton with the ionic
lattice.
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D. Total energy in the exciton basis approach

1. Fröhlich electron-phonon interactions

While Eqs. (40) and (43) are useful to conceptual-
ize the formation of excitonic polarons in the Wannier-
Fröhlich model, they are not a good starting point to
find an exact solution to the problem. In fact, unlike in
the Landau-Pekar model, where a hydrogenic variational
ansatz yields quantitatively accurate solutions for the
ground state [15], identifying a useful variational ansatz
for Φ(Re,Rh) to be used in Eq. (40) is challenging.

To overcome this difficulty, we move to the exciton
basis representation of Sec. II B and include a single 1s
exciton band in Eq. (23). For the case of Fröhlich interac-
tions, we substitute Eqs. (37)-(38) into Eq. (26), to find
the Fröhlich exciton-phonon coupling matrix element:

GF(Q,q) = g(q)

[
1

(a20b
2|q|2/4 + 1)

2 − 1

(a20a
2|q|2/4 + 1)

2

]
,

(44)

where g(q) is the Fröhlich electron-phonon coupling ma-
trix element from Eq. (38), a = me/(me + mh), and
b = mh/(me +mh).

From Eq. (44) and Fig. 3 one can see that, unlike the
standard Fröhlich electron-phonon interaction which di-
verges as q → 0, the Fröhlich exciton-phonon interaction
tends to vanish in the long wavelength limit.

In order to evaluate the total energy according to
Eqs. (25) and (28), we need an ansatz for the coefficients
AsQ of the excitonic polaron. We consider the following
hydrogenic ansatz:

AQ = 8

√
πr3p
Ω

1

(r2p|Q|2 + 1)2
. (45)

With this choice, a large rp indicates that the excitonic
polaron is mostly formed by excitons near the zone cen-
ter, and vice versa. In the extreme case rp → ∞, the
exciton polaron is completely delocalized and reduces to
a Γ-point Wannier exciton.

Using Eq. (45), we find the following analytical ex-
pression for the total energy of the Wannier-Fröhlich ex-
citonic polaron:

Exp = Eel + EF
ph, (46)

where

Eel =
ℏ2

2(me +mh)r2p
, (47)

EF
ph = −1

4

1

π2

e2

ϵ0κ

a40(a− b)2π

16(aa0 + rp)7(ba0 + rp)7

10∑
i=1

ti. (48)

The explicit expressions for the terms ti in the last equa-
tion are provided in App. A. These terms only depend
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FIG. 3. Fröhlich and Holstein exciton-phonon couplings for
Wannier excitons. For Fröhlich type interactions (purple
line), the exciton-phonon matrix element vanishes as q → 0.
This trend is in contrast to the Fröhlich electron-phonon in-
teraction, which diverges in the same limit. In the case of the
Holstein exciton-phonon interaction (green line), the matrix
element shows little dispersion throughout the Brillouin zone,
and remains finite in the limit q → 0. The parameters used
for this plot are summarized in Tab. I.

on the coefficients a, b, and on the variational parameter
rp. As expected, the kinetic energy contribution is posi-
tive for all values of rp, and tends to favor delocalization;
conversely, the phonon contribution is negative and fa-
vors localization. Using Eqs. (47) and (48), we can find
the radius rp that minimizes the total energy numerically.
If we choose parameters that are typical for lithium

fluoride, as summarized in Tab. I [15], which correspond
to the ratio mh = 5me, we find that the the localization
energy Eph is too small to overcome the delocalization
energy Eel. As a result, the total energy remains positive
for all values of rp, and reaches its minimum for the fully-
delocalized solution [solid line in Fig. 4(a)]. In this case
there is no excitonic polaron.
Since EF

ph in Eq. (48) is controlled by me, mh, and κ,

in Fig. 4(a) we also explore what happens when we ar-
tificially increase the hole effective mass to mh = 15me

(dashed line). In this case, we find a local minimum in
the total energy landscape indicating the formation of an
excitonic polaron. This observation indicates that, in the
case of Fröhlich interactions, there exists a critical condi-
tion that me, mh, and κ must fulfil for excitonic polarons
to form. Intuitively, this is understood on the grounds
that the driving force for localization is the electrostatic
interaction between the net exciton charge and the ionic
lattice [cf. Eqs. (40) and (43)], therefore localization re-
quires a large difference in effective masses, or a large
ionic contribution to the dielectric screening, or both.
We note that a difference in electron and hole masses

as large as that considered in Fig. 4(a) is unrealistic for
most materials. However, we expect that in the pres-
ence of multiple longitudinal optical phonons and multi-
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ple bands, the contributions from these different channels
should add up to enable the formation of excitonic po-
larons even when the difference between electron and hole
masses is not as pronounced.

2. Holstein electron-phonon interactions

In the case of the Holstein electron-phonon interaction
[Eq. (39)], the exciton-phonon matrix elements take the
following form:

GH(Q,q) =
1√
Ω

[
gc

(a20b
2|q|2/4 + 1)

2 − gv

(a20a
2|q|2/4 + 1)

2

]
.

(49)

A plot of these matrix elements for parameters corre-
sponding to LiF is shown in Fig. 3.

