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Graphene has garnered tremendous interest in the last decade due to its great potential for ap-
plications in almost every scientific and engineering discipline. The adsorption of molecules onto
graphene is itself also of significant interest, including in catalysis and trace molecule detection.
However, density functional theory has traditionally struggled to accurately model surface adsorp-
tion involving long-range dispersion interactions between a molecule and a substrate, accentuating
the need for comprehensive benchmarking and analysis. Here, we test the accuracy of several func-
tionals in describing the adsorption energy of graphene–molecule adsorption complexes, including
several van der Waals density functionals as well as the non-local correlation functional rVV10 and
the dispersion corrected PBE-D3. We find that the highest accuracy is provided by vdW–DF2
and the two realizations of vdW–DF3, the most recent generations of the van der Waals density
functional family. In addition, we use a reduced-gradient analysis technique to examine the mate-
rial’s exchange energy. This analysis resolves contributions to the exchange interaction energy as
a function of the reduced-gradient s, revealing regimes of s that are important components of the
interaction energy of these systems. In doing so, we identify the best functionals currently available
and initiate discussion on desirable traits of each functional for modeling surface adsorption.

I. INTRODUCTION

Molecular surface adsorption has seen wide use and
great impact on technology and industry, the properties
of which vary greatly depending on the molecule or sub-
strate used. Graphene in particular is a material that
has experienced a rapid growth of interest—as an adsorp-
tion substrate it has been studied in many different con-
texts including catalysis,1–3 lubrication,4–6 corrosion,7

modeling astrophysical conditions,8 and many more.9–12

Advancements have also been made towards water
filtration,13–15 DNA sequencing,16–18 and trace molecule
detection with methods such as surface-enhanced Raman
spectroscopy, for which graphene was found to act as an
excellent nanoplatform due to its stability and uniform
structure.19

The inclusion of dispersion forces, vital for accurately
modeling surface adsorption, has been one of the most
important advances in the development of density func-
tional theory (DFT) in the last two decades.20–25 Such
dispersion forces are missing in widely used generalized
gradient approximation (GGA),26–31 and one approach
to include them is through the use of a correction to an
already existing functional, as is done with the DFT-D
methods.26,32–34 Another method to treat these cases is
with a meta-generalized gradient approximation (meta-
GGA) functional. First created by Tao and Perdew in
the form of TPSS, derivatives such as M06L and SCAN
better account for dispersion-bonded systems.35–38 One
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can also use an explicit non-local correlation term that
accounts for long-range dispersion interactions as a func-
tional of the electron density alone. Langreth, Lundqvist,
and coworkers developed the first of these so-called van
der Waals density functionals (vdW–DF), a family that
has grown significantly since its inception.27,39–49 The
vdW–DF functional introduced non-local correlation as
a separate term containing a density-density interaction
kernel that was inspired by the plasmon-pole model and
adheres to four exact physical constraints. It also retains
a gradient-corrected exchange at the GGA-level of the-
ory, which is based on the local electronic density n(r)
and the reduced-gradient, s(r) ∝ |∇n(r)|/n(r)4/3, and
is vital to the short- and mid-range regions of binding
curves; in fact, using an exchange description at the lo-
cal density approximation (LDA) level, using only n(r),
causes significant spurious binding.50,51

The potential applications of these functionals towards
graphene adsorption were recognized soon after the de-
velopment of vdW–DF, and were the subject of extensive
research by Schröder and coworkers: early examples in-
cluded studies of vdW–DF on the adsorption of aromatic
organic molecules and later branched out into more var-
ied and complex systems.52–59 The variety of adsorbates
studied over the last two decades, combined with the
growing presence of new and improved non-local den-
sity functionals, makes clear the need for a comprehen-
sive benchmark review of graphene adsorption. In this
study, we apply nine such functionals to a data set of
21 different molecules adsorbed onto graphene. These 21
systems are subdivided into six classes consisting of no-
ble gases,60 chloroform (as shown in Fig. 1),61 diatomic
molecules,60 n-alkanes of the form CnH2n+2,

62 aromatic
hydrocarbons,63 and nucleobases.64 All reference ener-
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FIG. 1. Side and top view of chloroform (CHCl3) adsorbed
onto a graphene. H is in white, Cl in green, and C in black.

