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Moiré materials are artificial crystals formed at van der Waals heterojunctions that have emerged
as a highly tunable platform that is able to realize much of the rich quantum physics of electrons in
atomic scale solids, and in several cases even new quantum phases of matter. Here we use finite-size
exact diagonalization methods to explore the physics of single-band itinerant electron ferromag-
netism in semiconductor moiré materials. We predict where ferromagnetism is likely to occur in
triangular-lattice moiré systems, and where it is likely to yield the highest Curie temperatures.

I. INTRODUCTION

Moiré materials have already been established as hosts
of Mott [1-3] and topological insulators [4], a rich va-
riety of magnetic states [5-8], and recently even frac-
tional Chern insulators [9, 10]. They also provide an
alternative platform for studies of itinerant electron fer-
romagnetism [8, 11-13]. Ferromagnets are many-electron
ground states that break time-reversal but not transla-
tional symmetry, have finite macroscopic magnetization,
and are more common in metals than in insulators. Fer-
romagnetic metals exhibit a rich variety of interesting
hysteretic magneto-resistive effects that lie at the heart
of spintronics [14] and are valuable for technology. Theo-
retical studies of metallic ferromagnetism in the context
of simple one-band Hubbard models [15-22], although
rarely physically realistic, have nevertheless helped pro-
vide an understanding of the necessary conditions to sta-
bilize such ground states in crystalline materials. The
moiré material case, in which isolated bands are common,
offers the opportunity to compare theories of single-band
itinerant electron ferromagnetism directly with experi-
ment.

In this article we use exact diagonalization meth-
ods (ED) to explore metallic ferromagnetism in the
single-band triangular lattice moiré materials realized
in transition-metal dichalcogenide (TMD) heterobilayers
[23-26] such as WSez/MoSe; and WSea/WS,. We pre-
dict where ferromagnetism is most likely to occur and
where ferromagnetic transition temperatures are maxi-
mized. The restriction of our study to the case in which
a single band is partially occupied and well separated
from other bands [27] is motivated by a technical con-
sideration, namely the need to restrict the dimensions of
the many-electron Hilbert spaces studied to manageable
sizes [28]. Metallic ferromagnetism is interesting in both
single-band and multi-band systems. In the multi-band
case local moments from one subset of bands that sup-
ply local Hunds magnetism can combine with large spin-
stiffnesses supplied by another set of band that validate
simple mean-field descriptions - using density functional
theory for true atomic scale materials. In contrast, single-
band systems are often more difficult to understand, re-

quiring non-perturbative approaches as the one we take
here. Although it seems likely that the highest ferro-
magnetic transition temperatures that can be realized in
moiré systems are in multi-band systems [29] we never-
theless anticipate that scientific progress can be achieved
by comparisons between theory and experiment across a
broad range of band filling factors and band widths in
the single isolated-band regime.

Our paper is organized as follows. In Section II we
specify the model that we study - a triangular lattice
moiré material model with the Hilbert space truncated
to the lowest energy moiré band and interaction matrix
elements calculated exactly. In Section III we present our
numerical results. We examine three different ferromag-
netism indicators that are available from finite-size ED
calculations; i) ground state spin quantum numbers, ii)
magnon energy estimates from the total-momentum de-
pendence of the low-energy many-body excitation spec-
trum and iii) Lanczos spin-susceptibility calculations. All
are consistent with the notion that ferromagnetism oc-
curs when the band filling factor of the lowest energy
hole miniband is around v ~ 3/4. We estimate that
Curie temperatures that can reach 7'~ 10 K. Finally in
Section IV we summarize and discuss our findings, esti-
mating conditions for which the single-band model is re-
alistic. We conclude that the single-band approximation
is not applicable at v ~ 3/4 in the TMD moiré mate-
rials studied experimentally to date, but that it can be
realized by choosing systems with the strongest possible
moiré potentials and maximizing background screening
of the Coulomb interaction.

II. FINITE SIZE MOIRE MATERIAL MODEL

In this paper we will focus on transition metal dichalco-
genide heterobilayer moiré materials [23] in which the
topmost valence miniband is energetically isolated, so
that holes only populate this band upon doping. Because
we are interested mainly in understanding where ferro-
magnetism has a substantial ordering temperature, we
focus on the range of twist angles for which the topmost
band is relatively dispersive. The single-particle part of
the continuum model Hamiltonian describing these sys-