By using the same hydrogenic wavefunction ansatz as
in Eq. (45), we obatain the phonon contribution to the
total energy of the excitonic polaron as:

EH
ph = − 1

2ℏωLO

1

π2

∫ ∞

0

dQ
Q2(

r2pQ
2/4 + 1

)4
×

[
gc

(a20b
2Q2/4 + 1)

2 − gv

(a20a
2Q2/4 + 1)

2

]2
. (50)

Evaluating this integral is cumbersome but possible, we
provide the explicit expression in App. B. As in the case
of Fröhlich interactions, it is possible to determine nu-
merically the radius rp that minimized the total energy
for a give choice of the parameters me, mh, gv, gc, and
ωLO.
Using the same effective masses as for LiF in the pre-

vious section, we have found that typical values of cou-
pling constants, such as gc/

√
Ω = 50 meV and gv/

√
Ω =

200 meV do not lead to the formation of excitonic po-
larons. However, as we show in Fig. 4(b), in the presence
of both Fröhlich and Holstein interactions, the total en-
ergy landscape exhibits a local minimum, signaling the
formation of excitonic polarons. This finding indicates
that, for materials where both the long-range and short-
range electron-phonon interactions play a role, the for-
mation of excitonic polarons is possible under realistic
parameters for the electron-phonon couplings matrix el-
ements, band effective masses, and dielectric constants.

E. Implications for first-principles calculations

Close inspection of Figs. 4(a) and 4(b) reveals that,
when an excitonic polaron solution exists, there is also
a barrier between this localized solution and the fully-
delocalized exciton solution. Such a barrier may pose a
challenge to first-principles calculations, because if the
initial guess for the self-consistent calculation is far away

me mh ϵ∞ ϵ0 Ω gc/
√

Ω gv/
√

Ω ℏωLO

0.88 4.4 2.04 10.62 27 50 200 77

TABLE I. Parameters used to solve the excitonic polaron
equations for the Wannier exciton model with Fröhlich or
Holstein electron-phonon couplings. The effective masses are
given in units of the bare electron mass m0. The unit cell

volume Ω is in Å
3
. All other quantities are in meV.

from the localized solution, then the minimization pro-
cedure is likely to fall back to the fully delocalized so-
lution. Thus, devising an effective strategy to identify
potential localized solutions is crucial when performing
first-principles calculations.
To address this challenge, we go back to the definition

of the exciton-phonon coupling matrix element Eq. (26).
There, we see that first two terms on the right-hand-side
appear with opposite signs, hence they tend to cancel
each other. This partial cancellation reflects the fact that
it is the net charge of the exciton that generates forces
on the ions. This cancellation also echoes the difficulty
of finding localized solutions in the Fröhlich model, as
discussed in Sec. IIID 1.
Based on the above observation, it should be easier

to find localized solutions of Eqs. (24)-(26) if we artifi-
cially set to zero the first term in Eq. (26). Figure 4(c)
shows that, indeed, with this modification of the matrix
elements, the potential energy landscape exhibits a sin-
gle minimum at the localized solution in the case of the
Wannier-Fröhlich model. While this alteration of the ma-
trix elements has no physical meaning per se, it offers a
simple and useful strategy to initialize the self-consistent
solution of Eqs. (24) in ab initio calculations. In practice,
we can solve Eqs. (24) in two steps: (i) first, we obtain an
artificially-localized solution by setting electron-phonon
interaction or hole-phonon interaction to zero; (ii) sec-
ond, we use this artificially-localized solution as a seed
for a second run with the correct matrix elements includ-
ing both electron-phonon and hole-phonon interactions.
In Sec. IV we show how this two-step approach allows
us to find excitonic polaron solutions in first-principles
calculations of real materials.

IV. FIRST-PRINCIPLES CALCULATIONS

To implement the methodology described in Sec. II, we
choose to proceed with Eqs. (24)-(26) since they show a
more favorable scaling with the number of bands and
grid points in the Brillouin zone. In this section, we
first discuss the gauge invariance of our formalism and
the hermicity of the effective excitonic polaron Hamil-
tonian. Second, we briefly touch upon calculations of
finite-momentum excitons. Third, we discuss our re-
sults for lithium fluoride (LiF). An additional applica-
tion of this methodology is presented in the compan-
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(a) (b) (c)

FIG. 4. Formation energy of the excitonic polaron relative to the total energy of the free exciton, for various model systems.
(a) Wannier exciton with Fröhlich electron-phonon interaction. When mh = 5me, the minimum energy solution corresponds
to a fully-delocalized exciton (solid line). When the hole mass is much larger (mh = 15me), the minimum energy corresponds
to a localized solution (dashed line). This observation indicates that a large difference in effective masses between electrons
and holes favors the formation of the excitonic polaron. (b) Wannier exciton with both Fröhlich electron-phonon interaction
and Holstein electron-phonon interaction. With the help of short-range Holstein-type interactions, localized solutions emerge
when there is a significant difference in electron-phonon coupling and hole-phonon coupling (in this example, 50 meV and
200 meV, respectively). (c) Wannier exciton with artificially-enhanced Frölich exciton-phonon interaction. In this example, the
electron-phonon coupling matrix element gcc′ν(Q,q) in Eq. (26) is manually set to zero. This observation provides us with a
strategy to initialize the iterative minimization of the ab initio excitonic polaron equations.

ion manuscript [25], for the vacancy-ordered double per-
ovskite Cs2ZrBr6.

A. Gauge invariance and hermiticity

The present formalism carries gauge freedoms in sev-
eral points, namely the Kohn-Sham wave functions, the
phonon eigenvectors, and the BSE eigenvectors, which
are all obtained by matrix diagonalization. In the ab-
sence of degeneracy, all these quantities are defined mod-
ulo a complex phase; in the presence of degeneracy, any
unitary transformation within the degenerate subspace is
admissible. As a physical observable, the total energy of
the excitonic polaron and its associated eigenvalue must
be invariant with respect to these freedoms. Thus, we
need to make sure that our formalism is indeed gauge-
invariant.