gies, save for the nucleobases and chloroform, stem
from temperature-programmed desorption (TPD).65 Nu-
cleobase adsorption energies were instead obtained via
isothermal titration calorimetry (ITC),66 while the chlo-
roform adsorption energy comes from single-atom gas
chromatography.67

While dispersion interactions have an important role
in physisorption, they vary far more slowly with sep-
aration than the exchange effects, which are related
to orbital overlaps.50,51,68 Crafting appropriate GGA-
exchange-enhancement factors, Fx(s), has thus been an
important part of vdW–DF development, and is related
to the GGA exchange energy by

EGGA
x [n] =

∫
d3r n(r) ϵLDA

x

(
n(r)

)
Fx(s) , (1)

where ϵLDA
x

(
n(r)

)
is the exchange energy per particle at

the LDA level of theory. Various exchange-enhancement
factors are shown in Fig. 2. To analyze trends arising
from the exchange choice, we resolve the exchange energy
in s, as follows,

egx(s) = −3

4

(
3

π

)1/3∫
d3r n4/3

[
Fx

(
s(r)

)
−1

]
δ
(
s−s(r)

)
,

(2)
similar to the reduced-gradient analysis in Refs. [50, 68,
69]. Moreover, we recently applied this analysis to a
range of material classes, explaining why good functional
performance for one class of systems in no way guarantees
strong performance for other classes of systems.68 Thus,
using reduced-gradient analysis can highlight a means to
improve graphene adsorption modeling in future func-
tional development.
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FIG. 2. Exchange enhancement factors and their derivatives
for the eight functionals included in our study. The rVV10’s
enhancement factor is the same as DF2’s, i.e. revised PW86
exchange.50

II. COMPUTATIONAL DETAILS

All calculations were done using the quantum
espresso (QE) package70 and PBE ultrasoft pseu-
dopotentials of Garrity, Bennett, Rabe, and Vanderbilt
(GBRV),71 with a wave function cutoff of 50 Rydberg
and a density cutoff of 600 Rydberg.

Optimized lattice parameters of graphene were first
calculated for each functional. These calculations were
performed with a spacing of 20 Å between individual
layers of graphene, and a 12 × 12 × 1 k-point mesh in
the sampling of the Brillouin zone. Optimizations of
the adsorption system and its separate constituents used
Γ-point sampling of the Brillouin zone and convergence
criteria of 1 × 10−8 Rydberg for energies and 1 × 10−4

Rydberg/Bohr for forces. For each adsorbate, n× n× 1
supercells of graphene were chosen to provide a minimum
8.0 Å cushion between molecules in adjacent cells.

For nucleobases, Ref. [64] provides experimental ad-
sorption results in an alkaline environment and reports
separately the solvation energies for each nucleobase. Fol-
lowing the definition of the solvation energy outlined in
Refs. [64] and [72], we take the reported experimental
adsorption energy minus the solvation energy as the ref-
erence value in these calculations. Out of the four nucle-
obases, we found unusually large errors in the adsorption
energy for thymine relative to experiment. We believe
that this could be due to a possible error in the experi-
mental measurements, as other DFT studies show similar
disagreement for thymine.73,74 For this reason, we have
chosen to omit thymine from the results shown here. Re-
sults including the thymine-graphene system are given in
the Supporting Information.

In the reduced-gradient analysis, we compute the
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FIG. 3. Binding distances for all systems in the benchmark set. Vertical lines divide each subgroup of the set. All distances
are provided in the SI.

change arising due to adsorption by

∆egx(s) = esystemgx (s)− emolecule
gx (s)− egraphenegx (s) . (3)

We may also resolve the gradient contribution to the in-
teraction force, defined as

∆kgx(s) = −d∆egx(s)

d|a|
,

where a is the separation between the adsorbate and
graphene sheet.

In our illustration of the gradient contribution to the
exchange interaction energy, ∆egx(s), the DF3-opt1 en-
hancement factor is used. The overall appearance of
the exchange interaction curves has a similar shape
for different functionals with a scale factor given by
F (s)/FDF3−opt1(s), in addition to smaller self-consistent
effects of updating the electronic density n(r) and the
Kohn-Sham orbitals. However, this scaling significantly
impacts the binding separations and total energy. To
calculate the gradient contribution to the exchange force
∆kgx(s) of adsorbed chloroform, we took the difference
between two ∆egx(s): one at equilibrium distance from

the graphene sheet, and one displaced by 0.1 Å from
equilibrium.

