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We study the nonlocal magnetotransport through a strongly correlated quantum dot, connected
to multiple terminals consisting of two normal and one superconducting (SC) leads. Specifically,
we present a comprehensive view on the interplay between the crossed Andreev reflection (CAR),
the Kondo effect, and the Zeeman splitting at zero temperature in the large SC gap limit. The
ground state of this network shows an interesting variety, which varies continuously with the system
parameters, such as the coupling strength ΓS between the SC lead and the quantum dot, the
Coulomb repulsion U , the impurity level εd, and the magnetic field b. We show, using the many-
body optical theorem which is derived from the Fermi-liquid theory, that the nonlocal conductance
is determined by the transmission rate of the Cooper pairs TCP = 1

4
sin2 Θ sin2

(
δ↑ + δ↓) and that

of the Bogoliubov particles TBG = 1
2

∑
σ sin2 δσ. Here, δσ is the phase shift of the renormalized

Bogoliubov particles, and Θ ≡ cot−1(ξd/ΓS) is the Bogoliubov-rotation angle in the Nambu pseudo
spin space, with ξd = εd + U/2. It is also demonstrated, using Wilson’s numerical renormalization
group approach, that the CAR is enhanced in the crossover region between the Kondo regime and
the SC-proximity-dominated regime at zero magnetic field. The magnetic fields induce another
crossover between the Zeeman-dominated regime and the SC-dominated regime, which occurs when
the renormalized Andreev resonance level of majority spin crosses the Fermi level. We find that the
CAR is enhanced and becomes less sensitive to magnetic fields in the SC-dominated regime close
to the crossover region spreading over the angular range of π/4 ≲ Θ ≲ 3π/4. At the level crossing
point, a spin-polarized current flows between the two normal leads, and it is significantly enhanced
in the directions of Θ ≃ 0 and Θ ≃ π where the SC proximity effect is suppressed.

I. INTRODUCTION

Quantum dots (QD) connected to multi-terminal net-
works consisting of normal and superconducting (SC)
leads is one of the active fields of current research. In
such networks, the quantum coherence and entangle-
ments can be probed through the Andreev reflection1–19

and Josephson effect.20–25

In particular, the crossed Andreev reflection (CAR) is
one of the most interesting processes caused by a Cooper-
pair tunneling in which an incident electron entering from
a normal lead forms a Cooper pair with another elec-
tron from the other normal leads to tunnel into the SC
leads, leaving a hole in the normal lead where the sec-
ond electron came from. The time-reversal process of
the CAR corresponds to a splitting of a Cooper pair that
is emitted from the SC lead into two entangled electrons
penetrating the different normal leads. The CAR and
the Cooper-pair splitting have also been studied in the
multi-terminal systems without quantum dots.26–34

Quantum dots give a variety to the transport prop-
erties of multi-terminal systems, through the tunable
parameters such as electron correlations, resonant-level
positions, and local magnetic fields which can polarize
the spins of electrons. The strong electron correlations

induce an interesting crossover between the Kondo sin-
glet and the Cooper-pair singlet.35–51 Furthermore, the
magnetic field induces a crossover occurring between the
Kondo singlet state and the spin-polarized state due to
the Zeeman splitting of discrete energy levels of quantum
dots, which has recently been revisited to find that the
three-body Fermi-liquid corrections play an essential role
in the crossover region.52,53

The CAR contributions can be probed through the
nonlocal conductance for the current flowing from the
QD towards one of the normal drain electrode when the
bias voltage is applied to the source electrode.1,4–6 How-
ever, the nonlocal current also includes the contributions
of the single electron-tunneling process, in which an inci-
dent electron from the source electrode transmits directly
towards the drain electrode through the QD. In order to
observe the CAR contributions, it is important to find
some sweet spots in the parameter space, at which the
superconducting proximity effect dominates the nonlo-
cal current and enhances the Cooper-pair tunneling by
reconciling it with the other effects from electron corre-
lations and magnetic fields.

The CAR in a single correlated quantum dot has the-
oretically been studied over a decade, particularly for
a three-terminal QD connected to two normal and one
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FIG. 1. Single quantum dot (QD) connected to two normal
leads (N) and one superconductor lead (SC). ΓL, ΓR, and ΓS

represent the coupling strengths of the QD with the left (L),
the right (R), and the SC leads, respectively. The contribu-
tions of the normal tunnelings are given by ΓN = ΓL + ΓR.

superconducting leads. In the early stage, Futterer et
al.54 and Micha lek et al.55,56 demonstrated some behav-
iors of the nonlocal transport conductance typical to
this three-terminal configuration,56 taking also into ac-
count the Coulomb interaction with a generalized master
equation54 or the equation of motion method.55 It has
been extended to the configuration in which the normal
leads are replaced by ferromagnetic metals and has been
investigated intensively, using also the methods such as
the real-time diagrammatic method and the numerical
renormalization group (NRG).54,57–60

Effects of the Zeeman splitting induced by the external
magnetic field applied to quantum dots have also been
theoretically investigated, mainly for two-terminal sys-
tems in which a quantum dot is connected to a single
paramagnetic normal and a SC lead so far.61–66 Specifi-
cally, these theories addressed such subjects as that the
field dependence of the Andreev transport,61,62 the role of
the Coulomb interaction in this configuration,63–65 and
the quantum phase transition between the spin-singlet
and the doublet ground states.66 However, it is still not
fully clarified how the CAR contributions evolve at low
energies in a wide parameter space of the multi-terminal
networks, with and without magnetic fields.

The purpose of this paper is to provide a comprehen-
sive view of the Andreev transport through a strongly-
correlated quantum state, the characteristics of which
vary due to the interplay between the Kondo, Zee-
man, and Cooper-pair correlations. To this end, we
calculate the transport coefficients, using the Fermi-
liquid theory67–71 in conjunction with Wilson’s numerical
renormalization group (NRG). Specifically, we consider
a three-terminal quantum dot connected to two normal
and one superconducting leads, as illustrated in Fig. 1,
in the large SC gap limit.36 We first of all derive the
optical theorem for the CAR at zero temperature, us-
ing the Fermi-liquid theory that describes the interacting
Bogoliubov particles moving throughout the entire sys-
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FIG. 2. Parameter space of Heff at zero magnetic field
b = 0, defined in Eqs. (A5) and (2.8). The semicircle rep-
resents the line along which the energy of the Andreev level
EA ≡

√
ξ2d + Γ2

S coincides with one-half of the Coulomb inter-
action U/2, where ξd ≡ ϵd +U/2. In the atomic limit ΓN = 0,
the ground state is a magnetic spin doublet inside the semi-
circle, which eventually is screened by conduction electrons
to form the Kondo singlet when the tunnel coupling ΓN is
switched on, whereas the ground state is a spin singlet due
to the Cooper paring outside the circle. Θ is the Bogoliubov-
rotation angle, which parameterizes the contributions of the
Andreev scattering on the transport coefficients.

tem. It elucidates the fact that the nonlocal conductance
is determined by the transmission rate of Cooper pairs
TCP = 1

4 sin2 Θ sin2
(
δ↑ + δ↓) and that of the Bogoliubov

particles TBG = 1
2

∑
σ sin2 δσ. Here, Θ ≡ cot−1(ξd/ΓS) is

the angular coordinate in the ξd ≡ ϵd + U/2 vs ΓS plane
shown in Fig. 2, and ϵd and U are the discrete level and
the Coulomb interaction of electrons in the QD, respec-
tively, and ΓS is the coupling strength between the QD
and SC lead. In this case, the phase shift δσ of the inter-
acting Bogoliubov particles does not depend on the angle
Θ but varies along the radial coordinate EA =

√
ξ2d + Γ2

S .
We also calculate the transmission rate TCP and TBG

with the NRG in a wide range of the parameter space.
It is demonstrated that, at zero magnetic field, the
CAR contributions are significantly enhanced near the
crossover region between the Kondo regime and the SC-
proximity dominated regime. Specifically, it takes place
in a crescent-shaped region spreading over the range of
U/2 ≲ EA ≲ U/2 + ΓN in the radial direction and
π/4 ≲ Θ ≲ 3π/4 in the angular direction: ΓN is the res-
onance width due to the tunneling between the QD and
normal leads. When a magnetic field is applied, another
crossover occurs between the Zeeman-dominated regime
and the SC-proximity-dominated regime when the spin-
polarized Andreev level crosses the Fermi level. We find
that the CAR-dominated transport taking place in the
crescent region is less sensitive to magnetic fields, and it
emerges as a flat valley structure in the magnetic-field
dependence of the nonlocal conductance. This parame-
ter region provides an optimal condition for observing the
Cooper-pair tunneling, i.e., a sweet spot, especially in the
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direction of Θ ≃ π/2 where the Cooper pairs are most
entangled and become equal-weight linear combinations
of an electron and a hole.

This paper is organized as follows. In Sec. II, we intro-
duce an Anderson impurity model for quantum dots con-
nected to SC and normal leads, and rewrite the Hamil-
tonian and the Green’s function in terms of interacting
Bogoliubov particles. Then, the optical theorem and the
formula for the nonlocal conductance are derived at zero
temperature using the Fermi-liquid description for the in-
teracting Bogoliubov particles in Sec. III. We investigate
the CAR contributions to the nonlocal conductance, us-
ing the NRG, at zero and finite magnetic fields in Secs. IV
and V, respectively. Summary and discussion are given
in Sec. VI.

II. FERMI-LIQUID DESCRIPTION FOR
INTERACTING BOGOLIUBOV PARTICLES

In this section, we show how the contributions of the
CAR to the nonlocal conductance of the multi-terminal
network can be described in the context of the Fermi-
liquid theory for the interacting Bogoliubov particles at
zero temperature.36

A. Anderson impurity model for the CAR

We start with an Anderson impurity model for a single
quantum dot (QD) connected to two normal (N) and one
superconducting (SC) leads, as shown in Fig. 1:

H = Hdot + HN + HTN + HS + HTS , (2.1)

Hdot = ξd
(
nd − 1

)
− b

(
nd,↑ − nd,↓

)
+

U

2

(
nd − 1

)2
,

(2.2)

HN =
∑

ν=L,R

∑
σ

∫ D

−D

dε ε c†ε,ν,σcε,ν,σ, (2.3)

HTN =
∑

ν=L,R

vν
∑
σ

∫ D

−D

dε
√
ρc

(
c†ε,ν,σdσ + H.c.

)
,

(2.4)

HS =
∑
σ

∫ DS

−DS

dε ε s†ε,σsε,σ

+

∫ DS

−DS

dε
(

∆S s†ε,↑s
†
ε,↓ + H.c.

)
, (2.5)

HTS = vS
∑
σ

∫ DS

−DS

dε
√
ρS

(
s†ε,σdσ + H.c.