tems is [23]
hQ
Hy= 5 k4 A(r), )
A(r) =2V, Z cos(bj - T+ 1), (2)
J=1,3,5

where the b; are members of the first shell of moiré re-
ciprocal lattice vectors and m*, V, and v are hetero-
junction specific parameters. The specific calculations
we report on below take effective mass m* = 0.35my,
where mg is the rest mass of the electron, moiré modu-
lation strength Vi, = 25 meV, and moiré potential shape
parameter [24] ¢ = —94°. These numerical values cor-
respond to WSey/MoSe; heterobilayer moirés [23]. It is
known [30, 31] that strain relaxation of the moiré pat-
tern strengthens the moiré modulation potential, an ef-
fect that can be incorporated approximately simply by
increasing the value of V;,. For this reason we take a
slightly larger value for the moiré modulation than the
one reported for the unstrained bilayer [23]. (Approx-
imate scaling relations relating our results to those at
larger values of V}, are explained in the discussion sec-
tion.)
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FIG. 1. (a) Particle-hole transformed (hole-picture) band-
struture of moiré TMD heterobilayers at twist angle 6 = 3.0,
moiré modulation strength Vi, = 25 meV and shape param-
eter ¢ = —94°. Note that the lowest energy hole miniband
is partially occupied and isolated from the remote bands. (b)
Density of states (DOS) of the lowest energy hole miniband
vs. band filling v for twist angles § = 2.5, § = 3.0, 6§ = 3.5.
The inset indicates the discrete momenta of a M = 16 unit
cell finite-size system within a color scale band contour plot
for the 8 = 3.0 case. These bands have a van Hove singularity
at energy Evna ~ 15 meV and band filling factor vyvu =~ 0.75
in the thermodynamic limit, M — co. (¢) and (d): The dis-
crete energies of the (c) M = 16 and (d) M = 36 finite size
systems discussed in the text.

Figs. 1(a) and (b) illustrate the implied moiré band
structures and densities-of-states. The density-of-states

maximum occurs at the energy of a saddle-point van Hove
singularity (VHS) at band filling v &~ 3/4, where v = £~
with N the number of valence band holes in the system
(we call them particles from now on), and M the number
of moiré unit cells. We will find that ferromagnetism oc-
curs when the van Hove singularity is close to the Fermi
level of the competing paramagnetic state. The posi-
tion of the van Hove singularity (VHS) shifts slightly to
larger band filling factors v with increasing twist angle.
The VHS is manifested in finite size calculations with
M unit cells by a bunching of discrete states in a small
energy interval. In Fig. 1(c) we show the discrete single-
particle spectra of (¢) M = 16 and (d) M = 36 meshes.
When momentum space is discrete, the thermodynamic
limit VHS results in a set of closely spaced discrete ener-
gies slightly below E = 15 meV. When these states are
occupied only by majority spins and all other states are
doubly occupied the filling factor is v = 0.72 for M = 16
and v = 0.74 for M = 36 system sizes, respectively.
Note that single particle states at general momenta in
the Brillouin-zone interior are six fold degenerate sim-
ply due to triangular lattice rotational symmetries; this
property is responsible for the bunching near £ = 5.0
meV for M = 16 and near £ = 2.5, E = 7.0, E = 9.0
meV for M = 36. (v point (k = 0) states are non-
degenerate and Brillouin zone corner states are doubly-
degenerate - the degeneracy between K and K’ points.)
As is commonly recognized, the bunching of single parti-
cles energy levels has an impact on finite-size many-body
results, and limits the types of conclusions that can be
reached. We will consider a variety of different finite size
geometries, each with a corresponding discretization of
the moiré Brillouin zone. In order to correctly capture
the VHS physics , we seek meshes that neither underrep-
resent nor overrepresent the associated high density of
states close to v = 0.75. In the supplemental materials
(SM) [32] we discuss how we choose finite-size geometries
for the calculations discussed in the main text (see also
references [33-35] therein).

The full Hamiltonian is obtained by projecting the two-
particle Coulomb interaction term to the topmost valence
band shown in Fig. 1(a):

H = Hy+ H;
N
- Z Ekckffck" +3 Z J,kl k- oCkjo’ Ckio’ Chios (3)
6.5,k
G'O'

where CLU (cko) creates (annihilates) a particle with mo-
mentum k and spin o, €, are band energies, and the
Coulomb matrix elements are given by

N N 2me?
,chl A Z (Zki,Griij7GjZkknszkl7Gl> ?) (4)
G:.G;
G, G

with zj, @ eigenstate coefficients obtained from diagonal-
ization of Hamiltonian Hy given by Eq. (1) in a basis of



plane waves G. In Eq. (4) A is moiré unit cell area, mo-
mentum conservation implies that matrix elements are
non-zero only if k; + k; = kj, + k; modulo a moiré recip-
rocal lattice vector, the prime on the sum over the G’s
implies that k; + G; + k; + Gj =k + G + ki + Gy,
and ¢ = |q| = |k; + G; — ki — G| is the momentum
transfer. As we have shown previously [36], by work-
ing in a Wannier representation the matrix elements can
be reexpressed in terms of a single large parameter, the
on-site Coulomb interaction Uy, and a series of smaller
parameters including non-local exchange, interaction as-
sisted hopping, and longer range local interactions. The
strength of interactions depends on the value used for the
effective dielectric constant €, which represents screening
by the three-dimensional dielectric environment of the
moiré system. We return to this issue in the discussion
section.