In our study, we include several van der Waals den-
sity functionals: vdW–DF,27 vdW–DF-optB88,41 vdW–
DF-cx,42 vdW–DF2,39 vdW–DF2-B86R,43 vdW–DF3-
opt1,44 and vdW–DF3-opt2.44 For brevity, they are re-
ferred to as DF1, DF1-optB88, DF1-cx, DF2, DF2-B86R,
DF3-opt1, and DF3-opt2, respectively. These function-
als differ only in their non-local correlation and GGA
exchange terms. Their enhancement factors, Fx(s), are
shown in Fig. 2. We also include the non-local cor-
relation functionals rVV1049—a revision of the earlier
VV1048 that is better suited for plane waves—and the
popular force-field dispersion-corrected GGA75 variant

PBE-D3,33 with zero/damping. While these cannot be
compared with the van der Waals density functionals
through a reduced-gradient analysis focused solely on the
exchange, we nonetheless include them in the benchmark
study.

III. RESULTS AND ANALYSIS

A. Lattice Constants

The full results of our benchmark for the graphene lat-
tice constants are given in the supporting information.
All the functionals predict experimental lattice constants
with an absolute relative deviation less than 1%. Among
them, vdW–DF1-cx and vdW–DF3-opt1 have the best
agreement with experiment, both falling within the range
of the reported measurement error.76

B. Adsorption Distances

Figure 3 shows the distance between each of our ad-
sorbates and the graphene substrate for all of the tested
functionals. DF1 demonstrates the greatest adsorption
distance for every adsorbate studied. This can be traced
back to its exchange form, as neither DF1-cx nor DF1-
optB88 follow the same trends. The difference in sepa-
rations for DF2 and DF2-B86R is smaller, with notable
exceptions for the aromatic hydrocarbons and certain n-
alkanes. In these cases, separations predicted by DF2
exceed those of DF2-B86R by as much as 0.1 Å. DF3-
opt1 and DF3-opt2 also deviate little from one another.
Figure 4 shows ∆kgx(s) for adsorbed chloroform. This

force is relevant to the binding distance and is generally
dependent on lower values of s than the energy. Compar-
ing this curve with each functional’s enhancement factor
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FIG. 4. s-resolved gradient contribution to the exchange
interaction force ∆kgx(s) between chloroform and graphene.

in Fig. 2 can explain much of the trend; in particular, the
position of the zero-crossing, here around s = 1.2, is cru-
cial. For DF1, we see that the positive region of ∆kgx(s)
beyond that point is enhanced much more than the neg-
ative region, resulting in a greater repulsive contribution
from the gradient exchange. DF2 predicts similarly large
binding distances, and had previously been observed to
overestimate solid lattice constants due to the fact that
its PW86r enhancement factor grows very quickly in the
region of s < 0.5. DF2-B86R implements an enhance-
ment factor that increases slower in the low s limit, as can
be seen by its derivative in Fig. 2. This reduced enhance-
ment is also present in higher ranges of s, which are more
relevant to dispersion-based geometries. For this reason,
DF2-B86R displays shorter binding distances than DF2
within our study.

C. Adsorption Energies

Figure 5 shows the adsorption energies and respec-
tive relative deviations for all systems in our data set.
The accuracy varies significantly between the different
functionals, with variants using DF1 correlation tend-
ing to overestimate binding energies while PBE-D3 and
the later DF2 variants slightly underestimate on average.
DF2 takes a coefficient of the internal exchange, Zab =
−1.887, that is larger than DF1’s −0.8491, effectively
“scaling” the dispersion interactions to larger separations
and causing reduced dispersion interactions.20,51 This
corrects for the overbinding in the molecular dimers,39,77

and has also resulted in smaller binding for other classes
of systems.44

rVV10 and the two DF3 variants generally give rela-
tive deviations between those of DF1 and DF2 variants.
While the optimizations of DF3 take different Zab’s, DF3-
opt1 being that of DF1 and DF3-opt2 being that of DF2,
they also use a form of the non-local correlation that
is based on a different dispersion model than the previ-