)
. (2.6)

Here, Hdot describes the QD part: ξd ≡ εd+U/2, with εd
the discrete energy level, U the Coulomb interaction, and
b (≡ µBB) the Zeeman energy due to the magnetic field
B applied to the QD, with µB the Bohr magneton. d†σ
is the creation operator for an electron with spin σ, and

nd ≡ nd,↑+nd,↓ is the number operator with nd,σ ≡ d†σdσ.
A constant energy shift, which does not affect the physics,
is included in Eq. (2.2) in order to describe clearly that
the system has the electron-hole symmetry at ξd = 0.
HN describes the conduction electrons in the normal

leads, the density of states of which is assumed to be
flat ρc = 1/(2D), with D the half width of the bands.
c†ε,ν,σ is the creation operator for conduction electrons
with spin σ and energy ε. The operators for conduc-
tion electrons satisfy the following anti-commutation re-
lation that is normalized by the Dirac delta function:

{cε,ν,σ, c
†
ε′,ν′,σ′} = δνν′ δσσ′δ(ε − ε′). HTN describes the

tunnel couplings between the QD and the normal leads.
The level broadening of the discrete energy level in the
QD is given by ΓN ≡ ΓL + ΓR, with Γν ≡ πρcv

2
ν the

contributions of the two normal leads on the left ν = L
and right ν = R.
HS and HTS describe the contributions of the super-

conducting lead with an s-wave SC gap ∆S ≡ |∆S | eiϕS :
s†ε,σ is the creation operator for electrons in the SC lead,
with DS the half-band width and ρS = 1/(2DS). One
of the key parameters for the SC proximity effects is
ΓS ≡ πρSv

2
S, i.e., the coupling strength between the QD

and the SC lead.
In this paper, we study the crossed Andreev reflection

occurring at low energies, much lower than the SC energy
gap. To this end, we consider the large gap limit |∆S | →
∞, which is taken at |∆S | ≪ DS keeping ΓS constant.36

In this case, the superconducting proximity effects can
be described by the pair potential penetrating into the
QD:

∆d ≡ ΓS eiϕS . (2.7)

The Coulomb interaction U induces the correlation ef-
fects for electrons in the QD and the symmetrized linear
combination of the conduction bands defined in Eq. (A1),
which can be described by an effective Hamiltonian Heff
given in Eq. (A5) [see Appendix A]. Furthermore, carry-
ing out the Bogoliubov rotation defined in Eq. (A8), it
can be transformed further into a system of interacting
Bogoliubov particles described by a standard Anderson
model:

Heff = EA

(∑
σ

γ†
d,σγd,σ − 1

)
− b

(
γ†
d,↑γd,↑ − γ†

d,↓γd,↓

)

+
U

2

(∑
σ

γ†
d,σγd,σ − 1

)2

+
∑
σ

∫ D

−D

dε ε γ†
ε,σγε,σ

+ vN
∑
σ

∫ D

−D

dε
√
ρc
(
γ†
ε,σγd,σ + H.c.

)
, (2.8)

Nγ =
∑
σ

γ†
d,σγd,σ +

∑
σ

∫ D

−D

dε γ†
ε,σγε,σ . (2.9)

Here, EA ≡
√

ξ2d + Γ2
S is the effective impurity level, and

vN ≡
√
v2L + v2R. The operators γd,σ and γε,σ describe

the Bogoliubov particles in the dot and the symmetrized
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part of the conduction band, respectively. The effective
Hamiltonian conserves the total number of the Bogoli-
ubov particles Nγ , reflecting the U(1) symmetry along
the principal axis in the Nambu pseudo-spin space.

Figure 2 illustrates the parameter space of Heff at zero
magnetic field b = 0. For finite ΓN , the Kondo screening
due to the normal conduction electrons occurs inside the
semicircle region, at which the impurity level is occupied
by a single Bogoliubov particle: Q ≃ 1.0 with

Q ≡ Q↑ + Q↓, Qσ ≡
〈
γ†
d,σγd,σ

〉
. (2.10)

Bogoliubov particles show also the valence-fluctuation
behavior near EA ≃ U/2, at which the crossover be-
tween the Kondo singlet and the superconducting sin-
glet occurs. The Bogoliubov rotation angle corresponds
to Θ = cot−1(ξd/ΓS) shown in Fig. 2. In particular,
the crossed Andreev scattering is enhanced in the an-
gular range of π/4 ≲ Θ ≲ 3π/4 outside the semicircle
EA ≳ U/2, as discussed later in Secs. IV and V.

B. Renormalized Bogoliubov quasiparticles

In this work, we calculate the nonlocal conductance
for the current flowing into the drain electrode, using the
retarded Green’s function for electrons in the QD,

Gr
dd(ω) ≡ −i

∫ ∞

0

dt ei(ω+i0+)t

×


〈{

d↑(t), d†↑

}〉 〈{
d↑(t), d↓

}〉
〈{

d†↓(t), d†↑

}〉 〈{
d†↓(t), d↓

}〉
 .

(2.11)

Here, ⟨· · · ⟩ denotes the thermal average at equilibrium.
This matrix Green’s function can be diagonalized with
the Bogoliubov transformation:

U†Gr
dd(ω) U =

(
Gr

γ,↑(ω) 0

0 −Ga
γ,↓(−ω)

)
. (2.12)

We will choose the Josephson phase of the pair potential
to be ϕS = 0 in the following, so that U is determined
solely by a pseudo-spinor rotation with the angle Θ/2,

U =

(
cos Θ

2 − sin Θ
2

sin Θ
2 cos Θ

2

)
. (2.13)

The matrix elements of U determine the behaviors of
transport coefficients as the superconducting coherence
factors,

cos
Θ

2
=

√
1

2

(
1 +

ξd
EA

)
, sin

Θ

2
=

√
1

2

(
1 − ξd

EA

)
.

The diagonal elements Gr
γ,σ and Ga

γ,σ on the right-hand
side of Eq. (2.12) are the retarded and advanced Green’s
functions for the interacting Bogoliubov particles, de-
scribed by Heff . These diagonal elements can be ex-
pressed in the form, using Eq. (A8),

Gr
γ,σ(ω) ≡ − i

∫ ∞

0

dt ei(ω+i0+)t
〈{

γd,σ(t), γ†
d,σ

}〉
=

1

ω − EA,σ − ΣU
γ,σ(ω) + iΓN

, (2.14)

and Ga
γ,σ(ω) =

{
Gr

γ,σ(ω)
}∗

. Here, EA,σ ≡ EA − σ b,

and ΣU
γ,σ(ω) represents the self-energy corrections due to

the Coulomb interaction term, (U/2) (nd − 1)
2
, defined

in Eq. (2.2). The unperturbed part of the denominator
describes the Andreev resonance level with the width ΓN

situated at ω = EA,σ.
At low energies, effects of the electron correlations on

the transport properties can be deduced from the behav-
ior of the self-energy near ω ≃ 0 at zero temperature
T = 0,

Gr
γ,σ(ω) ≃ Zσ

ω − ẼA,σ + iΓ̃N,σ

. (2.15)

The asymptotic form of the Green’s function defines
a renormalized resonance level of quasiparticles in the

Fermi liquid, the position ẼA,σ and the width Γ̃N,σ of

which are given by67–71

Γ̃N,σ = Zσ ΓN ,
1

Zσ
= 1 −

∂ΣU
γ,σ(ω)

∂ω

∣∣∣∣∣
ω=0

, (2.16)

ẼA,σ = Zσ

[
EA,σ + ΣU

γ,σ(0)
]
. (2.17)

Furthermore, the phase shift δσ of the interacting Bogoli-
ubov particles is defined by Gr

γ,σ(0) = −
∣∣Gr

γ,σ(0)
∣∣ eiδσ ,

i.e.,

δσ =
π

2
− tan−1

(
ẼA,σ

Γ̃N,σ

)
, (2.18)

plays a primary role in the ground-state properties.
These renormalized parameters can be calculated, for in-
stance, using the NRG approach described in the next
section.

The Friedel sum rule also holds for the interacting
Bogoliubov particles, and thus the average number of
the Bogoliubov particles in the QD is determined by the
phase shift,

Qσ
T→0−−−−→ δσ

π
. (2.19)

The phase shift varies in the range of 0 ≤ δσ ≤ π/2 along
the radial coordinate EA in the ξd vs ΓS plane but is
independent of the angle Θ.
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The ground-state properties, such as the occupation
number of electrons ⟨nd⟩ and the pair correlation function〈
d†↑ d

†
↓ + d↓ d↑

〉
, can be deduced from Q:

⟨nd⟩ − 1 = (Q− 1) cos Θ , (2.20)〈
d†↑ d

†
↓ + d↓ d↑

〉
= (Q− 1) sin Θ . (2.21)

These two averages correspond to the projection of a vec-
tor of magnitude Q− 1 directed along the principal axis
onto the z-axis and the x-axis of the Nambu space, re-
spectively. Furthermore, a local magnetization md is in-
duced in the quantum dot at finite magnetic fields,

md ≡
〈
nd,↑

〉
−
〈
nd,↓

〉
= Q↑ −Q↓ . (2.22)

Therefore, the occupation number of electrons with spin
σ is given by

〈
nd,σ

〉
=

1 + cos Θ

2

δσ
π

+
1 − cos Θ

2

(
1 − δσ

π

)
,

(2.23)

where σ represents an opposite-spin component of σ.

III. LINEAR-RESPONSE THEORY FOR CAR

A. Cooper-pair transmission in a local Fermi liquid

We consider the linear-response current IR flowing
from the QD to the normal lead on the right, induced
by bias voltages VL and VR applied to the left and right
leads, respectively. It can be expressed in the following
form at T = 0 [see Appendix B],

IR = IET
R + ICP

R , (3.1)

IET
R =

2e2

h
TET

4ΓRΓL

Γ2
N

(
VL − VR

)
,

ICP
R = − 2e2

h
TCP

[
4ΓRΓL

Γ2
N

(
VL + VR

)
+

4Γ2
R

Γ2
N

2VR

]
.

Correspondingly, the current IL flowing from the left
normal lead towards the QD takes the following form,
IL = IET

L + ICP
L , with IET

L = IET
R and

ICP
L =

2e2

h
TCP

[
4ΓRΓL

Γ2
N

(
VL + VR

)
+

4Γ2
L

Γ2
N

2VL

]
. (3.2)

The two components of the current IET
ν and ICP

ν rep-
resent the contribution of the single-electron tunneling
and that of the Cooper-pair tunneling, respectively. The
transmission probabilities TET and TCP are determined
by the equilibrium Green’s functions at the Fermi level
ω = 0, and can be expressed in terms of the phase shifts

and the Bogoliubov angle [see Appendix B] :

TET ≡ Γ2
N

2

[ ∣∣∣{Gr
dd(0)

}
11

∣∣∣2 +
∣∣∣{Gr

dd(0)
}
22

∣∣∣2 ]
=

1

2

∑
σ

sin2 δσ − 1

4
sin2 Θ sin2

(
δ↑ + δ↓) , (3.3)

TCP ≡ Γ2
N

2

[ ∣∣∣{Gr
dd(0)

}
12

∣∣∣2 +
∣∣∣{Gr

dd(0)
}
21

∣∣∣2 ]
=

1

4
sin2 Θ sin2

(
δ↑ + δ↓) . (3.4)

These two are bounded in the range, 0 ≤ TET ≤ 1 and
0 ≤ TCP ≤ 1/4, and are related to each other through
the optical theorem [see Appendix C]:

TET + TCP = TBG , TBG ≡ 1

2

∑
σ

sin2 δσ . (3.5)

Here, TBG can be regarded as a transmission probability
of the Bogoliubov particles.

