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The Casimir interaction and torque are related phenomena originating from the exchange of
electromagnetic excitations between objects. While the Casimir force exists between any types of
objects, the materials or geometrical anisotropy drives the emergence of the Casimir torque. Here
both phenomena are studied theoretically between dielectric films with immersed parallel single
wall carbon nanotubes in the dilute limit with their chirality and collective electronic and optical
response properties taken into account. It is found that the Casimir interaction is dominated
by thermal fluctuations at sub-micron separations, while the torque is primarily determined by
quantum mechanical effects. This peculiar quantum vs. thermal separation is attributed to the
strong influence of reduced dimensionality and inherent anisotropy of the materials. Our study
suggests that nanostructured anisotropic materials can serve as novel platforms to uncover new
functionalities in ubiquitous Casimir phenomena.

I. INTRODUCTION

The discovery of layered materials has elevated the im-
portance of van der Waals (vdW) interactions as they are
responsible for keeping their inert components together
[1, 2]. Advanced computational schemes have been im-
plemented in state of the art density functional theory
packages to take into account the vdW energy when sim-
ulating various materials properties [3–5]. The materials
aspects of the Casimir force, a retarded vdW interaction,
has also generated significant interest [6]. This ubiqui-
tous interaction governs not only the performance of mi-
cro and nanomachines, but it also probes fundamental
properties stemming from Dirac and topologically non-
trivial physics [7].

Another aspect of Casimir phenomena is the ability
to generate Casimir torque when optically anisotropic
materials are involved [8–10]. Indeed, the misalignment
of the inequivalent optical axis of two bodies results in
their relative rotation when electromagnetic (EM) fluc-
tuations are exchanged. This type of motion has been re-
cently demonstrated in the laboratory in birefringent liq-
uid crystal systems [11] giving further impetus of enhanc-
ing our possibilities to study basic physics via EM inter-
actions. The main ingredient for a large Casimir torque
is the materials strong anisotropy ensuring a substantial
effect at various separations and temperature ranges. In
this context, quasi-one dimensional structures, in which
optical and geometrical anisotropies are combined, pro-
vide excellent conditions for angular dependence of the
force and much enhanced Casimir torque [11, 12].
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Theoretical studies of the Casimir energy and torque
rely on the Lifshitz formalism, where the relative ori-
entation of the optical axis of materials separated by a
distance D is taken into account in the EM boundary
conditions. Typically, the torque decays roughly as D−3

and it has the characteristic sin(2φ) behavior. Also, its
sign and magnitude depend on the optical properties of
the materials [13–17]. Additionally, the angular depen-
dence of the vdW and Casimir force has been explored
in cylindrical quasi-one dimensional structures, for which
optical levitation of a nanorod above a birefringent crys-
tal has been proposed [18, 19].

In order to further exploit rotations generated by
Casimir torque for manipulating micro and nano-
machines, more studies are necessary to identify ma-
terials with strong anisotropy. In this regard, carbon
nanotubes and metasurfaces containing single-wall car-
bon nanotubes (SWCNs) are quite suitable due to their
quasi-one dimensionality. Such materials offer new appli-
cations in quantum electron transport, electron energy-
loss spectroscopy, and mechanical reinforcement [20–22].
Ultrathin films composed of periodically arranged nan-
otubes have recently emerged as transdimensional ma-
terials with extraordinary optoelectronic properties [23–
26]. SWCN films can also support plasmon, exciton, and
phonon-polariton eigenmodes. This brings novel aspects
in light-matter interactions with nanotube chiralities, dif-
ferent mixtures, and dielectric background material as
effective ”knobs” of tunability [27, 28].