The physics of ferromagnetism is often viewed quali-
tatively as a competition between band energies, which
favor states with minimal spin-polarization and interac-
tion energies, which favor spin-polarized states because
many-electron wavefunctions must vanish when electrons
with parallel spins approach each other, thereby avoid-
ing strong repulsive interactions. The gain in interaction
energy per unit cell is often referred to as the Stoner en-
ergy I. In Fig. 2 we compare finite size kinetic energies
for single-Slater-determinant (SD) states with maximal
and minimal spin-polarization in triangular lattice moiré
materials, AFy, = ERn(S2z ) — ERin(S2. ) where the
superscripts ‘min’ emphasize that the occupation num-
bers are chosen to minimize the kinetic energy subject to
the spin-polarization constraint. The energy difference
per moiré period reaches its maximum when the band
is half-filled because this is the filling factor with the
maximum possible spin-polarization per moiré cell. The
kinetic energy cost increases with twist angle 6 because
of increasing band widths, see SM [32]. Note that the ki-
netic energy cost of spin-alignment is, for the most part,
reasonably well approximated at relatively small system
sizes, and that the kinetic energy cost is very small for
large band filling factors because of the VHS near the top
of the first hole miniband. This is the filling factor regime
where itinerant ferromagnetism might be expected.

III. EXACT DIAGONALIZATION RESULTS

We will discuss three different indicators for ferromag-
netism that are available from finite-size calculations.
First of all we consider the total spin quantum number of
the finite-size many-electron ground state. The absence
of spin-orbit coupling in our model allows a ferromagnet
to be defined as a system in which the ground state total
spin quantum number S is extensive. We find that maxi-
mal spin-polarization is common in finite-size systems at
band filling factors larger than about 3/4, and conclude
that ferromagnetism will occur through much of this fill-
ing factor range. In the following subsections we esti-

FIG. 2. Kinetic energy difference between maximal and
minimal spin polarized states per moiré cell AFEwin/M =
(BEin(SZ..) — ESin(SZ:.))/M as a function of band filling
factor v = N/2M for 6 = 3.0.

mate the temperature to which ferromagnetism survives
in two different ways: i) by extracting magnon-energies
from the momentum dependence of the many-body exci-
tation spectrum and ii) by extracting finite temperature
Stoner energies I from the temperature-dependent spin-
susceptibilities calculated using finite-temperature Lanc-
zos methods.

A. Ground State Spin

We first assess the tendency toward ferromagnetism by
comparing ground state energies in different total spin
S sectors. Typical results are summarized in Fig. 3(a),
where we plot ground state spin quantum numbers vs
v and the interaction strength parameter e~!. Large
ground state spins appear in several different regimes in
this plot. First of all they appear at small band filling
factors and weak interactions. We view ferromagnetism
in this regime as an artifact of the symmetry-related
momentum-space shell degeneracy of the finite-size mesh
used to produce these results, which we have illustrated
in Fig. 1. Secondly, ferromagnetism is seen near half-
filling of the band at large interaction strengths. The
ground state at v = 1/2 for this range of interaction
parameters is an interaction-induced insulator (the blue
line in Fig. 3(a) labels a metal-insulator transition esti-
mated from the charge gap calculations using a definition:
A¢ = Eiot(N+1)+ Eiot (N —1) —2E; o (IV), see also. Ref.
23), but the ground state is ferromagnetic rather than an-
tiferromagnetic because spatially indirect exchange inter-
actions (oc e71) exceed antiferromagnetic superexchange
interactions (o €). The property that Mott insulators
are sometimes ferromagnetic in moiré materials has been
discussed previously [36]. Our main interest here is in
the very robust ferromagnetic states that appear near
band filling ¥ = 3/4, where the ground state is metal-
lic. In Fig. 3(b) we plot the ground state spin vs. v
in the moderate interaction strength regime, where non-
local exchange is unimportant, demonstrating that its
value is unchanged when the interaction model is trun-
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FIG. 3. The ground state total spin S as a function of filling
factor v from exact diagonalization calculations for a system
with M = N1 X N2 = 16 unit cells (N1 and N> are defined in
SM [32]). (a) Spin polarization map: Total spin as a function
of filling factor v and dielectric constant e for twist angle 6 =
2.5 and moiré potential strength V5, = 11 meV. A horizontal
blue line labels the metal-insulator transition at half-filling
[37]. (b) Comparison of the ground state spin polarization of
the moiré continuum Hamiltonian and the corresponding on-
site Hubbard model for dielectric constant ¢! = 0.04, twist
angle 6 = 3.0, moiré strength Vi, = 25 meV and moiré shape
1 = —94°. A dashed line indicates the position of the van
Hove singularity for finite size mesh.

cated to include only the on-site Hubbard-like Coulomb
interaction term. In SM [32] we show that the magnetic
competition in the insulating state at ¥ = 1/2 is shifted
in favor of antiferromagnetism with increasing twist an-
gle, as expected since larger band widths imply stronger
superexchange interactions.