The linear-response coefficients, given in the above for
the large gap limit |∆S | → ∞, are determined by δσ and
Θ. Therefore, the Cooper-pair contributions, which vary
depending on the parameter regions shown in Fig. 2, can
systematically be explored by using the polar coordinate
(EA, Θ) since the phase shift δσ through which the many-
body effects enter is independent of the angle Θ that
determines the superconducting coherence factor sin2 Θ
for the transmission probability TCP.

1. Nonlocal conductance for IR at VL ̸= 0 and VR = 0

Equations (3.1)–(3.4) provide a set of formulas that de-
scribe how the single-electron and the Cooper-pair tun-
neling parts, IET

R and ICP
R , contribute to the total current

IR for arbitrary bias voltages VL and VR. We next con-
sider the situation, at which the right lead is grounded
VR = 0 in order to clarify the contributions of the CAR
to the nonlocal conductance gRL for the current IR,

gRL ≡ ∂IR
∂VL

= 2 g0
(
TET − TCP

)
= 2 g0

(
TBG − 2TCP

)
, (3.6)

where g0 = e2

h 4ΓRΓL/Γ2
N . In the last line, the Bogoli-

ubov angle Θ enters gRL solely through TCP since TBG
does not depend on it. The contribution of Cooper-pair
tunnelings in gRL is negative as it induces the current
flowing from the right lead towards the QD at the cen-
ter.

The CAR efficiency ηCAR is one of the useful parame-
ters for measuring the CAR contribution to the nonlocal
conductance gRL,

ηCAR ≡ |ICP
R |

|IET
R | + |ICP

R |
=

TCP

TBG

=
sin2 (δ↑ + δ↓)

sin2 δ↑ + sin2 δ↓

sin2 Θ

2
. (3.7)
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Alternatively, the nonlocal conductance can also be ex-
pressed in terms of the efficiency:

gRL = 2g0 TBG

(
1 − 2 ηCAR

)
. (3.8)

Here, the Θ dependence of gRL arises from the efficiency
ηCAR. The efficiency ηCAR is enhanced by the coupling
between the QD and the SC lead. In the limit ΓS → 0
where the SC lead is disconnected, Eq. (3.8) reproduces
the usual Landauer formula with the single-electron tun-
neling probability TBG.

Similarly, the local conductance for the current from
the left lead IL can also be expressed in the following
form,

∂IL
∂VL

= 2g0 TBG

(
1 +

2ΓL

ΓR

ηCAR

)
. (3.9)

Here, the second term on the right-hand side repre-
sents the contribution of the direct Andreev reflec-
tion (DAR), inducing the current component IDAR

L ≡
4g0 TCP (ΓL/ΓR)VL ∝ Γ2

L/Γ2
N for VR = 0. Therefore,

the ratio of the DAR contribution to IL is determined by
δ and Θ through the efficiency ηCAR,

IDAR
L

IL
=

2ΓL ηCAR

ΓR + 2ΓLηCAR

. (3.10)

2. Andreev transport for VL = VR

Here we briefly discuss another setting, in which bias
voltages are applied in a symmetrical way VL = VR

(≡ V ). In this case, the contribution of single-electron
process vanishes IET

R = IET
L = 0, and the Cooper-pair

tunnelings determine both IR and IL, as

IR
VL=VR=V−−−−−−−→ − 4e2

h
TCP

[
4ΓRΓL

Γ2
N

+
4Γ2

R

Γ2
N

]
V ,

(3.11)

IL
VL=VR=V−−−−−−−→ +

4e2

h
TCP

[
4ΓRΓL

Γ2
N

+
4Γ2

L

Γ2
N

]
V . (3.12)

For both IR and IL, the first and the second terms in the
parentheses on the right-hand side represent the contri-
butions of the crossed Andreev reflection and the direct
Andreev reflection, respectively. These terms depend
sensitively on the asymmetry of the tunnel couplings.
For instance, the CAR dominates IR for ΓR ≪ ΓL, as
the direct Andreev scattering occurring in the right lead
is suppressed.

The current flowing into the SC lead through the QD is
given by IL − IR. It reaches the maximum value 4e2V/h
in the case at which TCP = 1/4 for symmetric junctions
ΓL = ΓR (≡ ΓN/2). Note that the behavior of this cur-
rent IL − IR into the SC lead is equivalent to the one
flowing through an N-QD-SC junction, which was inves-
tigated in the previous work.36

B. NRG approach to the CAR

In the following two sections, we numerically investi-
gate the contribution of the CAR over a wide range of
the parameter space. To this end, we have calculated the
phase shift δσ and the other correlation functions of Bo-
goliubov quasiparticles, applying the NRG approach72–74

to the effective Hamiltonian Heff given in Eq. (2.8),36

choosing the discretization parameter to be Λ = 2.0 and
ΓN/D = 1/(100π). We have also constructed the in-
terpolating functions for the phase shift δσ from a dis-
crete set of the NRG data obtained along the radial-
EA direction in the parameter space, described in Fig.
2. The dependence of the transport coefficients on the
Bogoliubov-rotation angle Θ of the polar coordinate has
been determined by using the exact formulas presented
in the above.

We will discuss the CAR contribution to the nonlo-
cal transport at zero field in Sec. IV, and then consider
magnetic-field dependence in Sec. V.

IV. CROSSED-ANDREEV TRANSPORT AT
ZERO FIELD b = 0

In this section, we show the NRG results for the nonlo-
cal conductance and renormalized parameters calculated
at zero magnetic field b = 0, extending the previous re-
sults obtained for a two terminal N-QD-S system.36 Be-
fore going into the details, we describe some general fea-
tures which can be deduced from the transport formulas
presented above.

At zero magnetic field b = 0, the phase shift becomes
independent of spin component δ↑ = δ↓ (≡ δ), and thus
the transport coefficients are determined by two angular
parameters δ and Θ. The average occupation number
of the Andreev level in this case is given by the phase
shift Q = 2δ/π. It decreases from the unitary limit value
Q = 1 as EA deviates from the origin, EA = 0, of the
parameter space illustrated in Fig. 2. In contrast, the SC

pair correlation function
〈
d†↑ d

†
↓ + d↓ d↑

〉
, defined in Eq.

(2.21), depends not only on the phase shift δ but also
the coherence factor, sin Θ, which takes a maximum at
Θ = π/2.

Similarly, at zero magnetic field, the transmission
probabilities defined in Eqs. (3.3) and (3.4) can be sim-
plified, as

TET = sin2 δ − TCP , TCP =
1

4
sin2 Θ sin2 2δ , (4.1)

and TBG = sin2 δ. Therefore, the Cooper-pairing part
TCP takes a maximum at Θ = π/2 and δ = π/4, where
the Andreev level for Bogliubov particles is quarter-filling
Qσ = 1/4. Correspondingly, the nonlocal conductance
and the CAR efficiency defined in Eqs. (3.6)–(3.8) can
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be expressed in the following forms, at b = 0,

gRL = 2 g0 sin2 δ
(

1 − 2 sin2 Θ cos2 δ
)
, (4.2)

ηCAR = sin2 Θ cos2 δ . (4.3)

Thus, for the CAR to dominate the nonlocal conduc-
tance, taking a negative value gRL < 0, the Bogoli-
ubov angle must be in the range π/4 < Θ < 3π/4, i.e.,
2 sin2 Θ > 1.

In particular, Cooper pairs are most entangled at Θ =
π/2, and in this case the transport coefficients take the
form,

TET

Θ=π
2−−−−→ sin4 δ, gRL

Θ=π
2−−−−→ − 2 g0 sin2 δ cos 2δ.

(4.4)

Hence, along the ΓS-axis in Fig. 2, the nonlocal conduc-
tance gRL becomes negative for 0 < δ ≲ π/4, where the
ground state of Heff is in the valence-fluctuation regime
or the empty-orbital regime of the Bogoliubov particles.
It takes a minimum of the depth gRL/g0 = −1/4 at
δ = π/6. As the phase shift approaches δ ≃ π/2, the
Kondo effect dominates and the transmission probability
of the Bogoliubov-particle shows a Kondo-ridge struc-
ture, at which TBG ≃ 1.0, as we will demonstrate later.

A. Ground state properties at Θ = π/2

We next consider how the ground state of Heff evolves
as EA varies along the radial direction in the ξd vs ΓS
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FIG. 3. Renormalized parameters plotted vs EA/U for
U/(πΓN ) = 1.0, 2.0, 3.0, 5.0 at b = 0. (a): Occupation
number of Bogoliubov particles Q (= 2δ/π), (b): Pair corre-

lation |
〈
d†↑d

†
↓ + d↓d↑

〉
|, (c): Renormalized Andreev-resonance

energy ẼA. (d): Renormalization factor Z = Γ̃N/ΓN , which
at EA = 0 takes the values 0.629, 0.239, 0.080, 0.008, respec-
tively, for the above four values of U . Note that ⟨nd⟩ = 1.0

and |
〈
d†↑d

†
↓ + d↓d↑

〉
| = 1 − Q, at Θ = π/2 along the ΓS axis

of Fig. 2. The dashed line in (c) denotes the Hartree-Fock

energy shift EHF
A

EA≫U/2
−−−−−−→ EA − U/2, given in Eq. (4.6).

plane, shown in Fig. 2. Note that the eigenstates and
eigenvalues of the effective Hamiltonian defined in Eq.
(2.8) do not depend on the angular coordinate Θ.

Figure 3(a) shows the occupation number Q as a func-
tion of EA for U/(πΓN ) = 1.0, 2.0, 3.0, and 5.0. We
see that Q decreases as EA increases, especially near
EA ≃ U/2, where the crossover from the Kondo regime
to the valence-fluctuation regime of Bogoliubov particles
occurs for large interactions U/(πΓN ) ≳ 2.0. Figure
3(b) shows the magnitude of the pair correlation func-
tion for Θ = π/2, where the absolute value is given by

|
〈
d†↑d

†
↓ + d↓d↑

〉
| = 1 − Q. It increases significantly at

EA ≃ U/2, i.e., near the quarter-filling point Q = 0.5
(δ = π/4) of Bogoliubov particles, and it saturates to the
upper-bound value 1.0 as EA increases further towards
the empty-orbital regime.

The Kondo behaviors of Bogoliubov particles are

clearly seen for the renormalized Andreev level ẼA and

the wave-function renormalization factor Z = Γ̃N/ΓN ,
plotted in Figs. 3(c) and 3(d), respectively. The renor-

malized level is almost locked at the Fermi level ẼA ≃ 0.0,
for large interactions U/(πΓN ) ≳ 2.0, over a wide Kondo-
dominated region 0 ≤ EA ≲ U/2, taking place the inside
of the semicircle in Fig. 2. Correspondingly, the renor-
malization factor Z is significantly suppressed in this re-
gion, and it indicates the fact that the Kondo energy
scale T ∗,

T ∗ ≡ Z

4ρd
, ρd =

sin2 δ

πΓN

, (4.5)

becomes much smaller than the bare tunneling energy
scale ΓN .

In contrast, at EA ≳ U/2, i.e., in the valence-
fluctuation or empty-orbital regime for Bogoliubov par-
ticles, the effects of electron correlations become less im-
portant: the renormalization factor approaches Z ≃ 1.0

and the renormalized level ẼA,σ approaches the Hartree-

Fock (HF) energy shift:

EHF
A,σ ≡ EA − σb + U

(
Qσ − 1

2

)
(4.6)

EA≫U/2, b=0−−−−−−−−−→ EA − U

2
,

since Qσ ≃ 0.0 at EA ≫ U/2 and b = 0.