We first analyze the case of a system without any de-
generacy. We consider a change of phase of the Kohn-
Sham wavefunctions: ψnk(r) → eiϕn(k)ψnk. With this

change, the BSE eigenvectors asQvck acquire a correspond-
ing complex phase:

asQvck → eiϕv(k)e−iϕc(k+Q)asQvck. (51)

Similarly, the electron-phonon matrix elements also ac-
quire a complex phase:

gmnν(k,q) → e−iϕm(k+q)eiϕn(k)gmnν(k,q). (52)

These phases cancel out when the BSE eigenvectors and
the electron-phonon matrix elements are used in Eq. (26),
therefore the exciton-phonon coupling matrix elements
are independent of the phase of Kohn-Sham states.

A similar reasoning applies to the vibrational eigen-
modes. Upon introducing a complex phase via
eκα,ν(q) → eiϕν(q)eκα,ν(q), the electron-phonon matrix
elements and therefore the exciton-phonon matrix ele-
ments acquire a corresponding phase:

gmnν(k,q) → eiϕν(q)gmnν(k,q),

Gss′ν(Q,q) → eiϕν(q)Gss′ν(Q,q). (53)

At the same time, the coefficients BQν in Eq. (25) also
acquire a phase through the exciton-phonon couplings
G∗
ss′ν(Q,q):

BQν → e−iϕν(Q)BQν . (54)

Thus, the phase factor ϕν(q) cancels out in Eq. (24),
making the present formalism independent of the phases
of vibrational eigenmodes.
In the case of the BSE eigenvectors, the change of

phase asQvck → eiϕs(Q)asQvck leads to the following modi-
fication of the exciton-phonon matrix elements:

Gss′ν(Q,q) → e−iϕs(Q+q)eiϕs′ (Q)Gss′ν(Q,q). (55)

As a result, the the coefficients BQν remain unchanged:

BQν → 1

NpℏωQν

∑
ss′Q′

eiϕs′ (Q
′)e−iϕs(Q

′+Q)A∗
s′Q′AsQ′+Q

× eiϕs(Q+Q′)e−iϕs′ (Q
′)G∗

ss′ν(Q
′,Q)

=BQν , (56)

and from Eq. (24) we see that the eigenvector of
the transformed excitonic polaron Hamiltonian becomes
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e−iϕs(Q)AsQ:∑
s′Q′

[
E0

sQδss′δQQ′ − 2

Np

∑
ν

BQ−Q′νGss′ν(Q
′,Q−Q′)

]
×As′Q′e−iϕs(Q) = εAsQe

−iϕs(Q). (57)

Clearly this change of phase of the solution coefficients
does not alter the eigenvalue and the total energy of the
excitonic polaron.

We now analyze how the formalism is affected by uni-
tary transformations within degenerate subspaces. We
notice that, in Eq. (26), the indices of electron bands are
always repeated twice. That is, whenever we have the
band index n in the ket |nk⟩, we also have a bra ⟨nk|
in the same expression, and these indices are summed
over. The summation over these indices yields the the
resolution of identity within the degenerate subspace,∑

j |njk⟩ ⟨njk| = În, which is gauge invariant. The
same reasoning can be carried out for degeneracies in
the phonon eigenvalues and in the BSE eigenvalues.
The result is that the eigenvalue and the total energy
of the excitonic polaron are gauge-invariant under uni-
tary transformations within degenerate subspaces of elec-
trons, phonons, and excitons.

It remains to show that the excitonic polaron Hamil-
tonian is Hermitian. To this end, we swap the exciton
band indices and exciton momenta:

Hs′Q′,sQ

=E0
s′Qδs′sδQ′Q − 2

Np

∑
ν

BQ′−QνGs′sν(Q,Q
′ −Q).

(58)

From the definition of exciton-phonon coupling matrix
element in Eq. (26), we have:

Gs′sν(Q,Q
′ −Q)

=
∑
vk

∑
cc′

as
′Q′∗

vck asQvc′kgcc′ν(k+Q,Q′ −Q)

−
∑
ck

∑
vv′

as
′Q′∗

vck asQv′ck+Q′−Qgv′vν(k,Q
′ −Q). (59)

If we exchange the summation indices c and c′, as well as
the indices v and v′, define k′ = k+Q′ −Q, and change
k′ into k at the end, we obtain:

Gs′sν(Q,Q
′ −Q)

=
∑
vck

asQvck

[∑
c′

gcc′ν(k+Q′,Q−Q′)as
′Q′

vc′k

−
∑
v′

gv′vν(k,Q−Q′)as
′Q′

v′ck+Q−Q′

]∗
eiϕν(Q−Q′)

=G∗
ss′ν(Q

′,Q−Q′)eiϕν(Q−Q′), (60)

where ϕν(Q−Q′) is the relative phase between an eigen-
mode and its time-reversal pair, that is eκα,ν(−q) =

[eiϕν(q)eκα,ν(q)]
∗. This phase factor depends on the

phonon branch ν and phonon wavevector, but it cancels
out when taking the product BQ′−QνGs′sν(Q,Q

′ − Q).
In fact, if we carry out the same steps as in Eqs. (59)-(60)
for the coefficients BQ′−Qν , we find:

BQ′−QνGs′sν(Q,Q
′ −Q)

=
[
BQ−Q′νGss′ν(Q

′,Q−Q′)
]∗
. (61)

In combination with Eq. (58), this identity shows that the
excitonic polaron Hamiltonian is Hermitian: Hs′Q′,sQ =
H∗

sQ,s′Q′ .
We emphasize that, in the above proof, we do not re-

quire the relation eκα,ν(−q) = e∗κα,ν(q), which is gener-
ally not satisfied in density functional perturbation the-
ory (DFPT) because the calculations for q and −q are
performed independently [42].