In Fig. 4 we analyze the competition between ferro-
magnetism and paramagnetism by partitioning the total
energy into four different contributions: kinetic energy
Eyiyn, Hartree energy Ey, Fock (exchange) energy Eexch,
and correlation energy F.or. Convergence to the thermo-
dynamic limit is easily obtained for the first three terms,
whereas the fourth part, the correlation energy, must
be estimated from finite-size calculations and extrapo-
lated to the thermodynamic limit. For the purposes of
the qualitative point that we wish to make in this para-
graph, we define the sum of the first three terms as the
expectation value of the full Hamiltonian in the single
Slater determinant (SD) state constructed by occupying
the lowest energy single-particle states for a given spin-
polarization. We define the mean-field interaction energy
difference AEyr = AFy + AFexcn between maximally

and minimally spin polarized SD states by subtracting
the kinetic energy contribution to the energy difference:

AFur = AEsp — AFEyy. (5)

Note that AFEyr accounts for the fact that the shape of
the charge distribution within the unit cell is different
in spin-polarized and unpolarized state, an effect that is
absent in the Hubbard model. Because of this effect, the
lowest energy SD state is not always the one constructed
from the lowest energy single-particle states. In SM [32]
we show results for AFqy, obtained from multi-band
self-consistent Hartree-Fock calculations. These ener-
gies have larger negative values because of the additional
band-mixing degrees-of-freedom that are optimized.

The correlation energy is defined as the difference be-
tween the ED ground state energy and the lowest energy
SD ground state energy in a given spin sector with sub-
tracted kinetic energies contributions

:Etot (Smax)
- (ESD (Smax)

- Etkcjtn(smax) (6)
Ekm(smax».

Ecorr (Smax)

Here we used following definitions

Eior(S) = (Vas(S)|Ho + Hi|¥as(9)),

En(8) = (Was(9)[Ho|¥as(9)),

Esp(S) = (®as(S)[Ho + Hi|®as(9)),
E§5(S) = (®cs(S)|Ho|®as(9)),

where [¥gg(S)) is ED ground state wavefunction in a
total spin sector S and |®qs(S)) = [ ]k, c;rw|0> is lowest

energy SD state. The correlation energy difference is

AE‘corr = Ecorr(Smax) - Ecorr(Smin)' (7)

With the above definitions, the total energy difference is
AE"cot = AESD + A-Ecorr~ (8)

In Fig. 4 we see that mean-field interaction energies
A FEyr strongly favor spin-polarized states, and that the
degree to which interactions favor spin-polarized states is
strongly reduced when correlations are included. For the
parameters of this calculation, increasing the strength
of interactions actually does not substantially increase
the degree to which interactions favor spin-polarization.
This is precisely the problem in estimating where ferro-
magnetism occurs; once correlations are strong, electrons
avoid each other well even if they have the same spin, and
even in metallic states. Ferromagnetism is most likely
when one subset of states has a high density-of-states so
that it is easily polarized, and the remaining states are
strongly dispersive so that correlations are suppressed.
Conditions favorable for ferromagnetism are regularly
achieved in multi-band systems, like the paradigmatic
late 3d transition metals. In single-band systems some-
what less favorable conditions can be achieved by having



a sharp maximum in the density-of-states. For 2D mate-
rials, maxima always appear at saddle points in the band
structure. It follows that single-band ferromagnetism in
2D moiré materials is most likely when the Fermi level of
the paramagnetic state is close to a saddle point in the
band structure.

A typical result for the competition in total energy
between fully spin polarized and depolarized states is
summarized in Fig. 5 where we see that ferromagnetism
is most likely near v = 3/4 as expected. The Hartree-
Fock theory results for the weaker of the two interaction
strengths considered tell a cautionary tale about finite-
size effects since they predict ferromagnetism for M = 16
finite-size systems and paramagnetism for M = 441
finite-size systems; the M = 16 mesh overstates the van
Hove singularity, see Fig. 2. In a vicinity of half-filling
ferromagnetism is predicted for M = 441 but the energy
of SD state with .S = Spin is not the lowest one here; in-
stead a state with broken translation symmetry, the three
sublattice Néel state, is expected to have lower energy
and competes with FM; both of these two states have
been indeed observed in experiment [1, 6]. For stronger
interactions, ferromagnetism is predicted in a vinicty of
v = 0.75 for both meshes. In the following sections, we
focus on estimates of transition temperatures for ferro-
magnetism around this particular filling, indicated by a
black dashed line in Fig. 3.
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FIG. 4. Exchange energy and correlation energy difference
between maximally Smax and minimally Smin spin polarized
states normalized per moiré unit cell. These plots are based
on finite-size ED calculations for M = 16 and on non-self-
consistent Hartree-Fock, single Slater determinant SD, for
M = 441. A dashed line indicates the position of the van Hove
singularity. (a) and (c) for interaction strength e * = 0.04
and (b) and (d) for interaction strength ¢! = 0.1. These
plots are for twist angle § = 3.0, moiré modulation strength
Vin = 25 meV, and potential shape 1 = —94°.
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FIG. 5. The total energy difference between maximally