B. Transport properties at Θ = π/2

We next discuss the transport properties. Specifically,
in this subsection, we consider the case Θ = π/2, where
ξd = 0 and the occupation number of impurity electrons
is fixed at ⟨nd⟩ = 1, reflecting the electron-hole symme-
try of Heff defined in Eq. (A5). In this case, the Andreev
level takes the value EA = ΓS , which is determined solely
by the coupling strength between the QD and the SC lead
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and it breaks the particle-hole symmetry of the Bogoli-
ubov particles even at ξd = 0.

The transmission probability TET of the single-electron
tunneling process is shown in Fig. 4(a). We see that
the plateau of the unitary limit TET ≃ 1.0 evolves at
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FIG. 4. Transport coefficients plotted vs EA/U for
U/(πΓN ) = 1.0, 2.0, 3.0, 5.0 at b = 0, keeping the Bogoliubov
angle fixed at Θ = π/2 (i.e., ξd = 0). (a): Single-electron
transmission TET, defined in Eq. (3.3). (b): Cooper-pair con-
tributions −2TCP (< 0) and the Bogoliubov-particle trans-
mission TBG = sin2 δ, defined in Eqs. (3.4) and (3.5), respec-
tively. (c): Nonlocal conductance gRL/g0 = 2(TBG − 2TCP)

with g0 = e2

h
4ΓRΓL/Γ2

N . (d): CAR efficiency ηCAR defined
in Eq. (3.7).

0 ≤ EA ≲ U/2, for large U . Since TET = TBG − TCP
due to the optical theorem mentioned above, it is the
Bogoliubov-particle part TBG = sin2 δ that shows the
genuine Kondo ridge, as demonstrated in Fig. 4(b). The
single-particle contribution TET decreases outside of the
Kondo regime EA ≳ U/2, at which the occupation num-
ber Q of Bogoliubov particles rapidly decreases and the
SC pair correlation increases, as demostrated in Figs.
3(a) and 3(b).

The Cooper-pair contribution TCP is also plotted in
Fig. 4(b), choosing the Bogoliubov angle to be Θ = π/2
and multiplying a factor of −2 which emerges for the
nonlocal conductance gRL ∝ TBG − 2TCP: the negative
sign represents the fact that the crossed Andreev reflec-
tion induces the counterflow, flowing from the right lead
towards the QD. In this case, Eq. (4.1) can be rewritten
further into a similar form to the current noise of normal
electrons: TCP = sin2 δ (1− sin2 δ).75,76 Thus, the contri-
bution of TCP to the nonlocal conductance is maximized
in the case at which the phase shift becomes δ = π/4
and it reaches the value −2TCP = −1/2. The corre-
sponding dip emerges in Fig. 4(b) at the crossover region
EA ≃ U/2, the width of which becomes of the order of
ΓN .

Figure 4(c) shows the nonlocal conductance, which
takes the form gRL/g0 = −2 sin2 δ cos 2δ at Θ = π/2,
as mentioned. It decreases from the unitary-limit value
gRL/g0 = 1 as EA deviates from EA = 0, and vanishes
gRL = 0 at EA ≃ U/2 where the phase shift reaches
δ = π/4. The nonlocal conductance becomes negative
gRL < 0 at EA ≳ U/2 as the CAR contributions dom-
inate in this region. In particular, it has a dip of the
depth gRL/g0 = −1/4 at the point where the phase shift
takes the value δ = π/6.

Similarly, the CAR efficiency takes a simplified form
ηCAR = cos2 δ at Θ = π/2, and the NRG results are
plotted in Fig. 4(d). The efficiency ηCAR increases with
EA, and reaches ηCAR = 0.5 at δ = π/4 where −2TCP
has the dip of the depth −1/2 seen in Fig. 4(b). The
transient region of ηCAR varying from 0 to 1 is estimated
to be of the order of ΓN . Furthermore, at EA ≫ U/2,
the efficiency approaches the saturation value ηCAR = 1.0
although the conductance gRL itself becomes very small.

C. The characteristics of CAR along the
polar coordinates EA and Θ at b = 0

So far, we have discussed the transport properties at
Θ = π/2, along the vertical ΓS axis in the ξd vs ΓS plane.
As ξd varies from the electron-hole symmetric point ξd =
0, the Bogoliubov angle Θ deviates from π/2. Here we
discuss how the ground-state and transport properties
vary along the angular direction over the range 0 ≤ Θ ≤
π.

Figures 5 and 6 show the NRG results of the renormal-
ized parameters and the transport coefficients as func-
tions of ξd and ΓS for a relatively large Coulomb in-
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teraction U/(πΓN ) = 5.0. In these three-dimensional
plots, mesh lines are drawn along the polar coordinates
(EA,Θ). Note that the superconducting coherence fac-
tors, cos Θ and sin Θ, vary in the angular direction:
Cooper pairs are strongly entangled at π/2 and the SC
proximity effect becomes weak as Θ deviates towards
0 or π. In contrast, along the radial direction, the
crossover between the Kondo regime and valence fluc-
tuation regime of the Bogoliubov particles occurs near
the semicircle of radius EA = U/2, as mentioned.

1. Θ dependence of
〈
d†↑d

†
↓ + d↓d↑

〉
and ⟨nd⟩

Among the renormalized parameters plotted in Fig. 3,

the following three, Q, Z, and ẼA do not depend on the
Bogoliubov angle Θ, and thus Figs. 3(a), 3(c), and 3(d)
remain unchanged as angle Θ varies. In contrast, the
correlation functions which are defined with respect to

electrons, such as |
〈
d†↑d

†
↓ + d↓d↑

〉
| = (1 − Q) sin Θ and

⟨nd⟩ = 1 + (Q − 1) cos Θ, evolve with the Bogoliubov
angle Θ.

FIG. 5. Three-dimensional plots of (a) |
〈
d†↑d

†
↓ + d↓d↑

〉
| and

(b) ⟨nd⟩, described as functions of ξd and ΓS , choosing
U/(πΓN ) = 5.0. Mesh lines are drawn along the polar coordi-

nate (EA, Θ), with EA =
√

ξ2d + Γ2
S and Θ = tan−1(ΓS/ξd).

We can see in Fig. 5 (a) that the pair correlation is sup-
pressed due to the Kondo effect at EA ≲ U/2, especially
along the valley at Θ = π/2, inside the semicircle shown
in Fig. 2. The slope from the valley bottom towards
the direction parallel to the ξd-axis is suppressed by the
coherence factor sin Θ. Correspondingly, in Fig. 5(b),
the occupation number ⟨nd⟩ of electrons clearly shows a
plateau of a semicircle shape which spreads around the
origin EA = 0.0 of the ξd vs ΓS plane. Note that the
occupation number is locked exactly at ⟨nd⟩ = 1.0 along
the ΓS axis. Outside the plateau EA ≳ U/2, the super-
conducting proximity effects dominate over the angular
range of π/4 < Θ < 3π/4, or equivalently at ΓS > |ξd|.
In particular, the ridge of the pair correlation develops
at Θ = π/2, along the ΓS-axis in Fig. 5(a).

2. Θ dependence of transport properties

Figure 6(a) shows the NRG results of transmission
probability of Bogoliubov particles TBG = sin2 δ calcu-
lated for U/(πΓN ) = 5.0. It has an isotropic structure
independent of Θ. In particular, the semi-cylindrical ele-
vation of the height TBG ≃ 1.0 at EA ≲ 0.5U corresponds
to a rotating body of the Kondo ridge shown in Fig. 4 (b).
On the slopes of this semicylindrical hill at EA ≃ 0.5U ,
it spreads over the valence fluctuation region of the Bo-
goliubov particles, at which the transmission probability
TBG rapidly decreases.

Figure 6(b) shows the transmission probability of
Cooper pairs TCP = (1/4) sin2 Θ sin2 2δ. It is enhanced
along the ridge of a crescent shape that is spreading over
the angular range of π/4 < Θ < 3π/4 (at which ΓS >
|ξd|) on the arc of radius EA ≃ U/2, where the crossover
between the Kondo-singlet and the superconducting-
singlet states takes place. The ridge height of TCP de-
creases from the maximum value 0.25 as Θ deviates from
Θ = π/2, showing the sin2 Θ dependence. The width of
the crescent region in the radial direction is of the order
of ΓN (≃ 0.06U in Fig. 6(b) ).

The nonlocal conductance gRL/g0 = 2(TBG − 2TCP) is
shown in Fig. 6(c). It also features a flat-topped semi-
cylindrical elevation at EA ≲ U/2, which is mainly due
to the contributions of the Bogoliubov-particle part TBG
seen in Fig. 6(a). The nonlocal conductance gRL becomes
negative at the foot of the hill, specifically at EA ≳ U/2
along the arc of the range π/4 < Θ < 3π/4, where the
CAR dominates the transport. In order to see more pre-
cisely the profile of the negative-conductance region, a
contour plot of gRL is shown in Fig. 6(d). The dip in the
profile becomes deepest at Θ = π/2 and EA/U ≃ 0.55, as
seen also in Fig. 4(c). The behavior of gRL along the Θ di-
rection is determined by the coherence factor sin2 Θ of the
Cooper-pair part TCP in Eq. (4.1). It suppresses the CAR
contributions to the nonlocal conductance as Θ deviates
from π/2. The crescent-shaped dip emerged for gRL re-
flecting the corresponding one seen in Fig. 6(b) for TCP,
and the dip spreads from EA ≃ U/2 to EA ∼ U/2+ΓN in
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-0.10
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FIG. 6. Transport coefficients (a) TBG, (b) TCP, (c) gRL, and (e) the CAR efficiency ηCAR plotted as functions of ξd and ΓS ,
for U/(πΓN ) = 5.0 and b = 0. For these three-dimensional plots, mesh lines are drawn along the polar coordinate (EA, Θ).
Two-dimensional plot (d) is a contour map for the region where the nonlocal conductance gRL becomes negative: contour lines
are drawn with 0.05 increments. The CAR dominates gRL over the parameter region ΓS ≳ U/2 and π/4 < Θ < 3π/4, i.e.,
ΓS > |ξd|.

the direction of the ΓS-axis. These results suggest that
the crescent dip region will be a plausible target to probe
the CAR contributions in experiments.

The NRG result of the CAR efficiency at b = 0, ηCAR =
sin2 Θ cos2 δ, is shown in Fig. 6(e). We can see that its
behavor is similar to that of the pair correlation described
in Fig. 5(a): the ridge of ηCAR evolves at EA ≳ U/2 in
the direction of Θ = π/2 along the ΓS-axis. In the valley
region at EA ≲ U/2, however, the slope of ηCAR in the
direction parallel to the ξd-axis becomes steeper as it is

determined by the coherence factor sin2 Θ, whereas that
for the pair correlation function is sin Θ. There are also
some quantitative differences between the profiles of the
CAR efficiency and the pair correlation function in the
radial direction: it is because ηCAR ∝ cos2 δ, whereas

|
〈
d†↑d

†
↓ + d↓d↑

〉
| ∝ 1 − 2δ/π.

