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We consider flux equilibrium in dissipative nonlinear wave systems subject to external energy
pumping. In such systems, the elementary excitations, or quasiparticles, can create a Bose-Einstein
condensate. We develop a theory on the Bose-Einstein condensation of quasiparticles for various
regimes of external excitation, ranging from weak and stationary to ultra-strong pumping, enabling
us to determine the number of quasiparticles near the bottom of the energy spectrum and their
distribution along wave vectors. We identify physical phenomena leading to condensation in each
of the regimes. For weak stationary pumping, where the distribution of quasiparticles deviates
only slightly from thermodynamic equilibrium, we define a range of pumping parameters where the
condensation occurs and estimate the density of the condensate and the fraction of the condensed
quasiparticles. As the pumping amplitude increases, a powerful influx of injected quasiparticles
is created by the Kolmogorov-Zakharov scattering cascade, leading to their Bose-Einstein conden-
sation. With even stronger pumping, kinetic instability may occur, resulting in a direct transfer
of injected quasiparticles to the bottom of the spectrum. For the case of ultra-strong parametric
pumping, we have developed a stationary nonlinear theory of kinetic instability. The theory agrees
qualitatively with experimental data obtained using Brillouin light scattering spectroscopy during
parametric pumping of magnons in room-temperature films of yttrium-iron garnet.

I. INTRODUCTION

The Bose-Einstein (BE) condensate (BEC) is a state
of matter with a macroscopically large number of bosons
occupying the lowest quantum state and demonstrating
coherence at macroscopic scales [1–5]. This phenomenon
was observed and investigated in atomic systems such as
4He, 3He (in the latter, the role of bosons is played by
Cooper pairs of fermionic 3He atoms), and in ultra-cold
trapped atoms [6, 7].

BECs were also found in systems of bosonic quasiparti-
cles such as polaritons [8] and excitons [9] in semiconduc-
tors, photons in micro-cavities [10], as well as magnons
in superfluid 3He [11] and magnetic crystalline materials
[12–14]. In all these cases quasiparticles have a finite life-
time, and the appearance of steady-state BEC requires
continuous or periodic excitation (pumping) of quasipar-
ticles by an external source. To some extent, these sys-
tems can be considered as being in a flux-defined (rather
than thermodynamic) equilibrium. This feature makes
the quasiparticle systems qualitatively different from the
systems of real particles (atoms) whose total number is
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conserved. BECs of quasiparticles are drawing significant
interest for their possible applications in new technologies
of information transfer and data processing, including co-
herent quantum optics (see, e.g., [15–17]). The investiga-
tion of such flux-driven systems is the main motivation
of the present work.
In this paper, we compare various scenarios of the evo-

lution of a weakly interacting overpopulated gas of quasi-
particles toward BEC under conditions of flux equilib-
rium. For simplicity, we consider an isotropic homoge-
neous wave system with a parabolic dispersion law:

ωk = ω0[1 + (ak)2] . (1a)

Here ω0 is the gap of the frequency spectrum (“bottom”
frequency), a is a characteristic scale, and k is the wave
number, see Fig. 1. This choice simplifies the comparison
of a BEC of quasiparticles with the energy Ek = ℏωk in
the flux-equilibrium wave systems with a BEC of non-
relativistic bosons with the energy

Ek = (ℏk)2/(2m) (1b)

expressed via the Plank’s constant h = 2πℏ and the par-
ticle mass m. Expressions for Ek stress the wave-particle
duality in describing waves and quasiparticles in quan-
tum mechanics. For example, using the parabolic disper-
sion law (1a), we write an equation for energy similar to
Eq. (1b),

Ek = E0 + (ℏk)2/(2m) , E0 ≡ ℏω0 . (1c)
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FIG. 1. Schematic representation of the parabolic fre-
quency spectra of quasiparticles (1a) with their relevant
groups: parametric quasiparticles with frequency ωpar, de-
noted as blue squares ■, BEC with frequency ω0, denoted
as red circles •, and top quasiparticles with the frequency
ωtop = 2ωpar − ωbot, denoted as green diamonds ♦. The bot-
tom quasiparticles slightly above the frequency ωbot are shown
by the orange area. The light-blue arrows denote the process
of creation of parametric quasiparticles by external pumping.
The red and green arrows show the process of four-wave scat-
tering, leading to the phenomenon of kinetic instability.