While much work has been devoted to properties of
individual carbon nanotube films, light-matter interac-
tions between such films has not been explored yet. Un-
derstanding how fluctuation-induced interactions occur,
the factors that control their strength and characteristic
behavior are questions of fundamental importance. In
this paper, we investigate Casimir phenomena between
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FIG. 1. Two identical ultrathin SWCN films separated by
a distance D along the z-axis. The nanotube radius is R and
the intertube separation is ∆. The SWCNs are imbedded
in a solid dielectric layer with thickness d ∼ 2R ≪ D and
effective background dielectric constant ϵb. Such films can be
immersed in a liquid dielectric surroundings with a dielectric
constant ϵs or be free-standing in air. The relative orientation
of the nanotube axis from both structures is denoted by φ.

two identical nanotube films using the Lifshitz formalism.
By taking into account the nanotube optical response
properties and the dielectric environment we show how
the interplay between anisotropy, quantum mechanical
and thermal fluctuations affect the ubiquitous Casimir
force. The Casimir torque, a direct consequence of the
anisotropy from the nanotube quasi-one dimensionality,
is also investigated. Due to the reduced dimensionality
and properties of the film, strong thermal fluctuations
are found to play a dominant role in the interaction en-
ergy, while quantum mechanical effects are much more
pronounced in the Casimir torque in the studied nm-µm
separation limit.

II. PROPERTIES OF CARBON NANOTUBE
THIN FILMS IN THE DILUTE REGIME

We consider an ultrathin single wall carbon nano-
tube (SWCN) film composed of identical parallel aligned
SWCNs embedded in a solid dielectric layer with thick-
ness d and effective background dielectric permittivity
ϵb being a real constant. Such a film can be immersed
in liquid dielectric surroundings with a dielectric con-
stant ϵs, or it can be free-standing in air. The SWCN
array, schematically shown in Fig. 1, is aligned along the
y axis, and adjacent nanotubes are separated by a dis-
tance ∆ in the x-direction (bottom material). The basic
properties of each SWCN are captured by their chirality
index (n,m), which also determines the SWCN radius

R =
√
3b

2π

√
m2 + nm+ n2 (b = 1.42 Å is the C–C inter-

atomic distance) [29].

Since the SWCN radius (R is in the nm range) is much
smaller than its length (typically in the µm range), the
optical response along the y-direction is essentially domi-
nated by the collective longitudinal response of the array,
while the response along the x-axis is entirely due to the
dielectric medium. This in-plane anisotropic SWCN film
can be treated as a quasi-2D system, where the vertical
confinement due to the film thickness can be taken into
account via an effective model using the Keldysh-Rytova
potential [30], as done in recent works for closely packed
SWCN films [27, 28]. Casimir interactions in densely
packed SWCN film systems were recently studied in Ref.
[31]. The focus of our studies here is on the ’dilute SWCN
film’ regime, however, defined as ∆ − 2R ≫ ϵbd/(2ϵs)
with d∼2R. In this case, the intertube electrostatic cou-
pling is given by a d-independent 2D Coulomb interac-
tion potential with a screening constant ϵs of the dielec-
tric surrounding of the film [30]. As a consequence, the
low-frequency (quasi-static) response of the SWCN ar-
ray in the y-direction is predominantly due to individual
SWCNs [32], while its higher-frequency optical (dynam-
ical) response comes from the collective inter-tube exci-
ton energy exchange due to induced dipole-dipole interac-
tions [28]. The former can be represented by the properly
normalized intraband surface conductivity of the individ-
ual constituent SWCN found in Ref. [32]. The latter can
be described by the dynamical surface conductivity of
the SWCN array obtained from its collective excitonic
response function reported recently in Ref. [28].
Taking the above into account, the total surface con-

ductivity of the SWCN array along the y-direction is
(Gaussian units)

σarray
yy (ky, ω) =

2πR

ϵs∆
σintra
yy (ky, ω)

(1)

+
ϵbd

2π

iωK(ky)σ
inter
yy (ky, ω)

iω +K(ky)σinter
yy (ky, ω)

.