V. CROSSED-ANDREEV TRANSPORT AT
FINITE MAGNETIC FIELDS b ̸= 0

Both the Kondo effect and the superconducting prox-
imity effect are sensitive to a magnetic field. Here we
study precisely how the CAR contributions vary at finite
magnetic fields.

Figure 7 shows the parameter space of the effective
Hamiltonian Heff at finite magnetic fields (b > 0). In the
atomic limit ΓN → 0, the phase boundary evolves with b,
and the ground state of the isolated QD is spin-polarized
inside the semicircle of radius EA = U/2 + b where the
Andreev level is occupied by a single Bogoliubov particle
with majority spin: Q↑ → 1.0. In contrast, outside the
semicircle, the Andreev level is empty Q = 0 and the
ground state is unpolarized. The transition is caused by
the level crossing between the energy level EA,↑ ≡ EA−b
of the singly-occupied majority spin state and the spin-
singlet empty state of energy U/2, and thus it takes place
at the circumference of the semicircle EA,↑ = U/2.

The level crossing becomes a gradual crossover, the
width of which is of the order of ΓN , when normal leads
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are connected. The CAR contribution to the nonlocal
conductance is enhanced also at finite b near the crossover
region: specifically along the circumference of radius
EA ≃ U/2+b over the angular range of π/4 ≲ Θ ≲ 3π/4.
We will consider magnetic-field dependence of the CAR
contribution precisely in this section.

A. Ground-state and transport properties at
Θ = π/2

At finite magnetic fields, the renormalized parameters
become dependent on spin components σ and vary as Zee-
man splitting increases. Our discussions in the following
are based on the transport formulas for the ground state
given in Eqs. (3.3)–(3.7). The NRG calculations have
been carried out for a strong interaction U/(πΓN ) = 5.0
in order to clarify how the electron correlations affect the
crossed Andreev reflection in the multi-terminal network.

1. b-dependence of renormalized parameters

Figures 8(a)–8(f) show the magnetic-field dependence
of the renormalized parameters, calculated for several
different positions of the Andreev level: EA/U = 0.0,
0.2, 0.4, 0.5, 0.6 and 0.8. The results commonly reflect
the Fermi-liquid properties of the Bogoliubov particles,
which evolve as EA and b vary.

For 0 ≤ EA ≲ U/2, the renormalized parameters ex-
hibit a universal b/T ∗ scaling behavior at small magnetic
fields, with T ∗ the Kondo energy scale defined at zero
field b = 0 by Eq. (4.5). The magnitude of T ∗ depends
sensitively on the interaction strength and the level posi-
tion EA, and, for instance, for U/(πΓN ) = 5.0, it is given

-(�/� + �) -�/� � �/� �/� + �
ξ�

�/�

Γ�

���� ���������

�=�
�/� + �

�=�

�� = �/� + �

FIG. 7. Parameter space of Heff at finite magnetic fields. Near
the semicircle of radius EA = U/2 + b with EA =

√
ξ2d + Γ2

S ,
the occupation number of the Bogoliubov particles in the An-
dreev level varies rapidly from Q ≃ 1.0 to Q ≃ 0.0 for large
U . Specifically, in the atomic limit ΓN → 0, the ground state
is spin polarized Q↑ → 1.0 inside the semicircle at finite fields
b ̸= 0. The Andreev scattering can dominate the transport
in the range of π/4 < Θ < 3π/4 outside the semicircle which
evolves with b.

by T ∗/(πΓN ) = 0.002, 0.005, and 0.097 for EA/U = 0.0,
0.2, and 0.4, respectively. At the magnetic field of order
at b ∼ T ∗, the Kondo resonance of Bogoliubov particles
splits into two as the Zeeman effect dominates. In con-
trast, in the parameter region of EA ≳ U/2 where the
Andreev level deviates further from the Fermi level, the
renormalization effects due to the electron correlations
are suppressed, and the low-energy states depend signifi-
cantly on whether U/2 ≲ EA ≲ U/2+b or U/2+b ≲ EA.
The magnetization md of quantum dot is almost fully
polarized at U/2 ≲ EA ≲ U/2 + b, where the Zeeman
effect dominates. In contrast, the superconducting prox-
imity effect dominates outside the semicircle of radius
EA ≳ U/2 + b in the angular range of π/4 < Θ < 3π/4.
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FIG. 8. Magnetic-field dependence of the renormalized
parameters calculated at different Andreev-level positions
EA/U = 0.0, 0.2, 0.4, 0.5, 0.6 and 0.8, for a fixed interac-
tion U/(πΓN ) = 5.0. (a) and (b): Occupation number of
Bogoliubov particles Q↑ and Q↓. Inset in (b) is an enlarged
plot of Q↓ vs b/T ∗, with T ∗ the characteristic energy scale of
the Kondo regime defined at b = 0 in Eq. (4.5). For EA = 0.0,
0.2U , and 0.4U , it takes the value T ∗/(πΓN ) = 0.002, 0.005,
and 0.097, respectively (or T ∗/U = 0.0004, 0.001, and 0.019).

The values of Z = Γ̃N/ΓN at these three points of EA are
given by Z = 0.008, 0.02, 0.31, respectively. (c): Magneti-
zation md = ⟨nd↑⟩ − ⟨nd↓⟩, which does not depend on the
Bogoliubov angle Θ. (d): Enlarged view of md for EA = 0.0,
0.2U , and 0.4U plotted vs b/T ∗ in the Kondo regime. (e): Pair

correlation |
〈
d†↑d

†
↓ + d↓d↑

〉
| at Θ = π/2, which in this case is

given by 1 − Q and varies with b and EA, in contrast to the
electron filling ⟨nd⟩ ≡ 1.0 that remains unchanged along the

ΓS axis at ξd = 0. (f): Renormalized Andreev levels ẼA,↑.
The dashed straight lines represent the Hartree-Fock (HF) re-

sult EHF
A

EA≫U/2
−−−−−−→ EA − U/2 − b.



12

We will discuss these of variations of the ground state
properties in more detail in the following.

Figures 8(a)–8(d) describe the occupation number Qσ

and the magnetization md ≡ ⟨nd↑⟩−⟨nd↓⟩ as functions of

magnetic fields. Note that two of them, Fig. 8(d) and the
inset presented for Q↓ in Fig. 8(b), are plotted vs b/T ∗

for small magnetic fields. We see in Fig. 8(d) that the
magnetization md for EA/U ≲ 0.4 exhibits the universal
Kondo scaling behavior at b ≲ T ∗. It can also be recog-
nized that the three curves for Q↓ shown in the inset in
Fig. 8(b) will collapse into a single universal curve if we
introduce the offset values along the vertical axis which
is determined at b = 0 for each EA: note that the occu-
pation number takes the value Qσ = 0.5 at EA = b = 0.

However, as seen in Figs. 8(a) and 8(c), the Zeeman
effect dominates at strong magnetic fields. Note that the
magnetization can also be written as md = Q↑ −Q↓ and
does not depend on the Bogoliubov angle Θ. The Kondo
behavior disappears for EA/U ≳ 0.5, at which the Bo-
goliubov particles are in the valence fluctuation or empty
orbital regime at b = 0. In this region of EA/U , the oc-
cupation number Q↑ of the majority-spin component and
the magnetization md show a steep increase at magnetic
fields of b ≃ EA − U/2 where the level crossing occurs.
As magnetic field increases further b ≳ EA − U/2, the
magnetization rapidly approaches the saturation value
md → 1.0.

Figure 8(e) shows the magnetic-field dependence of the

SC pair correlation function |
〈
d†↑d

†
↓ + d↓d↑

〉
| which be-

comes equal to 1−Q in the direction of Θ = π/2. While
the pair correlation increases with EA, it decreases as
b increases. We can see that the SC proximity effect
dominates at small fields b ≲ EA − U/2 in the param-
eter region of EA ≳ U/2, i.e, the outside of the semi-
circle of radius EA ≳ U/2 + b shown in Fig. 7. In
this region, the SC pair correlation function can take
the value of the order of 10% of the maximum possi-

ble value |
〈
d†↑d

†
↓ + d↓d↑

〉
| = 1, as seen in Fig.8(e) at

magnetic fields of the order of b ∼ 0.1U . However, as
magnetic field approaches b ≃ EA − U/2, the crossover
to the Zeeman-dominated spin-polarized regime occurs,
and the pair correlation rapidly decreases. The sum of
the phase shifts takes the value δ↑ + δ↓ ≃ π/2 in the
crossover region. Therefore, the Andreev scattering is
most enhanced at this point since the factor sin2(δ↑ +δ↓)
that determines TCP takes the maximum value.

Figure 8(f) shows the results for the majority spin com-

ponent of the renormalized Andreev level ẼA,↑ which in-
cludes the Zeeman energy and the many-body corrections

defined in Eq. (2.17). For EA ≲ U/2, the slop of ẼA,↑ is
steep at small magnetic fields b ≃ 0. This is because the
spin susceptibility, χs = md/b, is enhanced in this region
by the Kondo effect as seen in Fig. 8(c). The slope be-
comes gradual, however, as b increases and the crossover
to the Zeeman-dominated regime occurs at b ∼ T ∗. In

contrast, for EA ≳ U/2, the renormalized level ẼA,↑ at
small magnetic fields b ≃ 0 shifts away from the Fermi

level, and the occupation number of the Bogoliubov par-
ticles Q decreases as EA increases. However, as magnetic

field increases further, the renormalized level ẼA,↑ crosses

the Fermi level at b ≃ EA−U/2, and the occupation num-
ber of the majority spin component Q↑ increases abruptly
at the crossing point. The dashed straight lines in Fig.
8(f) represent the Hartree-Fock energy shift EHF

A,↑, which

asymptotically takes the following form at EA ≫ U/2,

EHF
A,↑ ≡ EA − b + U

(
Q↓ −

1

2

)
EA≫U/2−−−−−−→ EA − U

2
− b . (5.1)

The NRG results for ẼA,↑ and the Hartree-Fock energy

shifts show a close agreement for EA ≳ U/2. This is
caused by the fact that the renormalization factor ap-
proaches Zσ ≃ 1.0 and it becomes less important at the
crossover region between the Zeeman-dominated spin-
polarized regime and the SC-dominated regime.

2. b-dependence of transport properties at Θ = π/2

We next discuss the magnetic-field dependence of
transport coefficients in the direction of Θ = π/2, i.e.,
along the ΓS axis (ξd = 0). The NRG results are shown
in Fig. 9: the magnetic field b is scaled by T ∗ in two of
the panels 9(a) and 9(c), whereas the other panels are
plotted vs b/U .

We see in Fig. 9(a) that the transmission probabilities
of Bogoliubov particles TBG for EA ≲ 0.2U collapse into
a single curve at small magnetic fields b ≲ T ∗, showing
a universal b/T ∗ Kondo scaling behavior, whereas the
probability of the Cooper-pairs TCP is suppressed in this
region. Correspondingly, the nonlocal conductance gRL
exhibits the scaling behavior for EA ≲ 0.2U , as shown in
Fig. 9(c). The results for TBG and gRL at EA = 0.4U still
show a similar monotonic decrease although they did not
collapse into the universal curves. Therefore, the CAR
efficiencies ηCAR = TCP/TBG for EA/U = 0.2 and 0.4,
described in Fig. 9(e), increase clearly with b at small
magnetic fields near b ≃ 0. It shows that the Zeeman
splitting suppresses the Kondo correlations and assists
the contributions of the Cooper-pair tunneling.