ous generations. These new vdW-DF3 functionals also
improved performance for a broad variety of systems,
including benzene-to-metal surface adsorption, which is
structurally similar to the systems in our benchmark.
It is notable that the noble gases, diatomic molecules,

and nucleobases all deviate from the observed trends of
DF1-, DF2-, and DF3-type functionals. More function-
als tend to underestimate the binding of noble gases and
overestimate that of the diatomic molecules. The bind-
ing of adenine and guanine are also more often overesti-
mated, though this trend does not extend to cytosine.
Figure 6 shows the mean deviations (MD), mean ab-

solute deviations (MAD), and mean absolute relative de-
viations (MARD) of all system classes in our data set.
Due to the weak-binding nature of the diatomics and
nucleobases, the MARD’s of DF1 generation function-
als are all high for those systems, exceeding 10% in all
cases. For other system classes, the n-alkanes and aro-
matic hydrocarbons, accuracy is dependent on size. As
Fig. 5 shows, relative deviations in binding energy tend
to increase slightly with respect to n-alkane size. For
aromatics, the experimental binding energies shift from
strong to weak binding as adsorbates increase in size,
particularly between naphthalene and coronene.
In Fig. 7 we show two components of the adsorption en-

ergy for each of the n-alkanes in our study, the non-local
correlation and gradient contribution to exchange, ad-
justed for the number of carbon atoms in each molecule.
With the non-local correlation providing an attractive
contribution and the gradient exchange providing a re-
pulsive contribution, the overbinding of DF1-type func-
tionals can be traced to the large non-local correlation
that is not sufficiently compensated by the gradient ex-
change form. We also note that the non-local contribu-
tions of DF2 and DF3 are very similar for this class of
systems. This benefits the accuracy of DF3-opt1 in par-
ticular, which has a slightly smaller gradient exchange
contribution that prevents it from underbinding to the
same extent as DF2 and DF2-B86R.

D. Reduced-Gradient Analysis of Binding Energies

To further understand the factors that drive func-
tional performance in our study, we make use of reduced-
gradient analysis. As outlined in the Introduction, we
begin with the generalized gradient approximation of ex-
change and isolate contributions from the gradient of the
charge density. For a given system, we resolve the gradi-
ent contribution to the interaction energy as a function
of the reduced density gradient s, a dimensionless param-
eter that forms the argument of the exchange enhance-
ment factor Fx(s). This s-resolved gradient contribution
to the exchange interaction is denoted by ∆egx(s). By
calculating ∆egx(s) for select systems in our data set, we
reveal which values of the reduced gradient contribute
the most to interaction energy. This, in-turn, allows us
to draw a line of cause-and-effect between the shape of
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FIG. 5. Interaction energies (top) and relative deviations in the interaction energy (bottom) for all systems in the benchmark
set. All energies and deviations are provided in the SI.

a van der Waals density functional’s exchange enhance-
ment factor and its performance.

Figure 8 shows ∆egx(s) curves for a few representative
systems in our benchmark. Each curve possesses a neg-
ative region, causing attraction, and a positive region,
causing repulsion. The mechanism by which the gradi-
ent exchange transitions from attraction to repulsion can
be elegantly described in terms of the topological evolu-
tion of s iso-surfaces, which is discussed in the appendix.
For our analysis, we use the ratio Fx(smax)/Fx(smin) as a
shorthand for how a given enhancement factor balances
these two regions, with smin and smax denoting the lo-
cation of peaks in the negative and positive region, re-
spectively. The larger this ratio is for a given functional,
the more repulsive is its gradient contribution to the ex-
change interaction energy.

We can demonstrate this with the example of adsorbed
chloroform, which has a smin and smax of 1.19 and 1.71,
respectively. DF1-optB88 severely overbinds this system
to a degree that ordinary DF1 and DF1-cx do not. We
trace this behavior directly to their respective enhance-

ment factors, as the ratio Fx(smax)/Fx(smin) is 1.142,
1.129, and 1.117 for DF1, DF1-cx, and DF1-optB88, re-
spectively. As a result, DF1-optB88 recieves a smaller
repulsive contribution from exchange, insufficient to off-
set the strong binding of DF1’s non-local correlation.