Smax and minimally Smin spin polarized states AFEiot =
FEtot(Smax) — Ftot (Smin)) per moiré unit cell for (a) el =0.04
and for (b) e ! =0.1. AFi for M = 16 is obtained from
ED calculations and for M = 441 from exchange energy and
extrapolated correlation energy from ED. These results were
obtained with model parameters 6 = 3.0, V5, = 25 meV and
P = —94°.

B. Magnon Energies

In metallic ferromagnets with large splitting between
majority spin and minority spin quasiparticle energies,
the ordering temperature is typically limited by collec-
tive thermal fluctuations. The Curie temperature then
scales with the energies of the magnon modes, just as
it does in insulating magnets. In Fig. 6(a) we show the
spin-flip excitation spectrum of a typical maximally spin-
polarized state near v = 3/4. We associate the 15 lowest
energy excitations (one for each non-zero momentum)
with magnon modes and the higher-energy excitations
with unbound quasiparticle spin-flip excitations. We see
that the magnon energies are several times smaller than
the quasiparticle spin-splitting energy. In Fig. 6(b) we
show the twist angle dependence of the highest magnon
energy, which grows with the band width, suggesting that
spin-stiffness is supplied mainly by band dispersion.

Since we neglect spin-orbit interactions, our two-
dimensional model is spin-rotationally invariant and its
critical temperature therefore vanishes (see the effect of
spin-orbit interactions on a critical temperature in SM
[32]). We defer to a separate study the issue of en-
gineering strong spin-orbit interactions in TMD trian-
gular lattice moiré materials in order to suppress long-
wavelength thermal fluctuations. Fig. 6(b) suggests that
ferromagnetic critical temperatures approaching 100 K
could be achievable at large twist angles for sufficiently
strong spin-orbit interactions. However, it is important
to realize that the single-band approximation could fail
at large twist angles. We return to this point again in
the discussion section.

C. Finite Temperature Lanczos Method

One of the interesting aspects of moiré materials
physics from a fundamental point of view is that the
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FIG. 6. Spin-flip excitation spectrum of a M = Ny x Ny = 16
fully polarized ground state. (a) Energy spectrum for total
spin S = Smax — 1 for the system with Ny = 9 holes (N = 23,
v = 0.73), corresponding to the filling factor v indicated by a
dashed line in Fig. 3, e ' = 0.04, ¢ = —94°. The 16 lowest
energy excitations can be associated with magnon collective
modes, and the higher energy excitations with unbound spin-
flip particle-hole excitations. AFE indicates the width of the
magnon spectrum, which scales with the transition tempera-
ture. Nx (INVy) is the number of unit cells along two directions
determined by real space lattice vectors a; and a2 on a trian-
gular lattice, Kx(Ky) are total momenta along two directions
determined by reciprocal space lattice vectors by and bs. (b)
The width of magnon spectrum AFE as a function of a twist
angle 6 for the moiré superlattice and its corresponding Hub-
bard model.

regime in which the temperature is comparable to or
larger than the band width is experimentally accessible.
In the following paragraphs we address the temperature
dependence of magnetic properties over this wide energy
interval.

For the evaluation of thermodynamic properties in the
canonical ensemble, we need to calculate thermal expec-
tation values of relevant operators A:

Sncy(nle=?" Aln)
S {nle=AHn) -

n=1

(4) =

9)

where 8 = 1/kpT with kp the Boltzman constant, the
partition function Z = Zgi‘l (nle=PH|n), and |n) is
summed over orthonormal basis states. The exponen-
tial increase of Ny with system size places severe limits
on the direct application of these fundamental formulas.

The problem can be avoided if an appropriate statis-
tical average of the full Hilbert space is generated. In
the finite temperature Lanczos method (FTLM) [38] one
starts with the high temperature expansion:

o= (=B
(A)pso =271 o (n[H An), - (10)
n=1k=0 ’
where
Nst oo Ak
Z = ( ]f') <n|Hk|n>. (11)
n=1k=0 ’

The Lanczos algorithm is an iterative method for finding
extreme eigenvalue of a large matrix in which expecta-
tions of high powers of the Hamiltonian naturally appear.