In contrast, when the Andreev level situates further
away from the Fermi level EA ≳ U/2, the ground state
evolves from the superconductivity-dominated regime to
the Zeeman dominated spin-polarized regime, as mag-
netic field increases. In particular, at b ≃ EA − U/2,
i.e., the crossover region between these two regimes,
the transmission probability of the Bogoliubov particles
TBG =

(
sin2 δ↑ + sin2 δ↓

)
/2 has a peak, which emerges

in Fig. 9(b), as the phase shifts take the value δ↑ ≃ π/2
and δ↓ ≃ 0. Similarly, the Cooper-pair contribution

TCP = (1/4) sin2 Θ sin2
(
δ↑ + δ↓) reaches the maximum

value 1/4 at b ≃ EA − U/2 in the crossover region. This
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is consistent with the previous work that examined an N-
QD-SC system with the modified second-order perturba-
tion theory.63 It revealed the fact that the Andreev scat-
tering is significantly enhanced under the condition that

the renormalized parameters satisfy
∏

σ(ẼA,σ/Γ̃N,σ) = 1:
this can be rewritten into the form cot δ↑ cot δ↓ = 1 and

is fulfilled at δ↑ + δ↓ = π/2.

We can see in Fig. 9(d) that, for EA ≳ U/2, the non-
local conductance gRL = TBG − 2TCP becomes negative
in the SC-dominated regime b ≲ EA −U/2, whereas gRL
takes a positive value in the Zeeman-dominated regime
b ≳ EA − U/2. In particular, for EA ≳ 0.6U , the
nonlocal conductance forms a flat valley structure at
0 ≤ b ≲ EA − U/2 the bottom of which is negative and
is less sensitive to b. This is caused by the fact that
the peak of TBG and the dip of −2TCP move almost syn-
chronously, in Fig. 9(b), as EA increases from 0.5U . For
observing the flat valley structure of gRL, the depth of
which should not be too shallow, and thus EA − U/2
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FIG. 9. Magnetic-field dependence of the transport coeffi-
cients at Θ = π/2 for different positions of EA/U = 0, 0.2, 0.4,
0.5, 0.6 and 0.8, for a strong interaction U/(πΓN ) = 5.0. Top
panel describes TBG =

∑
σ sin2 δσ/2, and Θ dependent part

−2TCP for (a) small EA ≲ 0.5U and (b) large EA ≳ 0.5U . (c)
and (d) show nonlocal conductance gRL/g0. Inset in (d) is an
enlarged view in the region around gRL/g0 ≈ 0.0: the dashed
lines represent the perturbation results obtained with Eq.
(5.2). The characteristic energy is given by T ∗/U = 0.0004,
0.001, 0.019, and 0.097 for EA/U = 0.0, 0.2, 0.4, and 0.5, re-
spectively. (e): CAR efficiency ηCAR. (f) describes gRL/g0 at
a fixed Andreev level position EA = 0.8U for several different
angles Θ = 0, π/8, π/4, 3π/8, π/2: the dashed lines here also
represent the perturbation results.

should be of the order of ΓN , or should not be too much
larger than ΓN . Note that, in this magnetic-field region
0 ≤ b ≲ EA−U/2, the occupation number of the Bogoli-
ubov particles with the minority spin is almost empty
Q↓ ≃ 0.0 and the transport coefficients are determined
by the majority-spin component Q↑. In order to verify
this quantitatively, we expand the nonlocal conductance
into the following form, keeping the terms up to the first
order with respect to δ↓,

gRL ≈ g0

[
cos2 Θ sin2 δ↑ − δ↓ sin2 Θ sin 2δ↑

]
+ O

(
δ2↓
)

Θ=π
2−−−−→ g0

[
−δ↓ sin 2δ↑ + O

(
δ2↓
) ]

. (5.2)

The dashed lines plotted in the inset of Fig. 9(d) are the
results evaluated with Eq. (5.2), using the NRG results
for δσ. These results show close agreement with the full
NRG calculations of gRL plotted with the symbols, i.e.,
for EA/U = 0.6 (•) and 0.8 (□).

So far, we have considered behaviors along the angular
direction of Θ = π/2. Figure 9(f) compares the magnetic-
field dependence of gRL for several different angles Θ,
keeping the Andreev-level position at EA = 0.8U . The
dashed lines, which also show nice agreement with the
full NRG results (symbols) of gRL in this figure, are the
perturbation results obtained from Eq. (5.2). We find
that the flat structure with negative gRL remains for Θ =
3π/8, where the angle largely deviates from π/2. As Θ
derives further, however, gRL becomes positive at 0 <
Θ < π/4, or 3π/4 < Θ < π. Note that the Θ dependence
enters the nonlocal conductance through the coherence
factor sin2 Θ in TCP, and thus gRL is symmetrical with
respect to the ΓS-axis in parameter space shown in Fig.
7.

In the SC-dominated regime 0 ≤ b ≲ EA − U/2, both
components of the phase shift approach zero as EA in-
creases keeping b unchanged, i.e., δ↑ ≃ 0 and δ↓ ≃ 0 as

seen in Fig. 8(a) and 8(b). The CAR efficiency ηCAR
is enhanced in this region although it decreases as b in-
creases, as seen in Fig. 9(e) for EA/U = 0.6 and 0.8. In
particular, for EA ≫ U , the efficiency approaches satu-
ration value ηCAR → 1.0 at small magnetic fields near
b ≃ 0.0.

B. The characteristics of CAR along the
polar coordinates EA and Θ at b ̸= 0

In this subsection, we consider the Θ-dependence of
the transport properties at finite magnetic fields in more
detail. Specifically, in order to clarify in which situations
the CAR contribution can dominate the nonlocal conduc-
tance by overcoming the disturbance of the SC proximity
effects by the Coulomb interaction and magnetic field, we
explore a wide range of the parameter space, i.e., the ξd
vs ΓS plane. Our discussion here is based on the NRG re-
sults in Figs. 10 and 11, obtained for a relatively large in-
teraction U/(πΓN ) = 5.0: the Kondo temperature in this
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case is given by TK/U = 0.0004, which is defined as the
value of the characteristic energy scale T ∗ at EA = b = 0.
These results can be compared with those for zero field
presented in Figs. 5 and 6.

1. Θ dependence of
〈
d†↑d

†
↓ + d↓d↑

〉
at b ̸= 0

Figure 10 shows the pair correlation |
〈
d†↑d

†
↓ + d↓d↑

〉
| =

(1 − Q) sin Θ for two different magnetic-field strengths:
(a) b = TK and (b) b = 0.1U . Here, the occupation
number Q of Bogoliubov particles does not depend on Θ
but varies with b and EA, as mentioned and shown in
Figs. 8(a) and 8(b).

The pair correlation function for a small magnetic field
b = TK , shown in Fig. 10(a), is enhanced outside the
semicircle of radius EA ≳ U/2+b in the angular range of
π/4 < Θ < 3π/4, especially along the ΓS-axis (Θ = π/2),
where the SC proximity effects dominate. In contrast, it
is suppressed by the Kondo effect inside the semicircle
EA ≲ U/2 + b. Note that b is much smaller than U in
this case (TK/U = 0.0004).

Figure 10(b) shows the pair correlation function for a
large magnetic field b = 0.1U . Although it is qualita-
tively similar to Fig. 10(a), we can see that the slope just
inside of the circumference becomes steeper than that
for b = TK . The radius of the dashed semicircle at the
crossover region in this case is EA ≃ U/2 + b (= 0.6U),
and thus the expansion of the circumference due to b
becomes visible in Fig. 10(b).

2. Θ dependence of transport properties at b ̸= 0

The top panels of Fig. 11 show TBG, TCP, and ηCAR
as functions of EA for three different magnetic fields: (a)
b = 0, (b) b = TK , and (c) b = 0.1U , taking the Bogoli-
ubov angle to be Θ = π/2, i.e., the direction in which the
SC proximity effect is most enhanced. We can see that,
as b increases, the peak of the Cooper-pair tunneling part
TCP, emerging at EA ≃ U/2+b, moves with the crossover
region towards the larger EA side along the horizontal
axis. The peak height is 1/4 and the width becomes of

0

0.2

0.4

0.6

0.8

1.0

FIG. 10. Contour maps of |
〈
d†↑d

†
↓ + d↓d↑

〉
| at finite magnetic

fields: (a) b = TK and (b) b = 0.1U , for U/(πΓN ) = 5.0. Here,
TK = 0.0004U is defined as the value of T ∗ at EA = b = 0.
The contours are drawn with 0.1 increments, and the dashed
line represents the semicircle of radius EA = U/2 + b.

the order of ΓN (≃ 0.06U in this case). The Bogoliubov-
particle part TBG exhibits the flat Kondo plateau at zero
field, plotted in Fig. 11(a) for comparison. However, the
Zeeman splitting dominates at magnetic fields of the or-
der of b ≃ TK and the top of the Kondo plateau caves in
around EA ≃ 0.0, as seen in Fig. 11(b). As magnetic field
increases further, the peak of TBG in Fig. 11(c) becomes
small and approaches the peak of TCP that situates close
to the crossover region.

The CAR efficiency ηCAR = TCP/TBG plotted in Fig.
11(c) takes relatively large value 0.1 ≲ ηCAR ≲ 0.5 even
at EA ≲ U/2 + b. Such a behavior is not seen for small b
in Figs. 11(a) and 11(b), and reflects the suppression of
TBG caused by a large magnetic field b = 0.1U . Outside
the crossover region EA ≳ U/2 + b, however, ηCAR shows
a similar behavior in Figs. 11(a)–11(c): it approaches the
saturation value ηCAR → 1.0 as EA increases.

The Bogoliubov angle Θ enters the nonlocal conduc-
tance gRL through TCP since the Bogoliubov part TBG
is independent of it. Figures 11(d) and 11(e) show the
contour maps of TCP described on the ξd vs ΓS plane,
for magnetic fields of (d) b = TK and (e) b = 0.1U . The
Cooper-pair tunneling part TCP is enhanced along in the
crescent-shaped region on the arc of radius EA = U/2+b
in the angular range of π/4 < Θ < 3π/4. The crescent
region spreads over the direction of the ΓS-axis with the
width of the order of ΓN (≃ 0.06U in this case). As the
magnetic field increases, the crescent region moves up-
ward along the ΓS−axis, together with the arc indicated
as a dashed semicircle in Figs. 11(d) and 11(e). This evo-
lution of the crescent region causes the CAR-dominated
flat structure of nonlocal conductance gRL that emerged
in the magnetic-field dependence in Figs. 9(d) and 9(f).