B. Bethe-Salpeter equations with finite exciton
momentum

The solution of Eqs. (24)-(26) requires the knowledge
of exciton states with finite momenta [Eq. (21)]. These
eigenstates are obtained by solving the BSE by including
matrix elements with finite momentum transfer:∫

sc

drψ∗
ck+Q(re)ψvk(rh)K

0
BSE(re, rh; r

′
e, r

′
h)

× ψc′k′+Q(r′e)ψv′k′(r′h). (62)

Finite-momentum BSE calculations have become possi-
ble during the past decade [28, 43, 44]. For example,
calculations of finite-momentum excitons for 2D mate-
rials such as MoS2, graphane, and BN have been re-
ported [44, 45]. Since each wavevector Q is computed in-
dependently, the computational cost scales linearly with
the density of the uniform Q-grid, or equivalently with
the size of the BvK supercell.
From Eq. (26), it clear that the k-grid, q-grid, and Q-

grid need to be commensurate with each other. Since it
is harder to converge BSE calculations as compared to
electronic and phonon calculations, it is advantageous to
first converge the BSE calculations with respect to the
Brillouin-zone k-grid, and then to choose the size of the
q-grid and of the Q-grid based on the expected size of
the excitonic polarons of interest.
For the analysis of gauge invariance carried out in

Sec. IVA to hold, in practical calculations it is critical
to ensure that the same set of electronic wave functions
be employed in the evaluation of the BSE kernel and of
the electron-phonon matrix elements. Were this not the
case, the phase relations used in Sec. IVA to prove gauge
invariance would not be valid, and calculations results
would be incorrect and unpredictable.
We also note that, in the implementation of Eqs. (24)-

(26), it is important to pay attention to the conventions
adopted by different ab initio software packages. For
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example, in the BerkeleyGW code, the transition basis
is defined as [28]:

Ψ̃sQ(re, rh) =
∑
vck

ãsQvckψ
∗
vk+Q(rh)ψck(re). (63)

On comparing with Eq. (21), we see that Ψ̃sQ(re, rh) ac-
tually represents an exciton state with momentum −Q:
Ψ̃sQ(re, rh) = Ψs−Q(re, rh). Thus, when implementing
the present formalism in conjunction with the Berke-
leyGW code, it is necessary to convert the exciton eigen-
vectors according to the following relation:

asQvck = ãs−Q
vck+Q. (64)

C. Results: lithium fluoride

In this section, we demonstrate the use of the present
formalism in ab initio calculations of excitonic polarons
in LiF. LiF is a simple cubic insulator that crystallizes
in the rock-salt structure, and exhibits strong Fröhlich
electron-phonon couplings. LiF compound hosts small
hole polarons and large electron polarons [15], and has
been proposed to also host excitonic polarons [46]. Previ-
ous work has shown that a relatively coarse k-grid is suffi-
cient to converge BSE calculations of excitons in LiF [21],
making it an ideal candidate for testing our formalism
and studying the convergence behavior.

1. Computational details

To obtain the optimized structure, Kohn-Sham states
and energies, and phonon eigenmodes and frequencies, we
perform DFT and DFPT calculations using the Quan-
tum Espresso package [47, 48]. We employ the PBE
generalized-gradient approximation to the exchange and
correlation functional [49], norm-conserving pseudopo-
tentials [50, 51], and a planewaves kinetic energy cutoff
of 100 Ry. The convergence threshold for self-consistent
calculations is 10−12Ry, and for DFPT the convergence
threshold is 10−14(Ry)

2
. We use EPW [52, 53] andWan-

nier90 [54] to compute electron-phonon coupling matrix
elements and polarons [6], and BerkeleyGW to per-
form GW/BSE calculations with finite exciton momen-
tum [1, 28, 55]. We set the kinetic energy cutoff for the
dielectric matrix to 10 Ry, and include 5 valence bands
and 195 conduction bands. To compute the self-energy,
the COHSEX approximation is used; this choice yields
a quasi-particle band gap of 14.7 eV, in good agreement
with experiments [56]. The BSE kernel is constructed us-
ing 3 valence bands and 7 conduction bands; this choice is
adequate to obtain a converged absorption spectrum near
the band-edge, as can be seen by comparing Fig. 5(a)
with Fig. 6 in Ref. [21]. In addition, the software VESTA
is used for the visualization of the crystal structures,
charge densities, and displacement patterns [57].

Equations (24)-(26) are solved on uniform Brillouin
zone grids with increasing density, from 4 × 4 × 4 to
10 × 10 × 10 points, corresponding to equivalent BvK
supercells ranging from 128 to 2,000 atoms. We include
4 lowest-energy exciton bands when constructing the ex-
citonic polaron Hamiltonian, which is sufficient to yield
converged solutions [Fig. 7(a)] The initialization of the
coefficients AsQ is chosen such that Ψ(re, rh) is already
sufficiently localized, using the approach outlined by
Sec. III E. Specifically, we first set AsQ to be a constant

so that the normalization condition N−1
p

∑
sQ |AsQ|2 = 1

is satisfied, and we construct the exciton-phonon cou-
pling matrix by imposing gcc′ν(k,q) = 0. Then, we eval-
uate BQν using Eq. (25), and we diagonalize the matrix
in Eq. (24); we repeat this process until convergence is
achieved. The converged solution is subsequently em-
ployed to initialize a second run, where the complete
exciton-phonon coupling matrix is used [i.e., without set-
ting gcc′ν(k,q) = 0], and a new iterative minimization is
carried out. An estimate of the computational cost of
our method is provided in App. C.