Thus, we can consider quasiparticles having the energy
spectrum Ek = ℏωk with ωk defined by Eq. (1a) and an
effective mass

meff = ℏ/(2ω0a
2) . (1d)

To simplify the discussion further we assume that the
pumping of the system results in the appearance of quasi-
particles with a particular frequency ωpar. A well-known
example of such pumping is the parametric excitation
of magnons in a ferromagnetic material by an almost
homogeneous external electromagnetic field of frequency
ωpump = 2ωpar. In this case, parametric magnons with
frequency ωpar = ω(±kpar) appear as a result of the de-
cay process with the conservation law:

ωpump = ω(kpar) + ω(−kpar) , (2)

schematically shown by two blue arrows in Fig. 1. All
our results can be easily generalized for more sophisti-
cated quasiparticle pumping in a wide range of frequen-
cies, for example by parametric pumping with a noisy
electromagnetic field (or noise modulation of quasiparti-
cle frequency) [18].

The paper aims to investigate the processes leading to
the emergence of Bose-Einstein condensates (BECs) in
various parameter ranges of the pumping. It also seeks
to determine the total number of quasiparticles (Ntot) in

the vicinity of the spectral minimum ω0 and the fraction
NBEC of the number of quasiparticles that constitute the
condensed part.
The structure of the paper is as follows. In Sec. II we

describe the wave system under consideration and, to
introduce notations, remind the well-known results for
BE condensation of bosons in three-dimensional (3D) and
two-dimensional (2D) systems.
Next, in Sec. III we formulate criteria for the BE con-

densation and find Ntot and NBE for a relatively simple
case of weak pumping, for which the nonlinear wave sys-
tem, even in the presence of the energy and particle num-
ber fluxes, is close to the thermodynamic equilibrium. In
Sec. IV we consider the case of strong pumping. Here, in
the 3D system, the overpopulated gas of quasiparticles is
transferred by step-by-step cascade processes down the
frequency band, followed by the thermalization of low-
energy quasiparticles into the BEC state [19, 20]. We
also discuss more involved 2D and thin-film cases.
A very strong pumping regime, as considered in Sec.V,

to the best of our knowledge, is currently realized only
for magnons in ferromagnetic materials. However, the
physical picture in this regime does not depend on the
specific properties of magnons. We, therefore, consider
quasiparticles with a generic parabolic frequency spec-
trum, shown in Fig. 1. Here, the cascade process can be
accompanied by a direct transfer of the parametrically
injected quasiparticles to the lowest (bottom) and high
(top) energy states by a 2 ⇔ 2 scattering process [21–23]

ω(kpar) + ω(k′
par) ⇒ ω(kbot) + ω(ktop) . (3)

In this process, referred to as the kinetic instability
(KI) [21], a dense cloud of incoherent “bottom” quasipar-
ticles is formed close to the BEC point. This scattering
process is sketched in Fig. 1 by red arrows pointing from
blue-filled squares to the orange area and discussed in
Sec.VA. By the energy conservation law (3), the same
number of parametric quasiparticles is transferred to
higher energy states with frequency ωtop ≃ 2ωp−ωb and
energy above thermodynamic equilibrium (top quasipar-
ticles, shown in Fig. 1 by filled green diamonds). The
feedback influence of the top and bottom quasiparticles
on the parametric ones is studied in Sec.VB. Note that
in the considered case of the parabolic isotropic disper-
sion surface, the momentum conservation law is satis-
fied because the parametric quasiparticles fill the entire
isofrequency circle ωpar. Thus, the scattering process in-
volves parametric quasiparticles with wave vectors kpar
arranged at an angle of 45◦ to each other, which ensures
that the wave vector length of the top quasiparticles is√
2kpar (see Fig. 1). Four-particle scattering of paramet-

ric and bottom quasiparticles is responsible for the widen-
ing of the package of the bottom quasiparticles. These
processes are considered in the framework of the nonlin-
ear theory of kinetic instability, developed in Secs. VC
and VD.
Section VI is devoted to the experimental study of the