The first term in the above expression is the intraband
surface conductivity contribution coming from the single-
tube intraband conductivity per unit surface,

σintra
yy (ky, ω) = −2αcvF

π2R

iω − 1/τ

(iω − 1/τ)2 + (vF ky)2
, (2)

where ky is the absolute value of the electron quasi-
momentum along the SWCN axis, α=e2/ℏc, vF =c/300
is the electron Fermi velocity in graphene, and τ is the
phenomenological relaxation time parameter. This can
be obtained by dividing its analogue per unit length of
Ref. [32] by 2πR. The dimensionless prefactor 2πR/∆
represents the surface fraction of the aligned SWCNs in
the array.
The second term in Eq.(1) is the interband surface con-

ductivity contribution and it can be found from its 3D
equivalence σ(ω) = (−iω/4π))(ϵ(ω)− ϵ) that relates the
conductivity per unit volume to the dynamical response
function of bulk isotropic material with static permittiv-
ity ϵ (see, e.g., Ref. [35]). In this relationship, the right-
hand side must be multiplied by d to obtain conductivity
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FIG. 2. Scaled by σ0 = αc/4 optical conductivity along
the y-axis for a carbon film composed of (12,0) SWCNs at
different separations ∆ in (a) real frequency and (b) imaginary
frequency domains. Here ky = 1/R and ℏ/τ = 6.61 meV
corresponding to τ = 100 fs [33, 34].

per unit surface, the in-plane collective optical response
ϵ(ky, ω) must be used for ϵ(ω) and ϵb for ϵ. The in-plane
collective response function ϵ(ky, ω) in the alignment di-
rection of the finite-thickness periodically aligned SWCN
films was obtained in Ref. [28] using the many-particle
Green’s function formalism in the Matsubara formulation
combined with the effective model based on the Keldysh-
Rytova potential to include nonlocal plasmonic effects
due to strong vertical confinement in ultrathin films sys-
tems [36–41]. This yields the interband contribution to
the SWCN array surface conductivity in Eq.(1), where
σinter
yy (ky, ω) is the interband conductivity of the indi-

vidual SWCN (metallic or semiconducting) constituent,
which can be found numerically using the Kubo formula
and (k · p) method of the electronic band structure cal-
culations [42], and the function

K(ky) = fCN

m∗ω2
p(ky)d

e2N2DR
(3)

with fCN = πR2/(∆d) being the volume fraction of the

SWCNs in the film. In essence, K(ky) captures the ef-
fect of collective oscillations of the surface electron den-
sity along the SWCN alignment direction with nonlocal
plasma frequency

ωp(ky) =

√
4πe2N2D

m∗ϵb d

2kyRI0(kyR)K0(kyR)

1 + 2ϵs/(ϵbkyd)
, (4)

where m∗ is the electron effective mass, N2D (=N3Dd) is
the surface electron density, ky is the absolute value of the
quasi-momentum along the nanotube axis, and I0 andK0

are the zeroth-order modified cylindrical Bessel functions
responsible for the correct normalization of the electron
density distribution over cylindrical surfaces [37].
The conductivity component σarray

xx along the x-
direction can similarly be obtained from the 3D expres-
sion as discussed earlier. Given that the SWCN response
is negligible in directions transverse to the nanotube axis,
one finds,

σarray
xx (ω) = −d

iω

4π
(ϵb − ϵs). (5)

The above expression corresponds to the in-plane collec-
tive optical response function along the x-direction of the
finite-thickness periodically aligned SWCNs.
With all of the above, the two-component in-plane sur-

face conductivity tensor of the diluted quasi-2D SWCN
array takes the diagonal form,

σ̂ =

(
σarray
xx (ω) 0

0 σarray
yy (ky, ω)

)
(6)

with its individual components defined by Eqs. (1)–(4).
In Fig. 2, we show the calculated optical conductivity

along the y-axis for a film composed of (12,0) SWCNs,
taken as an example system. For the chosen values of ∆
it is assumed that the dilute regime ϵs