During Lanczos iteration steps, a set of orthogonal basis
vectors is generated (a Krylov space), spanning a finite-
size space that contains approximations to eigenvectors
corresponding to extreme eigenvalues of a full Hilbert
space with accuracy controlled by the number of itera-
tion steps. In the Lanczos method the Hamiltonian is di-
agonalized in this Krylov space obtaining Lanczos eigen-
vectors |I) and the associated Lanczos energy eigenvalues
€. When the number of Lanczos steps IN; > k one can
write

Nr
(n|H* Aln) =Y " (n|H|(n)){I(n)|A]n) =
.
D (e (mllm)(U(n)|Aln)  (12)

1=0
and

N

(n|H¥[n) =Y (e *[(L(n)|n) . (13)

=0

Ny, is a parameter of the approximation that needs to be
large enough to reach accurate extremal energy eigen-
values; for the calculations we present below we take
Ny = 150. Inserting Eq. (12) and Eq. (13) into Eq.
(10) and Eq. (11) and replacing the sum over all or-
thonormal basis states by a much smaller sum over R
random Lanczos seed states, in analogy to Monte Carlo
methods, yields

Nst
Nr

Yo D e )| Aly)wli(v))(14)

veENRr 1

(A)y~ 771

where the partition function is

Nr N

Z Z e Bew)
v l

The exponential-size Hilbert space of the Hamiltonian is
thereby approximated by its spectral representation in a
Krylov space spanned by the Ny, Lanczos vectors starting
from each random vector. The chosen random vectors |v)
should ideally be mutually orthogonal, but for practical
purposes this is not really necessary since two vectors
with random components in a large dimensional space
are always nearly orthogonal.

In general calculations using this approach are less sen-
sitive to finite size effects as temperature increases, and
most sensitive to finite size at T' = 0. This property is
related to the fact that at T'= 0 both static and dynam-
ical quantities are calculated from one eigenstate only,
and the selection of this state can be dependent on the
size and on the shape of the finite-size system. T > 0 in-
troduces thermodynamic averaging over a larger number
of eigenstates and this directly reduces finite-size effects
for static quantities. Calculational efficiency can be im-
proved by taking symmetries into account, so that Ng;

N,

7~ N: (1(v)|v)|2. (15)
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FIG. 7. Comparison of FTLM and exact susceptibility cal-
culations for M = 16 moiré unit cells, N = 4 electrons, and
different number of random vectors Ng. (a) x/8 as a func-
tion of inverse temperature 3. The inset shows low energy
many-body spectrum with total spin indicated by color. (b)
susceptibility x(T') and (c) inverse susceptibility x ~*(T) as a
function of temperature 7. The blue line in (c) is a linear
fit to estimate a transition temperature T¢. The number of
Lanczos steps is taken to be N, = 150. The size of the Hilbert
space for S, = 0 and fixed total momentum K is weakly mo-
mentum dependent and around 900. The parameters for this
illustration are interaction strength e ! = 0.04, twist angle
0 = 3.0, Vi, = 25 meV, and ¢ = —94°. Ng = 20,10,5 means
that for S, = 0 we take Ng = 20, S, = +1 we take Ng = 10
and so on. If one numbers is given, for all subspaces we take
the same Ngr

corresponds to the number of states with a given sym-
metry.

In our view, the finite temperature Lanczos method
(FTLM) is ideally suited to exploring the high-
temperature physics that is observable for the first time
in moiré materials. In this work we focus on calculations

of the spin magnetic susceptibilty x = 8(S?) where

s Y, exp (—Ben)S.(n)?
52 = e (o)

Beacuse [H, S.] = 0, the Lanczos method can be applied
to each S, sector separately. The FTLM formula for the
susceptibilty is

_ S
x=7 1252 ®)

where s is the S, value for the subspace. We find that
the most accurate results are obtained for Ng(s) chosen
such that the ratio between the Hilbert subspace size and
the number of vectors is kept constant.

The accuracy of FTLM finite-size calculations is as-
sessed in Fig. 7 by comparing x as calculated by per-
forming the full sum over all states with the FTLM sum.
The three plots in Fig. 7 ((a) x// as a function of inverse
temperature 3, (b) the susceptibility x(7") and the (c) in-
verse susceptibility x~1(T) as a function of temperature
T') emphasize different aspects of the temperature depen-
dence of x. The 8 — 0 (T — o0) and § — oo (T — 0)
limits of x/f can be calculated analytically by averaging
S2 over the full Hilbert space (x™1/8 — Mv(l —v)/2
for 5 — 0) and over the ground state spin multiplet
(x7'/B — S(S + 1)/3 for B — o0) respectively. For
the test case (M = 16 and N = 4) illustrated in Fig.
7, the susceptibility can be calculated exactly from the
full many-body spectrum because the Hilbert space di-
mension for a given S, subspace does not exceed 1000.
The exact result is indicated by a red line in Fig. 7,
and compared with FTLM estimates based on different
numbers of random vectors Ni. All lines overlap for tem-
peratures T' > 20 K, demonstrating the high accuracy of
the method in the high temperature limit. The ground
state of the system in this case has S = 0 (see the inset),
which leads to vanishing susceptibility in (b) and diver-
gence of the inverse susceptibility in (¢) as T — 0. The
susceptibility reaches a maximum at around 7" = 4 K.
The blue line in (c) is a high-temperature linear fit that
extrapolates to a finite value for T" = 0, consistent with
a paramagnetic state.