We also apply our analysis to the entire benchmark
set in aggregate. For the ∆egx(s) curves in Fig. 8 we
find an average smin of 1.18 and an average smax of 1.79.
The corresponding Fx(smax)/Fx(smin) ratios are 1.167 for
DF1, 1.154 for DF1-cx, and 1.138 for DF1-optB88, so we
expect the average exchange energies to scale as DF1 >
cx13 > optB88. This is exactly what we see in Fig. 6,
with MD’s of −32, −67, and −140 meV for DF1, DF1-
cx, and DF1-optB88, respectively. All three overestimate
binding however, which suggests that a functional with
DF1 non-local correlation should have an enhancement
factor that increases more sharply in the regime of 1.18 <
s < 1.79 in order to describe these systems accurately.

We draw a similar comparison between DF2 and DF2-
B86R, as they are both identical to one another except
for their forms of the enhancement factor. The ratio
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Fx(1.79)/Fx(1.18) is 1.127 for ordinary DF2 and 1.124
for DF2-B86R, though the B86R enhancement factor in-
creases more quickly beyond s = 1.8, suggesting that
the interaction energy of these two functionals should
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be nearly the same across our entire set, but that DF2-
B86R’s should be slightly larger. Again this is exactly
what we observe, with DF2 having an overall MD of 20.9
meV, just a bit lower than DF2-B86R’s 21.4 meV. The
underestimation of binding energies by these two func-
tionals suggests the need for a slowly increasing enhance-
ment factor in the regime of 1.2 < s < 1.8. This is in
fact fulfilled by DF3-opt2 in its revised B86b form. While
DF3-opt2’s non-local correlation differs from that DF2,
the second optimization was designed to be an improved
analog to DF2 in both its exchange and correlation. In-
dicative of this, DF3-opt2 has Fx(1.79)/Fx(1.18) = 1.106,
significantly smaller than either of the DF2 forms.

A motivation for analyzing the set in aggregate is to
compare the s signature with other types of systems.
In Ref. [68], we calculated the s signatures of molecular
dimers in the S22 test set, molecular crystals in the X23
test set, several layered systems, and three coinage met-
als with adsorbed benzene. These signatures are char-
acterized in part by the s value at which gradient ex-
change contributions switch from negative to positive,
called s∆e

0 . For the graphene adsorption systems an-
alyzed here, we find an average s∆e

0 of 1.41. Of the
systems studied in Ref. [68], by far the closest to this
are the X23 molecular crystals with an average s∆e

0 of
1.44, followed by dispersion-bonded dimers at 1.51. The
other system types—hydrogen-bonded dimers, layered
systems, and benzene-metal adsorption systems—all av-
eraged less than 1.2 in s∆e

0 . For future functional de-
velopment, this would suggest a low degree of tunabil-
ity between graphene adsorption and molecular crystals.
The good performance of DF3 for graphene adsorption,
and its subpar performance in the X23,44 illustrates the
challenges of further improving the accuracy within the
vdW-DF framework. However, the s signatures of our
graphene data set are much more diverse than those of
the X23 or S22, which makes it a valuable benchmark set
for functionals.

IV. CONCLUSION

We have presented a benchmark study of the adsorp-
tion of molecules onto graphene, and in the process we
have compared the accuracy of various van der Waals
density functionals from each of the first three genera-
tions. We have found that all functionals perform well
in the calculation of the graphene lattice constant, but
that significant differences lie in the adsorption ener-
gies. vdW–DF2 and the two forms of vdW–DF3, opt1
and opt2, show the best accuracy out of the function-
als tested. We find that the first generation of vdW–DF
broadly overestimates binding energies, and that this ef-
fect is mitigated or exacerbated by the choice in the GGA
exchange, as shown by the difference between DF1 and
DF1-optB88. The non-local correlation functional rVV10
also shows good accuracy within our set. However, its
performance is also unbalanced; it excels in modeling no-

ble gas and n-alkane adsorption but falls behind in the
case of nucleobases and diatomic molecules. Despite good
accuracy in our benchmark, it is worth keeping in mind
that DF2 struggles more broadly with coinage metal sur-
face adsorption, interlayer separations (including that of
graphite), and solid lattice constants.43,44,78–80 We also
find that PBE-D3 almost always underestimates binding
by a significant amount.
We have also shown how reduced-gradient analysis can

be used to account for the differences between different
variants of vdW–DF within each vdW–DF generation.
This analysis shows that s values of 1.18 and 1.79 are the
most significant contributors to the adsorption energy of
these systems, and that the accuracy of a functional for
a given non-local correlation is largely dependent on the
shape of its exchange enhancement factor between these
two points. Our analysis also provides insight as to what
characteristics help or hurt a functional’s evaluation of a
given system, revealing matches of the GGA exchange to
each non-local correlation that optimize the accuracy of
the interaction energy.
In summary, we find that the most recent vdW–