ϵb
∆ ≫ 2R holds (see

earlier discussions). The optical transitions in the ℏω > 1
eV region result from the interband transitions of the col-
lective excitations as shown in the above equations. We
find that although smaller ∆ moves the transitions to-
wards smaller frequencies, the shift is rather minor. The
main role of the intertube separation is much more pro-
nounced in the strength of the transitions, which can also
be seen in the imaginary frequency domain. As shown in
Fig. 2b, the larger nanotube density per unit area results
in a stronger overall response, which is important for the
Casimir phenomena as discussed below.
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FIG. 3. Density plots in (φ,D) space of (a) Casimir energy E normalized to EM = − π2ℏc
720D3 and (h) Casimir torque T = T /EM

for a SWCN film composed of (12,0) nanotubes with ∆ = 10R. E/EM as a function of separation D for (b) ∆ = 10R, (c)
∆ = 20R, (d) ∆ = 50R for optical axis relative orientation with φ = {0, π

4
, π
2
}. E/EM as a function of angle φ for (e) ∆ = 10R,

(f) ∆ = 20R, (g) ∆ = 50R for separation film between D = {32, 100, 316} nm. T as a function of separation D for (b) ∆ = 10R,
(c) ∆ = 20R, (d) ∆ = 50R for optical axis relative orientation with φ = {π

8
, π
4
, 3π

8
}. T as a function of angle φ for (e) ∆ = 10R,

(f) ∆ = 20R, (g) ∆ = 50R for film separation D = {32, 100, 316} nm.

III. CASIMIR EFFECTS AT THE QUANTUM
AND THERMAL LIMITS

For the Casimir phenomena we consider two identical
SWCN films (each with thickness d = 2R) separated by
a distance D along the z-axis as displayed in Fig. 1
as each film is composed of the equally spaced (12,0)
nanotubes. In addition to the Casimir energy per unit
area E, a Casimir torque T = −∂φE per unit area is also
possible due to the optical anisotropy in this system set
by the nanotube axis. Within the Lifshitz formalism the
interaction energy and torque are found as

E = kBT

∞∑′

n=0

∫
d2k⊥

(2π)
2

× ln
∣∣∣1− e−2D

√
κ2
n+k2

⊥R0Rφ

∣∣∣ , (7)

T = −kBT

∞∑′

n=0

∫
d2k⊥

(2π)2
×

×tr

[(
1e2D

√
κ2
n+k2

⊥ − R0Rφ

)−1

R0
dRφ

dφ

]
. (8)

The above expressions are obtained in imaginary Mat-
subara frequencies ξn = cκn = 2πnkBT/ℏ and the prime
in the summation corresponds to the n = 0 term multi-
plied by 1/2. The response properties of the materials,
also taken in Matsubara frequencies, are captured in the
Fresnel reflection matrices found from standard electro-
magnetic boundary conditions [17]

Rφ =
2π

δφ

(
rxxφ rxyφ
ryxφ ryyφ

)
, (9)



rxxφ = −2π
(

σφ
yy

cλn
+ 2π

c |σφ|
)

rxyφ = − 2π
c σφ

yx

ryxφ = 2π
c σφ

xy

ryyφ = 2π
(
λn

σφ
xx

c + 2π
c |σφ|

)
δφ = 1 + 2π

c

(
λnσ

φ
xx +

σφ
yy

λn

)
+ 4π2

c2 |σφ| ,

, (10)

where λn =
√
k2
⊥c

2/κ2
n + 1 with k⊥ = (kx, ky) being the

two-dimensional wave vector and |σφ| = σφ
xxσ

φ
yy−σφ

xyσ
φ
yx.

The conductivity tensor components of the rotated film
can be obtained from σφ = R−1

φ,ẑσRφ,ẑ where σ is taken
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from Eq. 6 and Rφ,ẑ =

(
cosφ − sinφ
sinφ cosφ

)
is the rotation

matrix around the z-axis by an angle φ. The Fresnel
matrix R0 correspond to Rφ=0.

In Eqs. 7 and 8 we distinguish between the quan-
tum mechanical limit, in which the summation over Mat-

subara frequencies kBT

∞∑′

n=0

is replaced by the integral

ℏc
2π

∞∫
0

dκ, and the purely thermal limit, found from the

n = 0 Matsubara term. Both of these limits are exam-
ined in what follows.