Figures 11(f) and 11(g) show the contour maps of the
CAR efficiency ηCAR for magnetic fields of (f) b = TK

and (g) b = 0.1U . Figure 11(f) captures the typical
profile of ηCAR at small fields of order b ≃ TK : the
CAR efficiency is enhanced in the SC-dominated regime
EA ≳ U/2 + b and π/4 < Θ < 3π/4, whereas it de-
creases rapidly outside this region, especially just inside
the semicircle, EA ≲ U/2 + b, in the edge of the Zeeman-
dominated spin-polarized regime. It reflects the steep
slope along the direction of Θ = π/2, seen in Fig. 11(b),
at the crossover region EA ≃ U/2+b. In contrast, at large
fields of order b ≃ 0.1U , the corresponding slope of ηCAR
inside the semicircle shows a slow modest decline as seen
in Fig. 11(g). This modest decline of ηCAR = TCP/TBG
is caused by the behavior of the transmission probabil-
ity of the Bogoliubov particles in the denominator that
is suppressed in the Zeeman-dominated regime for large
magnetic fields, as seen in Fig. 11(c).

Figures 11(h) and 11(i) describe three-dimensional
plots of the nonlocal conductance gRL/g0 for magnetic
fields of (h) b = TK and (i) b = 0.1U , respectively. These
two examples show quite different behaviors inside the
semicircle of radius EA ≲ U/2 + b. While the Kondo
plateau of gRL starts to cave in around EA = 0 for mag-
netic fields of the order of TK , it is significantly sup-
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FIG. 11. Bogoliubov-angle dependence of transport coefficients in a strong interaction case U/(πΓN ) = 5.0 at small b = TK

and large b = 0.1U fields, with TK/U = 0.0004 defined as the value of T ∗ at EA = b = 0. In the top panels for (a) b = 0, (b)
b = TK and (c) b = 0.1U , the coefficients TBG, TCP and CAR efficiency ηCAR at Θ = π/2 are plotted vs EA/U . (d) and (e):
contour maps of TCP, drawn with 0.05 increments. (f) and (g): contour maps of ηCAR, drawn with 0.1 increments. (h)–(k)
describe the nonlocal conductance gRL/g0. In particular, (j) and (k) are the contour maps for negative conductance region
gRL < 0, for which contours are drawn with 0.05 increments. The dashed semicircle of radius EA = b + U/2 in (d)–(g) and
(j)–(k) corresponds to the one in Fig. 7.

pressed at large magnetic fields of order 0.1U , almost in
the whole region inside the semicircle EA ≲ U/2 + b,
except for the rim of the semicircle. However, in both
cases, there spreads commonly a CAR-dominated region
with negative nonlocal conductance, outside the semicir-
cle EA ≳ U/2 + b in the direction of the ΓS-axis, which
also emerges at zero magnetic field in Fig. 6(c).

Figures 11(j) and 11(k) are the contour maps of the
region, at which the nonlinear conductance becomes neg-
ative gRL < 0.0, for magnetic fields of (j) b = TK and (k)
b = 0.1U . It spreads in the ξd vs ΓS plane, over the re-
gion of EA ≳ U/2 + b and π/4 < Θ < 3π/4. These plots
clearly show that the CAR contribution is enhanced, par-
ticularly at the crescent region just outside the circumfer-
ence of the dashed semicircle. The CAR dominates the

nonlocal conductance in this region, and the dip struc-
ture of gRL still remains for finite magnetic fields of order
0.1U although the depth decreases as b increases. Fur-
thermore, these results demonstrate how the flat struc-
ture can emerge in the magnetic-field-dependence of gRL,
seen in Figs. 9(d) and 9(f). For example, at the point
(EA = 0.6U,Θ = π/2) in the ξd vs ΓS plane situates in
the dip region of gRL when the magnetic field b varies
from 0 to the order 0.1U .

These results suggest that, in order to experimentally
probe the CAR contributions in the nonlocal conduc-
tance gRL, this crescent region will be a plausible target
to be examined. The CAR dominated transport occurs
in the parameter region ΓS ≳ U/2 + b, where the Cooper
pairs can penetrate into quantum dots, overcoming the
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repulsive interaction and magnetic field. Although we
have chosen a rather strong interaction U/(πΓN ) = 5.0
in this section, the sweet spot for the measurements, at
which gRL exhibits a dip structure, emerges for any U ,
as demonstrated in Fig. 4(c) for b = 0.

C. Spin-polarized current between normal leads

So far, we have mainly considered the charge trans-
port. In particular, we have seen in Fig. 11(i) that for a
magnetic field of b = 0.1U , the nonlocal conductance has
a peak in the angular directions Θ ≃ 0 and Θ ≃ π, along
the rim of the semicircle of radius EA ≃ U/2 + b. Here
we discuss the resonant spin-polarized current which is
significantly enhanced in this region where the crossover
takes place between the Zeeman-dominated regime and
the SC-proximity-dominated regime.

The spin current IR,spin ≡ IR,↑− IR,↓ flowing from the
quantum dot to the right lead can be expressed in the
following form, as shown in Appendix D:

IR,spin =
e2

h

4ΓLΓR

Γ2
N

Tspin (VL − VR) , (5.3)

where Tspin =
(
sin2 δ↑ − sin2 δ↓

)
cos Θ. The magnetic-

field dependence of the spin current is determined by the
difference sin2 δ↑−sin2 δ↓ between the transmission prob-
ability of the ↑-spin and that of the ↓-spin Bogoliubov
particles. Similarly, the normalized current polarization
is defined by77–80

PR ≡
IR,↑ − IR,↓

IR,↑ + IR,↓

ΓL=ΓR−−−−−→
sin2 δ↑ − sin2 δ↓

sin2 δ↑ + sin2 δ↓
cos Θ.

(5.4)

Figure 12 shows the NRG result of the spin-resolved
transport coefficients calculated at a magnetic field of
b = 0.1U , for a strong interaction U/(πΓN ) = 5.0. In
this case, the renormalized Andreev level for the majority

spin ẼA,↑ crosses the Fermi level at EA ≃ U/2 + b since

ẼA,↑ can be approximated by the Hartree-Fock energy

shift, defined in Eq. (5.1), in the crossover region.
Figure 12(a) shows that the resonant tunneling of the

unitary limit sin2 δ↑ = 1 occurs for the majority ↑-spin

Bogoliubov particles, whereas the minority one sin2 δ↓
is very small and does not give any significant contri-
bution to the current. Note that the occupation num-
ber of electrons ⟨nd,σ⟩ depends on the coherence factor
cos Θ, and is given by a linear combination of the phase
shifts as shown in Eq. (2.23). Therefore, the occupation
number of ↓-spin electrons fluctuates significantly at the
crossover region in the direction of Θ = π in such a way

that ⟨nd,↓⟩
Θ=π−−−→ 1 − δ↑/π, whereas the ↑-spin electrons

fluctuate in the direction of Θ = 0 as ⟨nd,↑⟩
Θ=0−−−→ δ↑/π.

Figures 12(b) and 12(c) clearly show that Tspin and PR

are enhanced at the level-crossing point EA ≃ b + U/2

near the ξd-axis. The Θ-dependence of Tspin and PR are
determined by the coherence factor cos Θ, as shown in
Eqs. (5.3) and (5.4). Therefore, these coefficients be-
come most significant in the directions of Θ = 0 and
Θ = π, where the resonant tunneling occurs for the ↑-
spin and ↓-spin electron components, respectively. As
the Bogoliubov angle Θ deviates away from the ξd axis,
the spin polarization is suppressed, especially in the SC-
proximity-dominated regime at π/4 < Θ < 3π/4, and
the spin current IR,spin vanishes at Θ = π/2.
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FIG. 12. Spin-dependent transport coefficients at finite mag-
netic field b = 0.1U , for U/(πΓN ) = 5.0. Top panel (a) shows
sin2 δ↑ and sin2 δ↓, plotted vs EA. Three-dimensional figures
represent (b) spin transmission coefficient Tspin and (c) cur-
rent polarization PR, plotted as functions of ξd and ΓS , for
ΓL = ΓR.
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VI. SUMMARY

We have studied the interplay between the crossed An-
dreev reflection, Kondo effect, and Zeeman splitting, oc-
curring in a multi-terminal quantum dot, consisting of
two normal and one SC leads.

It has been shown that the linear-response currents
flowing through quantum dot at zero temperature T = 0
are determined by two angular variables, i.e., the phase
shift δσ of Bogoliubov particles and the Bogoliubov rota-
tion angle Θ = cot−1(ξd/ΓS) in the the limit of large SC
gap |∆S | → ∞. In this limit, the phase shift can be de-
duced from an effective Anderson model for interacting
Bogoliubov particles, which has a global U(1) symmetry
along the principal axis in the Nambu pseudo-spin space.
The Bogoliubov angle Θ enters the transport coefficients
through the SC coherence factors, and plays an essential
role in the conductance, together with the position of the
Andreev level EA =

√
ξ2d + Γ2

S .
In the first half of the paper, we have described the role

of the many-body optical theorem on the CAR, and have
shown that the multi-terminal conductance at finite mag-
netic fields is determined by the transmission probability
TBG = 1

2

∑
σ sin2 δσ of the Bogoliubov particles, which

does not depend on Θ, and by the Cooper-pair tunnel-
ing part TCP = 1

4 sin2(δ↑ + δ↓) sin2 Θ. In the second half,
we have discussed the behaviors of nonlocal conductance,
obtained by using the NRG approach in a wide range of
the parameter space which consists of ξd, ΓS , ΓN , the
Coulomb interaction U , and the magnetic field b.

At zero magnetic field, the nonlocal conductance gRL
becomes negative at EA ≳ U/2 and π/4 < Θ < 3π/4,
where the CAR dominates. In particular, the contri-
bution of Cooper-pair tunnelings TCP is maximized at
a crescent-shaped crossover region between the Kondo-
dominated and the SC-dominated regimes, emerging at
EA ≃ U/2 in the angular direction of Θ ≃ π/2. The
width of the crescent region along the ΓS-axis is of the
order of ΓN . The enhanced CAR occurring in this region
is caused by the valence fluctuation of the Bogoliubov
particles, in the middle of which the occupation num-
ber takes the value Q = 1/2 and the phase shift due
to the Cooper-pair tunneling reaches the unitary limit
δ↑ + δ↓ = π/2.

Magnetic fields lift the spin degeneracy of the Andreev
resonance level. In the strongly-correlated case where
Q ≃ 1.0 with EA ≲ U/2 and U ≫ ΓN , the crossover be-
tween the Kondo regime and Zeeman-dominated regime
occurs at a magnetic field b ∼ T ∗ of the order of the
Kondo energy scale T ∗. In contrast, at EA ≳ U/2 in
the valence-fluctuation region of the Bogoliubov parti-
cles, magnetic fields induce a crossover between the SC-
proximity dominated regime and the Zeeman-dominated
regime at b ≃ EA−U/2, where the renormalized Andreev

level ẼA,↑ for the majority spin component (σ =↑) crosses
the Fermi level. It induces the resonant tunneling of the
Bogoliubov particles and the Cooper-pair tunneling, the
transmission probabilities of which are determined by the

phase shifts δ↑ ≃ π/2 and δ↑ + δ↓ ≃ π/2, respectively.
Note that δ↓ ≃ 0.0 as the renormalized Andreev level
for the minority spin component becomes almost empty
Q↓ ≃ 0.0 in this region. It has also been demonstrated
that the resonant spin current is enhanced in the angular
direction of Θ ≃ 0 or Θ ≃ π when the Andreev level of
the majority spin crosses the Fermi level.