DF generation, vdW–DF3, offers not just improved ac-
curacy but improved consistency over past functionals
that have sought to model long-range dispersion inter-
actions. Moreover, the insights provided by reduced-
gradient analysis point to avenues of improvement for
several of the functionals in our study. These insights
can guide further functional development for dispersion-
bonded systems.
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Appendix A: Reduced-Gradient Analysis

Reference [68] describes the mechanism by which gra-
dient exchange contributions switch from attractive to
repulsive with increasing s. For a broad array of sys-
tems including molecular dimers, molecular crystals, and
layered structures, this process is shown to be the result
of a topological change between the s iso-surfaces of a
given system. Figure 9 shows several iso-surfaces of s
for graphene-adsorbed chloroform. Each iso-surface of s
corresponds to a point in chloroform’s ∆egx(s) that con-
tributes to the exchange energy. Onto each iso-surface
we map the charge density as a color. When calculating
the exchange energy of a certain s value, we are effec-
tively integrating over the two-dimensional space of the
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FIG. 9. Iso-surfaces of s in CHCl3 adsorbed onto graphene with their corresponding values of ∆egx(s), as generated using
vdW–DF3-opt1. Charge density [e/Bohr3] is color mapped onto each iso-surface. Although plots of charge transfer during
bond formation81–85 show some similarities to iso-surfaces of s, they convey an important but fundamentally different concept
of van der Waals bonding that is less relevant in the context of a reduced-gradient analysis.

s = 1.10

FIG. 10. An iso-surface of s = 1.10 in a butane-graphene
complex with charge density [e/Bohr3] in color mapped onto
the surface. Charge densities were obtained using the DF3-
opt1 functional.

iso-surface according to Eq. (2), so areas of high charge
density contribute more to the energy. For s = 0.90
there are three distinct surfaces of s: one around the
chloroform molecule, one above the graphene substrate,
and one in between them. When calculating the inter-
action energy of this system using Eq. (3), we subtract
out the chloroform and substrate surfaces, leaving only
the “disk” in the center. The charge density on this disk
forms the sole negative contribution to ∆egx(s = 0.90).
When we increase the iso-value to s = 1.05, each of the
three surfaces grow outward from their respective center

points. Now not only is the disk larger, giving more area
to integrate over for the exchange, but the charge density
on the surface is higher due to its closer proximity to the
molecule and substrate. As a result there is an increase
in the negative exchange interaction, which is reflected
by a downward slope in ∆egx(s = 1.05). At s = 1.16 the
central disk begins to merge with the molecule and sub-
strate surfaces, meaning that positive contributions from
esystemgx in Eq. (3) are no longer being cancelled out. As
a direct consequence, ∆egx(s) shifts to a positive energy.
Then, at larger iso-values such as s = 1.40, 1.70, and 3.00,
the merger completes itself and ∆egx(s) regresses asymp-
totically to zero due to a lowering of charge density as
the s iso-surface grows farther away from the molecules.

This pattern of expansion, merging, and regression
that dictates the rise and fall of the gradient exchange in-
teraction can also be seen in all other systems. We show
this using the butane-graphene complex as an example,
shown in Fig. 10. Even though butane is highly dissimi-
lar from chloroform in its geometry, we still see the same
three iso-surfaces: one surrounding the butane molecule,
one above the graphene sheet, and an interactive “disk”
in the middle. Note that at an iso-surface of s = 1.10 as
shown in the figure, the disk has barely begun to merge
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with the other surfaces at its edges. Accordingly, bu-
tane’s ∆egx(s) curve in Fig. 8 reaches a global minimum

at around this point and then begins to increase with
higher s.
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[62] S. L. Tait, Z. Dohnálek, C. T. Campbell, and B. D. Kay,
n-alkanes on Pt(111) and on C(0001)/Pt(111): Chain
length dependence of kinetic desorption parameters, The
Journal of Chemical Physics 125, 234308 (2006).