BE condensation of magnons in thin films of yttrium
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iron garnet (YIG, Y3Fe5O12) using Brillouin light scat-
tering (BLS) spectroscopy. This ferrimagnetic material is
a classical material for the experimental study of nonlin-
ear magnon dynamics. There are several reasons for this:
(i) most importantly, it has the lowest known spin-wave
damping; (ii) its Curie temperature TC = 560K allows
experiments to be carried out at room temperature; (iii)
being a dielectric, it is transparent to microwave elec-
tromagnetic radiation, which makes it possible to excite
magnetic oscillations in the entire volume of bulk samples
and study them using common microwave techniques;
(iv) thin single-crystal films of YIG are transparent to
visible light, which enables the study of magnon dynam-
ics also by optical methods with spatial, temporal, fre-
quency, and wave vector resolution. In our experiments,
magnons were pumped by an external electromagnetic
field, as shown in Fig. 8. Comparing the nonlinear theory
of kinetic instability with available and new experimental
results, we conclude that at large pumping amplitudes,
kinetic instability is the main channel for transferring
magnons from the pumping region directly to the lower
part of their frequency spectrum. We confirm several
predictions of the newly-developed nonlinear theory of
BEc of quasiparticles.

II. BEC IN THERMODYNAMIC
EQUILIBRIUM: ANALYTICAL BACKGROUND

The physics of a BEC in systems with a flux equilib-
rium is, in many aspects, similar to that of a BEC in ther-
modynamic equilibrium. Therefore, to stress the similar-
ities and differences of basic physics in these two regimes,
it is useful to use the same or similar notations. To in-
troduce these notations, we shortly describe the BEC
process in wave systems under consideration using a cus-
tomary framework (see, e.g. [12, 24–27]).

A. Bose-Einstein and Rayleigh-Jeans distributions

It is well known from various textbooks (see, e.g. [28])
that the free evolution of an ideal Bose gas and weakly-
interacting wave systems results in the BE distribution
for particle (e.g. 4He atom) or quasiparticle numbers:

n
BE

k =
1

exp[(Ek − µ)/T ]− 1
, (4a)

in which Ek is the particle (or quasiparticle) energy,
T is the temperature, and µ is the chemical poten-
tial. For non-relativistic particles and quasiparticles with
parabolic dispersion law Eq.(1b), to ensure T > 0 and
nk ≥ 0 the value of µ must be smaller than the minimum
of Ek: µ ≤ E0.

In the low-energy limit, when (Ek − µ) < T , the BE
distribution approaches its classical limit, known as the

Rayleigh-Jeans (RJ) distribution [28]:

n
RJ

k (T, µ) =
T

Ek − µ
. (4b)

In the opposite limit, when Ek − µ > T , the BE distri-
bution (4a) becomes exponentially small:

n
BE

k → exp[−(Ek − µ)/T ] . (4c)

We can understand the crossover wave number k×, de-
fined by the equation

T =
(ℏk×)2

2m
+ E0 − µ , (4d)

as a quantum cutoff of the classical RJ-distribution (4b):
for k > k× it becomes exponentially small according to
Eq. (4c).
Note that the crossover wave number k× may exceed

the maximal wave number kmax ≃ π/a0, determined by
the inter-atomic scale a0 or by some details of the sys-
tem’s dynamics (e.g. by the crossover between the flux-
and the thermodynamic equilibrium regimes) as will be
clarified below. For simplicity, in the present paper, we
assume kmax to be greater than k×.

B. Quantum nature of a BEC of Bose-atoms and
waves

To stress the quantum-mechanical nature of the BEC
in both the ideal Bose gas and the gas of quasiparticles,
we shortly recall here some results of the celebrated 1925
paper by Albert Einstein [2].
Consider the thermodynamic equilibrium in the sys-

tems characterized by the total numberNtot of
4He atoms

or quasiparticles and the total energy Etot, measured for
quasiparticles from their energy gap E0:

Ntot =

∫
n

BE

k ddk

(2π)d
⇒ 1

2π2

k×∫
0

n
RJ

k k2dk , (5a)

Etot =

∫
(ℏk)2

2m

n
BE

k ddk

(2π)d
⇒ ℏ2

4π2m

k×∫
0

n
RJ

k k4dk . (5b)

Here, n
BE

k is the BE distribution, given by Eq. (4a),
dkd = 4πk2dk in the isotropic 3D case considered here
with the dimensionality d = 3, and m is either the actual
mass of 4He atoms or the effective mass of quasiparticles.