2. Convergence behavior

Figure 5(a) shows the calculated BSE absorption spec-
trum of LiF as a function of the Brillouin-zone mesh. We
see that, in the vicinity of the absorption onset, the line-
shape converges when a 8×8×8 k-grid is used (note that
the green line for the 6 × 6 × 6 k-grid and the blue line
for the 8 × 8 × 8 k-grid are hidden underneath the red
line for the 10× 10× 10 k-grid); this finidng agrees well
with previous studies on LiF [21]. Based on this test, in
Fig. 5(b) we plot the exciton electron density correspond-
ing to an 8× 8× 8 BvK supercell, with the hole position
fixed on one of the fluorine atoms. In this panel, we see
that the electron is fairly localized relative to the hole.
This observation is consistent with the fact that a rel-
atively coarse k-grid yields a well-converged absorption
spectrum. We emphasize that Fig. 5(b) shows relative lo-
calization of the electron with respect to the hole, while
the two-particle exciton wavefunction Ψ(re, rh) is fully
delocalized as well as translationally invariant.

Next, we investigate the exciton-phonon matrix ele-
ments that are central to Eqs. (24) and (25). Since the
first two exciton bands of LiF are degenerate and isolated
from the other bands [Fig. 7(a), except for the Γ point], in
Fig. 6 we plot the gauge-invariant metric defined below:√ ∑

s,s′=1,2

|Gss′ν(Q = 0,q)|2, (65)

where ν is chosen to be LO mode that is non-degenerate
for the most part of the Brillouin zone, and the path
of q is a straight line from Γ to L. We see that, as for
the absorption spectrum in Fig. 5(b), the exciton-phonon
matrix elements also converge when a 8 × 8 × 8 grid is
used for k points, q points, and Q points.
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(a)

(b)

FIG. 5. Optical absorption spectrum and exciton wavefunc-
tion of LiF. (a) Imaginary part of the dielectric function ϵ2 of
LiF. With an 8 × 8 × 8 Brillouin-zone grid, the lowest-energy
peak is well converged. This peak provides the largest con-
tribution to the formation of the excitonic polaron in LiF.
(b) Electron charge density of the lowest-energy free exciton
state, rendered in a 8 × 8 × 8 supercell. The hole position is
fixed near a fluorine atom. Li is in green, F is in silver. The
electron charge density is relatively localized around the fixed
hole.

Interestingly, the momentum dependence of the
exciton-phonon couplings computed from first principles
and shown in Fig. 6 resembles the trend that we find for
the Wannier-Fröhlich model in Fig. 3. In particular, we
find that the ab initio matrix elements are also linear in
q at small q. However, unlike in the Wannier-Fröhlich
model which only considers one valence and one conduc-
tion bands, here we have 10 electronic bands in total.
This difference might account for the larger magnitude
of the ab initio exciton-phonon couplings shown in Fig. 6
as compared to the model calculation of Fig. 3. This
stronger coupling may favor the formation of the exci-
tonic polaron in LiF.
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FIG. 6. Exciton-phonon coupling matrix elements of LiF.
As for the absorption spectrum, the exciton-phonon coupling
matrix elements also converges with an 8 × 8 × 8 Brillouin-
zone grid. The behavior of these matrix elements resmbles
the Fröhlich type exciton-phonon interaction shown in Fig. 3,
although here the matrix elements are 2-3 times higher. This
comparison suggests that the Wannier-Fröhlich model cap-
tures qualitative trends but does not carry quantitative accu-
racy. The discs are our calculations, the lines are guides to
the eye.

3. Formation energy

Once the excitonic polaron equations [Eqs. (24)-(26)]
are solved, the formation energy of the excitonic polaron
can be computed from ∆Ef

xp = Exp − E0
BSE, where Exp

is given by Eq. (28), and E0
BSE the lowest BSE eigenvalue

for the undistorted structure. The results are show in in
Fig. 7(b). First, we find that the formation energy of the
excitonic polaron is negative, meaning that the polaron
state is stable as compared to free excitons. In addition,
we notice that the formation energy decreases when a
denser Brillouin zone grid is used. The extrapolation to
infinite BvK supercell (Np → ∞) corresponds to a fully
isolated excitonic polaron, in analogy with the case of
electron and hole polarons [6, 15].
In Tab. II, we show that the formation energy of the

excitonic polaron in LiF lies between the energy of elec-
tron polaron and that of the hole polaron. This finding
can be understood from Eq. (40), where the formation
of the excitonic polaron could be viewed as the combina-
tion of the electron polaron and hole polaron attracting
each other, thus making the highly localized hole polaron
stabilize the much more diffuse electron polaron.
In the companion manuscript [25], we show that for

another compound, Cs2ZrBr6, both the electron polaron
and the hole polaron are highly localized. In that case
the excitonic polaron is less stable than both the electron
and the hole polaron as a result of the cancellation of
the two charge densities, which reduces the electrostatic
interaction with the ionic lattice.
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FIG. 7. Exciton band structure, convergence of the formation energy of excitonic polarons with Brillouin-zone sampling, and
densities of polarons and excitonic polaron in LiF. (a) The contribution of each free exciton state to the formation of excitonic
polarons. The black lines denote the exciton band structure of LiF, and the yellow discs are the contribution |AsQ|2 of each
exciton to the formation of the excitonic polaron. The most significant contributions come from the three lowest exciton
bands, which correspond to the lowest-energy peak in the absorption spectrum shown in Fig. 5(a). (b) Formation energy of
the excitonic polaron as a function of the inverse supercell size. The infinite supercell limit corresponds to a fully isolated
excitonic polaron. The formation energy extrapolated to this limit is −461 meV. (c) Charge density of the hole polaron (orange
isosurface). (d) Hole density of the excitonic polaron (orange isosurface). (e) Charge density of the large electron polaron
(green isosurface). (f) Electron density of the excitonic polaron (green isosurface). In (c)-(f), Li atoms are in green, F atoms
are in silver.