The nonlocal conductance gRL becomes negative in the
parameter region of EA ≳ U/2 + b and π/4 < Θ < 3π/4.
In particular, the CAR contribution is maximized in the
crescent-shaped region, which moves in the ξd vs ΓS
plane, together with the semi-circular boundary of ra-
dius EA ≃ U/2 + b as b increases. The crescent region
evolves with the magnetic field and yields a flat valley
structure which emerges in the b-dependence of gRL, at
0 ≤ b ≲ EA−U/2. These results suggest that, in order to
experimentally probe the CAR contributions measuring
the nonlocal conductance, the crescent parameter region
will be a plausible target to be examined.
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Appendix A: Effective Hamiltonian for |∆S | → ∞

The Hamiltonian H defined in Eq. (2.1) can be sep-
arated into two independent parts since only the sym-
metrized linear combination αε,σ of conduction electrons
has a finite tunnel coupling to the QD, whereas the anti-
symmetrized linear combination βε,σ is decoupled from
the rest of the system,

αε,σ ≡
vL cε,L,σ + vR cε,R,σ√

v2L + v2R
, (A1)

βε,σ ≡
−vR cε,L,σ + vL cε,R,σ√

v2L + v2R
. (A2)

Correspondingly, the conduction-electron part and the
normal-tunneling part of the Hamiltonian can be rewrit-
ten in the following form,

HN =
∑
σ

∫ D

−D

dε ε
(
α†
ε,σαε,σ + β†

ε,σβε,σ

)
, (A3)

HTN = vN
∑
σ

∫ D

−D

dε
√
ρc

(
α†
ε,σdσ + H.c.

)
, (A4)

where vN ≡
√

v2L + v2R.
Furthermore, in the large gap limit |∆S | → ∞ which is

taken at |∆S | ≪ DS keeping ρS constant, the supercon-
ducting proximity effects can be described by the pair
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potential ∆d ≡ ΓS eiϕS penetrating into the QD.36,47

Therefore, at low energies, the subspace to which the
QD belongs can be described by the following effective
Hamiltonian,

Heff ≡ ψ†
d HSC

dot ψd +
U

2
(nd − 1)

2

+ vN

∫ D

−D

dε
√
ρc

[
ψ†

α(ε)ψd +ψ†
dψα(ε)

]
+

∫ D

−D

dε ε ψ†
α(ε)ψα(ε) . (A5)

Here, HSC
dot is the following matrix defined in the Nambu

pseudo-spin space,

HSC
dot ≡

(
ξd ∆d

∆∗
d −ξd

)
− b1 , (A6)

with 1 the 2 × 2 unit matrix, and

ψd ≡

(
d↑

d†↓

)
, ψα(ε) ≡

(
αε,↑

−α†
−ε,↓

)
. (A7)

The effective Hamiltonian Heff has a global U(1) sym-
metry with respect to the principal axis along the three-
dimensional vector n̂ ∝ (Re ∆d, −Im ∆d, ξd) in the
Nambu space. The conserved charge associated with this
U(1) symmetry corresponds to the total number of Bo-
goliubov particles, the operators for which are given byγd,↑

γ†
d,↓

 = U†ψd,

 γε,↑

−γ†
−ε,↓

 = U†ψα(ε) . (A8)

Here, U the unitary matrix which diagonalizes HSC
dot:

U† HSC
dot U = EAτ3 − b1, τ3 =

(
1 0
0 −1

)
, (A9)

with EA ≡
√

ξ2d + Γ2
S . For example, in the case where

the Josephson phase ϕS = 0, the matrix U is determined
by a single Bogoliubov angle Θ, as shown in Eq. (2.13).

Appendix B: Derivation of linear nonlocal current

In this appendix, we provide a brief derivation of the
nonlocal conductance defined in Eqs. (3.1)–(3.4)

The current flowing from the quantum dot to the nor-
mal lead on the right is described by the operator,

ÎR,σ = −i evR

∫ D

−D

dε
√
ρc

(
c†ε,R,σdσ − d†σcε,R,σ

)
(B1)

for spin σ component. The steady-state average of the

total current IR ≡ ⟨ÎR,↑⟩ + ⟨ÎR,↓⟩ with IR,σ ≡ ⟨ÎR,σ⟩

can be expressed in terms of the Green function in the
Keldysh formalism,36

IR = − i
e

h

∫ ∞

−∞
dω ΓR Tr

[
Gr

dd(ω)CR(ω)Ga
dd(ω) τ3

]
,

CR ≡ ΣK
tot −

(
1 − 2fR

)[
Σ−+

tot −Σ+−
tot

]
. (B2)

Here, Tr denotes the trace of the 2 × 2 matrices in
the Nambu pseudo-spin space. Σ−+

tot and Σ+−
tot are the

lesser and greater self-energies, respectively, and ΣK
tot ≡

−Σ−+
tot −Σ+−

tot . The matrix fν is defined as

fν(ω) =

[
fν(ω) 0

0 fν(ω)

]
, ν = L, R. (B3)

The bias voltage eVν is applied to the leads such that
fν(ω) ≡ f(ω−eVν) and fν(ω) ≡ f(ω+eVν) with f(ω) =
1/[eω/T + 1] the Fermi distribution function.

Each self-energy matrix can be separated into two
parts, e.g.

ΣK
tot(ω) = ΣK

0 (ω) + ΣK
U (ω) . (B4)

Here, the first term on the right-hand side represents the
tunnel contributions at U = 0,

ΣK
0 (ω) = −2i

∑
ν=L,R

Γν

[
1− 2fj(ω)

]
, (B5)

Σ−+
0 (ω) −Σ+−

0 (ω) = −2i
(
ΓL + ΓR

)
1 , (B6)

with 1 the 2×2 unit matrix in the pseudo-spin space. The
second term on the right-hand side of Eq. (B4), ΣK

U (ω),
represents the self-energy corrections due to the Coulomb
interaction U . This and the corresponding terms of the
lesser and greater self-energies, Σ−+

U (ω) and Σ+−
U (ω) are

also pure imaginary in the frequency domain, and rep-
resent the damping of quasiparticles due to the multi-
ple collisions. These imaginary parts of the interacting
self-energies vanish at T = 0, eVν = 0, and ω = 0, and
thus they do not contribute to the linear-response current
at zero temperature. Furthermore, the function CR(ω)
identically vanishes at eVν = 0 since there is no steady
current at equilibrium.

Therefore, at T = 0, the linear-response current can be
calculated, keeping the noninteracting terms Eqs. (B5)
and (B6) for CR(ω) in the right-hand side of Eq. (B2):

IR =
4e2

h

×

[(∣∣∣{Gr
dd(0)

}
11

∣∣∣2 +
∣∣∣{Gr

dd(0)
}
22

∣∣∣2)ΓRΓL (VL − VR)

−
(∣∣∣{Gr

dd(0)
}
12

∣∣∣2 +
∣∣∣{Gr

dd(0)
}
21

∣∣∣2)
{

ΓRΓL (VL + VR) + 2Γ2
R VR

} ]
. (B7)
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Note that the anomalous Green’s functions are related to
each other through

{
Gr

dd(ω)
}
21

=
{
Ga

dd(ω)
}∗
12

. Equation

(B7) can be rewritten further in terms of the phase shifts
δσ and the Bogoliubov angle Θ, by using Eq. (2.12) to
obtain Eqs. (3.3) and (3.4).

Appendix C: Optical theorem for Andreev scattering

We provide a derivation of the optical theorem, which
emerges in the following form,∑

σ

sin2 δσ = 2
(
TET + TCP

)
. (C1)

We start with the matrix identity for the impurity
Green’s function in the Nambu form,

Gr
dd(ω) −Ga

dd(ω)

= Gr
dd(ω)

[
{Ga

dd(ω)}−1 − {Gr
dd(ω)}−1

]
Ga

dd(ω)

= Gr
dd(ω)

[
Σr

tot(ω) −Σa
tot(ω)

]
Ga

dd(ω) . (C2)

At ω = T = eV = 0, it can be rewritten further in the
following form,

−ΓN

2i

[
Gr

dd(0) −Ga
dd(0)

]
= Γ2

N G
r
dd(0)Ga

dd(0) . (C3)

Here, we have used the property that the imaginary part
of the interacting self-energy vanishes ImΣr

U (0) = 0 and
the noninteracting one is given by Σr

0(ω) − Σa
0(ω) =

−2iΓN1. Taking trace of the Nambu matrices, the left-
hand side of Eq. (C3) can be calculated as

− ΓN

2i
Tr
[
Gr

dd(0) −Ga
dd(0)

]
= −ΓN

2i

∑
σ

[
Gr

γ,σ(0) −Ga
γ,σ(0)

]
=
∑
σ

sin2 δσ. (C4)

Similarly, the right-hand side of Eq. (C3) takes the form

Γ2
NTr

[
Gr

dd(0)Gr
dd(0)

]
= Γ2

N

[∣∣∣{Gr
dd(0)}11

∣∣∣2 +
∣∣∣{Gr

dd(0)}12
∣∣∣2

+
∣∣∣{Gr

dd(0)}21
∣∣∣2 +

∣∣∣{Gr
dd(0)}22

∣∣∣2 ]. (C5)

The last line corresponds to 2
(
TET+TCP

)
defined in Eqs.

(3.3) and (3.4), and from this Eq. (C1) follows.

Appendix D: Derivation of the spin current formula

We briefly describe here the linear response formula for
the spin current following between two normal leads at
finite magnetic fields. The current formula presented in
Appendix B can be decomposed into the contributions of
the ↑ and ↓ spin components, which can be rearranged
as a spin current:

IR,spin ≡ IR,↑ − IR,↓

= −i
e

h

∫ ∞

−∞
dω ΓR Tr

[
Gr

dd(ω)CR(ω)Ga
dd(ω)

]
. (D1)

Specifically at T = 0, the linear-response spin current
can be expressed in the following form,

IR,spin =
4e2

h
ΓLΓR

(∣∣∣{Gr
dd(0)

}
11

∣∣∣2 − ∣∣∣{Gr
dd(0)

}
22

∣∣∣2)
× (VL − VR)

=
4e2

h

ΓLΓR

Γ2
N

Tspin (VL − VR) , (D2)

Tspin ≡
(
sin2 δ↑ − sin2 δ↓

)
cos Θ . (D3)

Note that IL,↑ − IL,↓ = IR,↑ − IR,↓.

Similarly, the current polarization PR, defined with
respect to symmetric voltages VL = −VR, can be used
as a measure of the spin current relative to the charge
current77–80:

PR ≡
IR,↑ − IR,↓

IR,↑ + IR,↓
=

ΓLΓRTR,spin

2 [ΓLΓRTET + Γ2
RTCP]

ΓL=ΓR−−−−−→
sin2 δ↑ − sin2 δ↓

sin2 δ↑ + sin2 δ↓
cos Θ . (D4)
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and T. Novotný, Phys. Rev. B 95, 045104 (2017).
45 E. Vecino, A. Mart́ın-Rodero, and A. L. Yeyati, Phys.

Rev. B 68, 035105 (2003).
46 A. Oguri, Y. Tanaka, and A. C. Hewson, J. Phys. Soc.

Jpn. 73, 2494 (2004).
47 Y. Tanaka, A. Oguri, and A. C. Hewson, New J. Phys. 9,

115 (2007).
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