[63] R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer cohe-
sive energy of graphite from thermal desorption of pol-
yaromatic hydrocarbons, Physical Review B 69, 155406
(2004).

https://doi.org/10.1002/jcc
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.5090222
https://doi.org/10.1063/1.5090222
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1103/PhysRevLett.91.146401
https://doi.org/10.1063/1.2370993
https://doi.org/10.1063/1.2370993
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1021/acs.jpclett.0c02405
https://doi.org/10.1021/acs.jpclett.0c02405
https://doi.org/10.1103/PhysRevB.82.081101
https://doi.org/10.1103/PhysRevB.81.161104
https://doi.org/10.1103/PhysRevB.81.161104
https://doi.org/10.1088/0953-8984/22/2/022201
https://doi.org/10.1088/0953-8984/22/2/022201
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevB.89.035412
https://doi.org/10.1103/PhysRevB.89.121103
https://doi.org/10.1021/acs.jctc.0c00471
https://doi.org/10.1021/acs.jctc.0c00471
https://doi.org/10.1103/PhysRevB.99.195418
https://doi.org/10.1063/1.4986522
https://doi.org/10.1063/1.4986522
https://doi.org/10.1103/PhysRevX.12.041003
https://doi.org/10.1103/PhysRevX.12.041003
https://doi.org/10.1063/1.3521275
https://doi.org/10.1063/1.3521275
https://doi.org/10.1103/PhysRevB.87.041108
https://doi.org/10.1021/ct900365q
https://doi.org/10.1021/ct900365q
https://doi.org/10.1103/PhysRevB.87.205421
https://doi.org/10.1103/PhysRevB.87.205421
https://doi.org/10.1103/PhysRevLett.96.146107
https://doi.org/10.1103/PhysRevLett.96.146107
https://doi.org/10.1016/j.susc.2017.06.012
https://doi.org/10.1155/2013/871706
https://doi.org/10.1155/2013/871706
https://doi.org/10.1088/0953-8984/24/42/424212
https://doi.org/10.1088/0953-8984/24/42/424210
https://doi.org/10.1088/0953-8984/24/42/424210
https://doi.org/10.1063/1.4764356
https://doi.org/10.1063/1.4764356
https://doi.org/10.1088/0953-8984/23/13/135001
https://doi.org/10.1088/0953-8984/23/13/135001
https://doi.org/10.1103/PhysRevB.74.155402
https://doi.org/10.1103/PhysRevB.74.155402
https://doi.org/10.1021/acs.jpcb.5b10033
https://doi.org/10.1021/acs.jpcb.5b10033
https://doi.org/10.1006/jcis.1999.6522
https://doi.org/10.1006/jcis.1999.6522
https://doi.org/10.1063/1.2400235
https://doi.org/10.1063/1.2400235
https://doi.org/10.1103/PhysRevB.69.155406
https://doi.org/10.1103/PhysRevB.69.155406


11

[64] N. Varghese, U. Mogera, A. Govindaraj, A. Das,
P. K. Maiti, A. K. Sood, and C. N. R. Rao, Bind-
ing of DNA nucleobases and nucleosides with graphene,
ChemPhysChem 10, 206 (2009).

[65] P. A. Redhead, Thermal desorption of gases, Vacuum 12,
274 (1962).

[66] E. Freire, O. L. Mayorga, and M. Straume, Isother-
mal titration calorimetry, Analytical Chemistry 62, 950
(1990).

[67] S. Greene and H. Past, The determination of heats of ad-
sorption by gas-solid chromatography, Journal of Physi-
cal Chemistry 62, 55 (1958).

[68] T. Jenkins, K. Berland, and T. Thonhauser, Reduced-
gradient analysis of van der Waals complexes, Electronic
Structure 3, 034009 (2021).

[69] A. Zupan, J. P. Perdew, K. Burke, and M. Causa,
Density-gradient analysis for density functional theory:
Application to atoms, International Journal of Quantum
Chemistry 61, 835 (1997).

[70] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavaz-
zoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carn-
imeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A.
DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia,
M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli,
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