Polaron formation energy
EGW

gap Eex
b

Electron Hole Excitonic

-231 meV -1980 meV -461 meV 14.7 eV 1.88 eV

TABLE II. Formation energies of the electron polaron, hole
polaron, and excitonic polaron in LiF. These values corre-
spond to the limit of infinite supercell. For completeness, we
also report the GW quasi-particle band gap EGW

gap and the
binding energy of the lowest-energy exciton Eex

b .

4. Charge densities

In the case of free excitons, the common practice when
plotting exciton charge densities is to fix the position of
the hole (or the electron), and then plot the electron (or
the hole) density. This is shown in Fig. 5(a) for LiF. The

mathematical expression describing this procedure is:

nsQe (re; r
0
h) =

∣∣ΩsQ(re, r
0
h)
∣∣2, (66)

which gives the electron density of the exciton sQ when
the hole position is fixed at r0h. Now, if we integrate
nsQe (re; r

0
h) over the hole position r0h, the resulting elec-

tron density becomes fully delocalized and exhibits the
periodicity of the lattice. This property can easily be
seen by using Eq. (21) inside Eq. (66).
In the case of excitonic polarons, the lattice distortion

favors exciton localization, thus breaking the lattice pe-
riodicity. To demonstrate this point, we evaluate and
visualize the electron and hole charge densities of the ex-
citonic polaron using the following expressions:

ne(re) =

∫
drh|Ψ(re, rh)|2 =

1

Np

∑
vk

|Lvk(re)|2, (67)

nh(rh) =

∫
dre|Ψ(re, rh)|2 =

1

Np

∑
ck

|Lck(rh)|2, (68)
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where the auxiliary functions Lvk and Lck are given by:

Lvk(re) =
∑
sQ

∑
c

AsQa
sQ
vckψck+Q(re),

Lck(rh) =
∑
sQ

∑
v

AsQa
sQ
vck−Qψ

∗
vk−Q(rh). (69)

Since these functions are linear combinations of Bloch
states with different crystal momenta, they do not pos-
sess lattice periodicity in general. Therefore, the charge
densities obtained from Eqs. (67)-(68) are allowed to be
localized within the BvK supercell.

We also emphasize that the localization of the exci-
tonic polaron as described by Eqs. (67)-(68) is closely
related to the approximation of classical nuclei that un-
derpins all DFT, DFPT, and GW/BSE calculations. In
this context, the breaking of lattice-periodicity means
that for a fixed displacement pattern, the corresponding
excitonic polaron wave function will break the lattice pe-
riodicity. Shifting the displacement pattern by a lattice
vector R will yield another localized excitonic polaron
wave function with the same shape, but it is shifted by
R as well. In a more sophisticated, quantum treatment
of atomic displacements, the electron and hole charge
densities would be localized with respect to each other
and with respect to the distortion of the atomic lattice,
but the composite excitation consisting of electron, hole,
and phonon cloud would still be a delocalized entity in
agreement with Bloch’s theorem. Therefore, to be more
precise, the excitonic polaron discussed below is what
might be called a “pinned” excitonic polaron. We note
that this loss of translational invariance is entirely anal-
ogous to what happens in calculations of charged po-
larons [15, 17, 18, 39]. Restoring full translational in-
variance would require one to consider a Green’s func-
tion that includes both electronic and vibrational degrees
of freedom, as it is done, for example, in Diagrammatic
Monte Carlo calculations [58, 59].

The charge densities for the electron polaron, hole po-
laron, and excitonic polaron in LiF are shown in Fig. 7(c)-
(f). We find that the hole density of the excitonic po-
laron [Fig. 7(d)] has the shape of p-orbitals, and it is
largely localized around a fluorine atom. There are other
degenerate solutions in the same unit cell, which corre-
spond to p-orbitals oriented toward the other Cartesian
directions and are accompanied by different atomic dis-
placement patterns. This multiplicity is a consequence of
the fact that our formalism described “pinned” excitonic
polarons. Furthermore, the hole density of the exci-
tonic polaron is very similar to that of the hole polaron
[Fig. 7(c)]. On the other hand, the electron density of
the excitonic polaron [Fig. 7(f)] is similar in shape to the
electron polaron [Fig. 7(e)], but it is considerably more
localized, spanning only a couple of unit cells.

The similarity between the charge densities of the elec-
tron and hole polaron and the charge densities of the ex-
citonic polaron shown in Fig. 7(c)-(f) suggests that the
formation of the excitonic polaron in LiF might be viewed

as a two-step process: (i) the formation of an electron po-
laron and a hole polaron which do not interact with each
other; (ii) the formation of the excitonic polaron as a re-
sult of the mutual Coulomb attraction of these polarons.
In this latter step, the small hole polaron acts a pinning
center for the large electron polaron. In this case, it is
not necessary to fix the hole center as in the visualiza-
tion of the free exciton in Fig. 5(b). The similarity with
Fig. 7(f) indicates that the binding of the exciton is so
strong that the lattice distortion only slightly influences
the mutual interaction between electrons and holes. The
present picture is fully consistent with the analysis of the
mechanism of formation of the excitonic polaron in the
Wannier exciton model presented in Sec. III C.
Figure 7(a) shows the contribution of each exciton

state of the undistorted structure to the formation of
the excitonic polaron, as given by the weights |AsQ|2.
We find that the the lowest exciton band carries the
largest contribution, with smaller contributions from the
next two bands. The fact that only the low-lying exci-
ton bands contribute to the formation of the excitonic
polaron provides a posteriori support to our choice of
solving the excitonic polaron equations in the exciton
basis [Eqs. (24)-(25)] rather than in the transition ba-
sis [Eqs. (18)-(20)]. In Fig. 7(a), we also see that the
coefficients |AsQ|2 are significant throughout the entire
Brillouin zone. This “delocalization” in reciprocal space
is consistent with our observation of strong real-space lo-
calization of the excitonic polaron.