The FTLM estimates have the advantage that they
can be drawn from larger Hilbert spaces. In Fig. 8
we show a typical result obtained for N = 23 particles
(Nn, = 9 holes) in the M = 16 case, in the regime of
filling factors where ferromagnetism is expected on the
basis of the many-body ground state calculations. In
this case the many-body ground state has non-zero total
spin S = 9/2. The exact value of x/M f normalized per
moiré unit cell in the f — oo limit is therefore 0.515, as
indicated by a black arrow in Fig. 8(a). (The 5 — 0 limit
0.10433, which is independent of interactions, is also indi-
cated by a black arrow.) We see that the FTLM method
gives accurate results in both limits, irrespective of Ng
at T — oo and for Ng > 10 at T'= 0. Generally speak-
ing, the ratio between Ny and the dimension of a given

(16)
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FIG. 8. FTLM susceptibility calculations for M = 16 moiré
unit cells, N = 23 electrons (9 holes), and different number
of random vectors Ng. (a) x/B normalized per moiré cell
as a function of inverse temperature 5. Analytically calcu-
lated values are given for the limit of infinite temperature
(left) and zero temperature (right). (b) susceptibility x(7")
and (c) inverse susceptibility x™'(7) as a function of tem-
perature T'. The red line is a linear fit to estimate the tran-
sition temperature Tc. The inset shows the Stoner param-
eter I(T) = x (T)/M — xxi (T)/M, where NI means non-
interacting. The number of Lanczos steps was N1, = 150. The
size of Hilbert space for S, = 0 at fixed total momentum K is
around 5 x 10°. Nr = 20, 10, 5, 5 means that for S, = 0.5 we
take Ng = 20, S, = +1.5 we take Ng = 10 and for all other
subspaces Nr = 5. If one numbers is given, for all subspaces
we take the same Ng. The parameters used for this calcula-
tion are: dielectric constant €' = 0.04, twist angle 6 = 3.0,
Vin = 25 meV, and 1) = —94°.

Hilbert subspace is a good accuracy indicator. The in-
crease in y at intermediate temperatures relative to the
high-temperature limit shows that on average interac-
tions lower the energies of states with larger S, relative
to those with smaller S,. The linear fit to the inverse sus-
ceptibility shown in 8(c) estimates the Curie temperature
Tc =~ 9 K for this case, and the estimate is not strongly

affected by Ngr in reasonable ranges. The inset shows
the finite size Stoner parameter I that has the expected
linear-in-7T" dependence up to around T =~ 12 K.

Having established the efficacy of the FTLM, we now
employ it to study trends in ferromagnetism in triangu-
lar lattice moiré materials. In SM [32] in Fig. S2(b) and
S2(d) we compare inverse susceptibility results for two
other twist angles for the same moiré modulation poten-
tial. Extrapolating from high temperatures where finite-
size effects are less severe, we see that the susceptibility at
higher temperatures decreases with twist angle. We at-
tribute this decrease to an increase in bandwidth, which
decreases the Pauli susceptibility of non-interacting elec-
trons. At the same time, the high-temperature estimate
of the Curie temperature at which the susceptibility di-
verges (the inverse susceptibility vanishes) increases with
twist angle. We attribute this increase also to increasing
bandwidth, which increases magnon energies by increas-
ing the kinetic energy cost of spatial modulation of the
magnetization.

IV. DISCUSSION

We have used three different indicators available from
finite-size exact-diagonalization calculations to address
the physics of itinerant ferromagnetism in single-band
triangular lattice moiré materials: i) ground state spin
quantum numbers, ii) magnon excitation energies, and
iii) temperature dependent spin-susceptibilities. All in-
dicate that ferromagnetism is common at hole band fill-
ing factors near v = 3/4 at temperatures up to ~ 10K.
Our calculations were performed for particular values of
the moiré modulation strength and shape parameters.
These are however expected to be strongly dependent
on the specific heterojunction at which the moiré pat-
tern is formed, and in particular on strain relaxations at
those heterojunctions which will tend to increase modu-
lation strengths [31, 39]. When V,,, — AV,,, twist angle
0 — /A0, and dielectric screening parameter € — v/\e,
the three terms in the continuum model Hamiltonian
(interaction, moiré potential, and kinetic energy) all in-
crease by a factor of A. Since the properties of interest
here are relatively insensitive to the interaction strength
parameter within reasonable ranges, it follows that the
properties of systems with stronger moiré potentials can
be read off from our results by increasing temperature
scales and twist angles. In particular, the larger energy
scales increase the temperatures at which ferromagnetism
can occur.