The quantum mechanical Casimir energy Eqm and
torque Tqm are calculated numerically using the Lifshitz
expressions by taking the optical response model for the
SWCN films, as discussed earlier. In Fig. 3(a,h), we show
(φ,D) density maps with ∆ = 10R for both properties.
Clear signatures of the nanotube anisotropy are noted in
Fig. 3(a). At larger separations, where thermal effects
dominate, the interaction is strongest when the optical
films are aligned (φ = {0, π, 2π}) and weakest when the
optical axis of the fims are perpendicular to each other
(φ = {π

2 ,
3π
2 }). At smaller D, however, this trend is re-

versed: the strongest coupling occurs for perpendicular
optical axis, which was also recently found for the quan-
tum Casimir force in densely packed SWCN films [31].
To better understand the behavior of Eqm, we further
show its dependence upon distance separation for several
angles φ and parameter ∆.

We find that as D becomes larger and φ ̸= {π
2 ,

3π
2 },

Eqm approaches the limit of interacting metals with the
characteristic 1

D3 scaling law, as shown in Fig. 3(b-d).
This is not surprising since the interaction in this range
is dominated by the Drude-like response of the SWCN
film. As D becomes smaller, however, the energy expe-
riences a transition to a Eqm ∼ 1

D4 marking the onset
dominance of the interband optical response in Eq. 1.
The parameter ∆ and the particular distance at which
the scaling transition happens have a positive correla-
tion as shown in Fig. 3(b-d). While this is the case for
φ = {0, π

4 }, for φ = π
2 the energy is markedly differ-

ent. In this case, the Eqm ∼ 1
D4 behavior (typical for

the Casimir metal-dielectric interaction in 2D [43, 44])
is found in the entire distance range. Such orientation-
dependent Casimir-Polder scaling laws have also been
found in systems involving anisotropic particles [45], but
to our knowledge they have not been reported in two-
dimensional anisotropic materials. The angular depen-
dence of the Casimir energy is also shown in Fig. 3(e,
g). The oscillatory-like features are more pronounced for
SWNT films with smaller ∆ and smaller separations be-
tween the films.

The density plot in Fig. 3(h) shows that the Casimir
torque in the quantum mechanical regime displays the
characteristic sin(2φ) oscillations whose phase changes
to − sin(2φ) at a certain distance. This can also be seen
explictly in Fig. 3(i-k). Our results indicate that the dis-

tance at which the torque experiences this phase change
is closely related to the distance at which the energy
changes its D dependence (described earlier). The trend
that the phase change occurs at smallerD for smaller ∆ is
also observed in the Casimir torque. It appears that the
interband-intraband terms and their relevance at differ-
ent separation regimes are the main driving factor behind
this effect. The sin(2φ) oscillations are explictly given in
Fig. 3(i-k), which correlate with the oscillatory features
of the energy in Fig. 3(e-g). We also find that smaller ∆
results in larger Eqm and T qm as expected since denser
nanotube arrays have stronger response properties.
Casimir phenomena are also affected by temperature

as thermal fluctuations may become prominent even at
sub-micron sepations. This is the case especially for ma-
terials with reduced dimensions [46–51]. To capture the
role of temperature in the Casimir energy and torque of
the films, we first begin by considering the T -dependence
in the optical response properties. Many dielectric sub-
stances, such as teflon, polymers, or different types of
glass experience very weak temperature dependence in
their dielectric properties [52–54], thus here we assume
that ϵb is T -independent. The intraband conductivity of
the nanotube, however, is modified according to

σintra
yy (ky, ω, T ) = σintra

yy (ky, ω, 0)