5. Displacement patterns

Figure 8 shows the atomic displacements associated
with the electron polaron, the hole polaron, and the ex-
citonic polaron in LiF. These displacements are evaluated
using Eq. (29). As expected, the displacement pattern of
the excitonic polaron [Fig. 8(c)] is centered around the
hole charge density of the excitonic polaron, and it is
highly localized. This pattern is very similar to what we
find for the hole polaron in Fig. 8(b), but differs consid-
erably from the displacements obtained for the electron
polaron which is more delocalized [Fig. 8(a)].
A more detailed comparison between the atomic dis-

placement patters of electron polaron, hole polaron, and
excitonic polarons in LiF can be performed by inspect-
ing the Bqν coefficients. Indeed, according to Eq. (29),
these coefficients can be thought of as the contributions
from individual phonons to the formation of these local-
ized quasiparticles. Figures 8(d) and (e) show how the
electron polaron is dominated by the coupling with long-
wavelength modes, and in particular the LO mode; while
the hole polaron draws weight from the entire Brillouin
zone. These trends are consistent with previous work
on polarons in LiF [6], and indicate that this compound
hosts Fröhlich electron polarons and Holstein hole po-
larons, respectively. In the case of the excitonic polaron,
Fig. 8(f) shows that the contribution from the LO mode
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FIG. 8. Displacement patterns of polarons and excitonic polaron in LiF, and corresponding phonon contributions. In (a)-(c),
Li and F atoms are in green and silver, respectively, and purple arrows represent atomic displacements. Only significant
displacements are displayed for clarity. In (d)-(f), black lines represent the phonon dispersions, and the yellow discs represent
the phonon contribution |Bqν |2 to the formation of polarons. The shadowed area on the right in each panel represents the
spectral function B2(E). They are normalized so that the top of the range coincides with the highest peak in each case. (a)
Atomic displacements associated with the electron polaron. (b) Atomic displacements associated with the hole polaron. (c)
Atomic displacements associated with the excitonic polaron. (d) Contributions of individual phonons to the formation of the
electron polaron. The acoustic branches and the LO modes around the zone center contribute the most. (e) Contributions of
individual phonons to the hole polaron. (f) Contributions of individual phonons to the formation of the excitonic polaron.

around the zone center is much smaller than for the elec-
tron and hole polarons. This effect can be rationalized
in terms of the qualitative difference between exciton-
phonon and electron-phonon couplings to the LO mode:
while Fröhlich electron-phonon coupling goes as 1/|q| for
q → 0, the exciton-phonon coupling is not singular and
goes as |q| [Fig. 3 and Fig. 6(b)], therefore the contribu-
tion of long-wavelength polar phonons is less significant
in the case of excitonic polarons. Furthermore, we no-
tice the significant contribution coming from the acous-
tic modes in Fig. 8(f), whose contribution is typically
neglected in the model Hamiltonian approaches. In fact,
by manually removing the contribution from the acous-
tic modes, the polaron formation energy will be reduced
from −409 meV to −206 meV (on an 8×8×8 grid). This
clearly demonstrates the necessity of performing full ab

initio calculations to describe excitonic polarons in real
materials.
Another interesting behavior that emerges from Figs. 8

is that the coefficients Bqν of the excitonic polaron
[Figs. 8(f)] resemble a superposition of the coefficients
Bqν that we find for the electron polaron [Figs. 8(d)]
and the hole polaron [Figs. 8(e)]. This can be further
illustrated by the spectral function in the right panels of
Figs. 8(d)-(f), defined as:

B2(E) =
1

Np

∑
qν

|Bqν |2δ(E − ℏωqν). (70)

We find that the hole polaron and the excitonic po-
laron spectral functions show similar peak strengths for
the LO modes, while the electron polaron and the ex-
citonic polaron spectral functions shows similar peak
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strengths for the acoustic modes. Since acoustic modes
are mainly responsible for elastic deformation while op-
tical modes usually induce out-of-phase motion, the sim-
ilarity of the spectral functions in Figs. 8(e) and (f) is
consistent with the similar displacement patterns for the
hole polaron and the excitonic polaron in Figs. 8(b) and
(c). This observation further supports the conceptual
scenario whereby the excitonic polaron can be thought
of as if being formed from one electron polaron and one
hole polaron bound together by their mutual Coulomb
attraction.

V. SUMMARY AND OUTLOOK

In this work we presented a first-principles theory of ex-
citonic polarons that combines the Bethe-Salpeter equa-
tion approach for excitons with density-functional per-
turbation theory for phonons. Our theory directly yields
the energetics, wavefunctions, and atomic displacements
of excitonic polarons, without requiring supercells. The
only ingredients needed for performing these calculations
are the band structures or electrons, phonons, and exci-
tons, and the electron-phonon matrix elements. All these
quantities can be computed from calculations in the crys-
tal unit cell.

In the present approach, the search for excitonic po-
larons is formulated as a variational minimization of the
excited state total energy, which consists of the DFT to-
tal energy and the BSE excitation energy. Explicit super-
cell calculations are avoided by expressing the excitonic
polaron wavefunction as a linear combination of finite-
momentum excitons. This strategy leads to a nonlinear
system of two coupled equations for the exciton polaron
wave function and the associated atomic displacements,
which is reminiscent of the polaron equations introduced
for charged particles [15].