It is interesting to compare TMD triangular lattice
moiré materials, with graphene multilayer moiré mate-
rials that also support ferromagnetic states. In the latter
case, it is known that because of topological obstructions
inherited from the individual layer Dirac cones [40-42],
a faithful representation of the flat moiré minibands re-
quires multi-band tight-binding [43] models, for which
the exact diagonalization approach is not practical. In



the TMD moiré material case, however, the lowest energy
moiré bands have Wannier functions that are similar to
harmonic oscillator ground states centered on moiré po-
tential extrema [23]. Although we do not approximate
the interaction matrix elements in our one-band model,
we have verified that all properties related to ferromag-
netism are similar to those of simple triangular lattice
Hubbard models.

It is also interesting to compare TMD triangular lattice
materials with rhomohedral graphene multilayers [44—
52], a class of two-dimensional materials in which metal-
lic ferromagnetism has been discovered recently. These
graphene multilayer systems are like TMD moiré mate-
rials in that they have peaks in their densities of states,
related in that case to Liftshitz transitions of distorted
Dirac cones, but they do not have minibands and are
not approximated by Hubbard models. The magnetism
that appears in these systems is consistent with the no-
tion that the key to ferromagnetism is a sharp density-
of-states peak in a low-density-of-states background.

At the mean-field level, the critical temperature of the
ferromagnetic state is proportional to the exchange split-
ting Acxen between majority and minority spin bands.
The classic metallic ferromagnets, like cobalt, iron or
nickel, are well known to have transition temperatures T
that are much lower than the exchange splitting Acycn-
Measured critical temperatures are more comparable to
typical magnon energies Fnag (EBTc ~ Emag < Aecxch)-
Critical temperature estimates based on fermionic mean-
field approximation do not work well for itinerant ferro-
magnets, actually in agreement with our results. We be-
lieve that our Hubbard model systems are, in this sense,
in the same regime as the classical 3d ferromagnets.

The exact diagonalization method we have employed is
most suitable when the many-electron Hilbert space can
be truncated to a single moiré miniband. The small pa-
rameter which controls the applicability of this approxi-
mation is the ratio of the largest interaction scale, the on-
site Hubbard interaction Uy, to the sub-band separation.
As explained in Ref. 23 these can be estimated by making
a harmonic approximation for the moiré potential. We
find that Uy ~ Ry*/*(zV)Y/4(ag /an) /2, where z = 6 is
the triangular lattice coordination number and Ry and
ap are the host 2D semiconductor Rydberg energy scale
~ 0.3 eV and Bohr radius length scale ~ 1 nm. Similarly
the subband separation hw ~ Ry'/2(zVy)'/2ap/an. It
follows that

2 Ry/oV) Manifap) 2 (18)

Truncation to the lowest moiré band is justified at all

band filling factors v € (0,1) when the right hand side
of Eq. 18 is smaller than ~ 1. Most systems [53, 54]
that have been studied to date do not satisfy this crite-
rion. Since continuum model approximations are valid
only for ap; 2 ap, it follows that single-band ferromag-
netism will occur only when the first factor on the right
side of Eq. 18 is made small, for example by increasing the
dielectric screening environment of the moiré system to
decrease Ry, or by choosing a system with a particularly
large value of V,,,. From exponentially localized Wannier
functions obtained for the topmost valence band used in
our calculations, we get, for § = 3.0, Upe ~ 1121 meV
[36], hw ~ 58.5 meV. For ¢~ = 0.1, Ll =00 »

while for W < 1. Thus for the limit of weaker

interaction strength the single band approximation is jus-
tified. This suggest that our predictions are relevant for
systems with sufficiently close nearby gates.

We note that Coulomb repulsion will increase the en-
ergy of the lowest energy hole miniband, as it is filled,
by more than it increases the energies of states in higher
energy moiré minibands. For this reason the regime of
parameter space in which occupation of higher energy
minibands can be neglected decreases as band filling fac-
tor increases. When correlations are included, the ground
state at hole filling factor ¥ = 1/2 is often an insulator.
When its lowest energy hole-charged excitation is domi-
nantly in a higher hole miniband, the insulator is referred
to as a charge transfer insulator [53, 54]. Since single-
band ferromagnetism is most likely near band-filling fac-
tor v = 3/4, the present single-band study is never rel-
evant when the ground state of the half-filled band is a
charge transfer insulator, which already involves higher
energy subbands in an essential way. If systems could be
realized in which the sign of V,, is reversed (or equiva-
lently v — ¢+ 180°), ferromagnetism would be expected
for minibands that are less than half-filled. For the stan-
dard sign of V,,, however, any ferromagnetism that oc-
curs when the interaction parameter that is the subject
of Eq. 18 is large, must be of multi-band character. We
leave the analysis of this situation for a future study, for
it requires a different approach.
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