× kBT

ℏvF ky
ln

(
e(µ−ℏvF ky)/kBT − 1

eµ/kBT − 1

)
,(11)

where σintra
yy (ky, ω, 0) is the intraband conductivity at

T = 0 (considered in the quantum limit calculations
discussed earlier) and the chemical potential is taken
to be µ = 0.5 eV [55]. It is noted, however, that the
dependence upon µ in the σintra

yy (ky, ω, T ) is relatively
weak. The above expression can be obtained by using the
Maldague formula [56]. On the other hand, the interband
conductivity of the nanotube film is not significantly af-
fected by temperature, as also shown in [38, 57] where
the combined effect of temperature and exciton-plasmon
coupling in the individual nanotubes was considered.
The T−dependent Casimir properties can subse-

quently be calculated by using the Lifhsitz formalism
with the explicit Matsubara summation in the energy
and torque expressions from Eqs. 7 and 8, respectively.
The special n = 0 term corresponds to the completely
classical thermal regime and here it is also evaluated sep-
arately. We find that in this case one has Rφ(κn = 0) =(
0 0
0 1

)
regardless of the relative angle φ. As a result, the

thermal Casimir energy is found as ET = − ζ(3)kBT
16πD2 . It

appears that in this classical thermal regime, the materi-
als properties (including their anisotropy) are absent, and
the Casimir energy is the same as the one for isotropic
Drude metals.
In Fig. 4(a,b), we give the (φ,D) density plots of the

ratio ET /E at T = 30 and T = 300 K, where E is calcu-
lated from Eq. 7. These results show that temperature
has a very strong effect on the Casimir energy. At lower
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T , quantum mechanical effects dominate the interaction
energy at separation less than 100 nm, but for larger D
thermal effects become much more prominent. At higher
temperatures, ET is much stronger even at D < 100 nm.
Another feature found here is that the strength of ther-
mal effects compared to the quantum mechanical inter-
action depend on φ. For φ = {π

2 ,
3π
2 }, quantum mechan-

ical effects are strong at smaller D and thermal effects
are strong at larger D as can be seen even at T = 30

K (4(a)). This transition shifts not only shifts towards
smaller separations as T = 300K, but the strength of
thermal fluctuations become more prominent (4(b)). For
φ = π, however, this trend does appear: thermal fluctua-
tions have a diminished role at larger D, but they appear
more prominent at intermediate separations. This type
of non-uniform φ dependence is associated with the phase
change behavior in the energy entangled with the optical
response of the film, as discussed earlier in this particular
angular axis orientation.

FIG. 4. Density plots in (φ,D) space of the Casimir energy ratio ET /Eqm of the (12,0) CNT films with ∆ = 10R at: (a)
T = 30 K and (b) T = 300 K. The Casimir energy ratio E/EM (obtained from Eq. 7) as a function of CNT film separation D
for (c) φ = π/8 and (d) φ = π/2 at different temperatures. The dashed lines correspond to the thermal limit from the n = 0
Matsubara term. The Casimir torque ratio T = T /EM (obtained from Eq. 8) as a function of separation D for (e) φ = π/8
and (f) φ = π/4 at different temperatures.

These trends are shown in more details in Fig. 4(c,d),
where the Casimir energy is shown for φ = π/8 and π/2
but at several temperatures. One can see that at small T
the energy deviates significantly from ET in the displayed
separation range for φ = π/8, however, for φ = π/2 the
energy tracks ET at larger D. As T increases, both ori-
entations exhibit similar onset of thermal fluctuations as
a function of distance separation. We further find that
due the weak T -dependence of the optical response of the
SWCN film, the Casimir energy at any temperature can
be represented simply by adding the quantum mechani-
cal Eqm and the n = 0 Matsubara term: E ≈ Eqm+ET .
In fact, the results shown in Fig. 4(c,d) obtained via Eq.

7 completely overlap, which makes the Matsubara sum-
mation redundant. The distance for quantum-thermal
effects transition in the Casimir energy is found by tak-
ing Eqm = ET and it is also displayed in Fig. 4(a,b)
(dashed black curves).