We have identified two possible sets of equations to
obtain excitonic polarons, one set in the transition basis,
and one in the exciton basis. The exciton basis formula-
tion is most suited for ab initio calculations. The tran-
sition basis formulation is useful to make contact with
model Hamiltonians. For example, using the transition
basis we have shown that a Wannier exciton model with
Fröhlich electron-phonon interactions leads to an exci-
tonic polaron equation that is similar to the Landau-
Pekar equation for polarons. The analysis of this sim-
plified model suggests that the excitonic polaron can be
thought of as an excitation resulting from the binding
of an electron polaron and a hole polaron via their mu-
tual Coulomb attraction. The analysis of the Wannier
exciton with Fröhlich or Holstein electron-phonon inter-
actions also allowed us to identify two general criteria
that must be met for excitonic polarons to form: (i)
for excitonic polarons dominated by Fröhlich couplings,
the electron and hole effective masses should differ sig-
nificantly; (ii) for excitonic polarons dominated by Hol-
stein couplings, there must be a large difference between

the short-range electron-phonon interactions and hole-
phonon interactions.
We applied this method to lithium fluoride, a proto-

typical material that hosts small hole polarons and large
electron polarons. Our first-principles calculations reveal
that the exciton-phonon coupling matrix elements in a
polar insulator decrease linearly with the exciton momen-
tum at long wavelength. This behavior is qualitatively
different from the well-known divergence of the Fröhlich
electron-phonon interaction in three-dimensional materi-
als at long wavelength, and is reflected in the small con-
tribution of phonon modes around the zone center to the
excitonic polaron. We also find that the hole charge den-
sity and atomic displacements of the excitonic polaron in
LiF strongly resemble those of the hole polaron, suggest-
ing that the localization of the excitonic polaron is largely
dictated by the most localized quasiparticle among the
electron and the hole polaron. To quantify which exci-
ton states, phonon modes, and exciton-phonon couplings
contribute the most to the formation of the excitonic po-
laron, we performed a spectral analysis of the wavefunc-
tion and displacements in LiF, and we found that only
the three lowest-energy exciton bands play a significant
role in the formation of the excitonic polaron.
In the companion manuscript [25], we apply the same

formalism presented here to a more complex material,
the vacancy-ordered double perovskite Cs2ZrBr6. In that
case, we observe similar relations between the electron
polaron, the hole polaron, and the excitonic polaron as
discussed here for LiF, suggesting that these interrela-
tions might be universal features in the physics of po-
larons and excitonic polarons.
The present development opens several possible av-

enues for future work. Firstly, it will be important to ex-
tend these calculatios to a broad materials dataset to map
out the properties of excitonic polarons across diverse
materials families. Secondly, it will be important to con-
nect this methodology to experimental measurements of
Stokes shifts between absorption and luminescence spec-
tra. Thirdly, applications of the present methodology to
the case of two-dimensional materials will be of consid-
erable interest. Lastly, re-deriving the present formalism
starting from a general field-theoretic approach would
be highly desirable. For example, work generalizing the
many-bod theory of polarons of Ref. 17 to the case of
excitonic polarons would be useful.
We hope that this work will serve as the basis for sys-

tematic ab initio calculations of excitonic polarons in real
materials, and that it will form the starting point for fur-
ther investigations of the physics of self-localization in
condensed matter systems.
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Appendix A: Complete formulas for Eq. (48)

The terms t1-t10 required in Eq. (48) are given below:

t1 = a6b6a90(5 + 4ab), (A1)

t2 = 7a5b5a80rp(5 + 4ab), (A2)

t3 = a4b4a70r
2
p(101a

4 + 519a3b+ 848a2b2 + 519ab3 + 101b4), (A3)

t4 = 7a3b3a60r
3
p(1 + 2ab)(21 + 4ab), (A4)

t5 = a2b2a50r
4
p(101a

6 + 1149a5b+ 3858a4b2 + 5632a3b3 + 3858a2b4 + 1149ab5 + 101b6), (A5)

t6 = 7aba40r
5
p(5a

6 + 88a5b+ 368a4b2 + 574a3b3 + 368a2b4 + 88ab5 + 5b6), (A6)

t7 = a30r
6
p(5a

8 + 193a7b+ 1404a6b2 + 4020a5b3 + 5612a4b4 + 4020a3b5 + 1404a2b6 + 193ab7 + 5b8), (A7)

t8 = 4a20r
7
p(6 + 37ab), (A8)

t9 = 28a0r
8
p, (A9)

t10 = 4r9p. (A10)

Appendix B: Complete formulas for Eq. (50)

The integral in Eq. (50) can be written as:

EH
ph = − 1

2ℏωLO

1

π2
IH, (B1)
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where the term IH has been evaluated using Mathematica [60]. This term is given by:

IH =
[
4(aa0 + rp)

7(a0b+ rp)
7
]−1

π

×

(
a70g

2
c

(
a40b

4 + 7a30rpb
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2
pb
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3
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)
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2
c
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2
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3 + 140a20r
3
pb
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(B2)

Appendix C: Estimate of the Computational cost

To provide an idea of the computational cost associ-
ated with our method, we take the calculation with the
8×8×8 grid as an example, which is equivalent to a super-
cell containing 1,024 atoms. The bottleneck is the BSE
calculation, where 512 independent BSE calculations cor-
responding to all center-of-mass exciton momenta need
to be performed. For these calculations we use Frontera
supercomputer at Texas Advanced Computing Center.
Each BSE calculation takes 30 minutes to complete on
Intel Xeon Platinum 8280 “Cascade Lake” nodes, each
supporting 56 compute cores. The maximum memory

required for each calculation is ≈120 MB, and ≈50 MB
is used to store the BSE eigenvalues and eigenvectors on
disk. In total, 512 node hours are needed to complete
all the BSE calculations, and ≈25 GB storage space is
needed to store the BSE eigenvectors and eigenvalues.
Performing explicit BSE calculations for a 1,024-atom su-
percell would be computationally prohibitive, since these
calculations scale as O(N4) [61, 62]. Importantly, the
present approach enables calculations of excitonic po-
larons extending over tens to hundreds of crystal unit
cells.
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