For the Casimir torque, we find that the classical n = 0
term vanishes indicating the absense of classical thermal
fluctuations. This unusual result is directly connected
with the peculiar form of the Fresnel reflection matrix
at zero Matsubara frequency Rφ(κn = 0). For this spe-
cial term, the anisotropy of the SWCN films is washed
away meaning that the Casimir torque from purely ther-
mal fluctuations is zero. In Fig. 4(e,f), results are given
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for the Casimir torque as a function of separation for
φ = {π

8 ,
π
4 } obtained via Eq. 8 for several tempera-

tures. One finds that the thermal effect is rather dif-
ferent than in the case of the Casimir energy. For small
distances, (D < 200 nm in Fig. 4(e,f)), the torque is
completely determined by quantum fluctuations, while
for larger distances, the torque can be approached by
the n = 1 Matsubara term, becoming exponentially sup-

presed (T ∝ e−
kBT

ℏc D) for distances D > 200 nm and
larger temperatures (4(e,f)).

IV. CONCLUSIONS

In this study, we have investigated the Casimir interac-
tion between ultrathin SWCN films in the dilute regime
reporting on a system where materials properties, di-
mensionality, and temperature have unexpected conse-
quences. SWCN films are inherently anisotropic: when
immersed in dielectric layers the quasi-one dimensional-
ity of individual nanotubes asserts the dominance of the
response along their lengths. It is thus expected that the
Casimir interaction is strongly dependent on the relative
optical axis orientation φ of two interacting films, as also
recently studied in densely packed SWCN films [31]. This
giant anisotropy in composite quasi-one dimensional ma-
terials then leads us to the notion that Casimir torque in
quasi-2D materials is also possible.

We find that, indeed, the Casimir energy depends on
φ, which drives the emergence of Casimir torque. The in-
terplay between the optical anisotropy and temperature
leads to a peculiar separation of quantum mechanical and
thermal contributions in the energy and torque. It turns
out that thermal fluctuations are especially strong domi-
nating E at sub-µm separations. The main reason is the
reduced dimensionality of the system, which also shows
that the particular optical properties (especially the in-
terband terms) play a secondary role in the Casimir in-
teraction. This is consistent with previous studies, which
have shown that the reduced dimensionality elevates the
importance of thermal fluctuations at smaller separations
making the properties of the materials much less impor-
tant [49, 51]. This is unlike the case of double wall CNTs
with inter-tube separations ∼ 3−4 Å, where the interac-
tion is quantum mechanical and controlled by the specific
structure of the nanotube intra and interband optical re-
sponse contributions [58].

While thermal fluctuations determine the energy, the
Casimir torque, on the other hand, is mostly a quantum
mechanical phenomenon. The main reason is attributed
to the disappearance of the special n = 0 Matsubara
term in T , a consequence of the quasi-1D anisotropy of

the system. We find that the torque in the sub-µ range is
controlled primarily by the intraband contributions in the
SWNT optical response and it is exponentially screened
by the temperature.
Our results show that in the dilute limit the anisotropic

Drude response arising from the quasi-1D SWCN dimen-
sionality is the main reason for the φ dependence in the
Casimir energy resulting in a relatively strong torque.
Qualitatively similar results can be found for other nan-
otube fims with metallic chiralities. This quantum vs.
thermal separation in probing fluctuation induced inter-
actions is a unique feature in metallic nanotube films.
We suggest that this peculiar delineation can be studied
experimentally, as measurements of the Casimir energy
and torque are also possible. For example, our calcula-
tions show that, at T = 10 K, D = 50 nm and φ = π

8 ,

|E| ∼ 10.89 nJ ·m−2 and |T | ∼ 8.49 nN.m ·m−2, while
at T = 300 K we have E ∼ 9.19 nJ ·m−2 and T ∼ 7.57
nN.m·m−2, which is achievable in the laboratory [11, 59].
At smaller separations the magnitudes of the Casimir en-
ergy and torque are expected to increase due to their
scaling laws discussed earlier, which may also be ben-
eficial for potential experimentaion. Our study further
shows that investigations of other anisotropic systems at
the nanoscale are needed to further understand the inter-
play between dimensionality, temperature, and materials
properties in Casimir phenomena.
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M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-
V. Nguyen, A. O. de-la Roza, L. Paulatto, S. Poncé,
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