To estimate the integrals in Eqs. (5), we replaced n
BE

k in

the rightmost integrals by n
RJ

k and accounted for the ex-

ponential decay of n
BE

k above the quantum cutoff (i.e. for
k > k×) by introducing the upper limit of integration k×.
The two relations (5) allow us to find T and µ in the fi-

nal equilibrium state. However, the direct substitution of

n
RJ

k into Eqs. (5) leads to an immediate problem, known
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as the ultraviolet catastrophe: both integrals forNtot and
Etot diverge for k× → ∞:

Ntot ≈
T

2π2

k×∫
0

k2dk

(ℏk)2/(2m) + E0 − µ
, (6a)

Etot ≈
ℏ2 T
4π2m

k×∫
0

k4dk

(ℏk)2/(2m) + E0 − µ
. (6b)

The only solution is to account for the finite value of the
quantum cutoff k×, i.e. for the quantum character of the
problem.

A simple analysis of Eqs. (6) shows that lowering Etot

with fixed Ntot leads to smaller T , while µ increases
and approaches E0, which is zero for 4He atoms or
ℏω0 for quasiparticles. As µ reaches E0, Eq. (6a) gives
an estimate of the maximal possible number of excited
“gaseous” 4He atoms or quasiparticles with Ek > E0,
which we denote as Ngas:

Ngas ≈
k3×
4π2

, k× =

√
2mT

ℏ
. (7a)

The corresponding parameter Etot we denote as Egas.
According to Eq. (6b) we find:

Egas ≈ Ngas
(ℏk×)2

6m
≈ π4/3ℏ2

3 · 21/3m
(
Ngas

)5/3
. (7b)

For Etot < Egas, the number of “gaseous” 4He atoms or
quasiparticles at the excited energy levels Ngas becomes
smaller than their total number Ntot. What happens
with their excess number Ntot − Ngas? The answer was
given by Einstein in Ref. [2]: the excess 4He atoms (and
quasiparticles, as we understand now) occupy only ONE
level with the minimal energy, independently of the size
of the system, forming a BEC, in which the number of BE
condensed atoms or quasiparticles NBEC = Ntot−Ngas is
macroscopically large. All these BE condensed quasipar-
ticles belong to the basic quantum state with its wave
function coherent over the entire size of the system, ow-
ing to the fundamental principle of quantum mechanics
of the indistinguishability of identical quasiparticles: the
particles (or quasiparticles) with zero and natural spins
can occupy any quantum state without limitation of their
occupation number.

The existence of the quantum cutoff and the indis-
tinguishability of identical (quasi)particles are necessary
conditions for the BE condensation of Bose atoms and
quasiparticles. Therefore, the phenomenon of the BE
condensation of 4He atoms and other Bose atoms, as well
as magnons and other quasiparticles, has a fundamen-
tally quantum nature.

C. Quasi-BEC in two-dimensional systems

In the 2D isotropic case, d2k = 2πkdk and integrals
for Ntot and Etot, similar to Eqs. (6), take the form:

Ntot ≈
T

2π

k×∫
0

kdk

(ℏk)2/(2m)− δµ
=

k2×
4π

ln
(
1− T

δµ

)
≈
k2×
4π

ln
( T

|δµ|

)
=

k2×
2π

ln
( k×
kmin

)
,

(8a)

Etot ≈
ℏ2 T
8π2m

k×∫
0

k3dk

(ℏk)2/(2m)− δµ

=
k2×
4π

[
T + δµ ln

(
1 +

T

δµ

)]
≈

Tk2×
4π

, where

(8b)

δµ ≡µ− E0 < 0 , and kmin ≡
√

2m|δµ|
ℏ

. (8c)

As δµ → 0, Ntot becomes logarithmically large, i.e., any
large number of quasiparticles can occupy excited levels
with k > 0. Therefore, BE condensation never happens
in unbounded 2D media.
According to Eqs. (1) and (4b), for µ = E0 = ℏω0 the

wave distribution diverges at k = 0:

n
RJ

k =
T

ℏω0(ak)2
=

2mT

(ℏk)2
(9a)

and formally Ntot = ∞. Nevertheless, when Ntot → ∞
but still finite, µ → ℏω0, and kmin → 0, the coherence
length of the quasiparticles

ℓ ≃ π/kmin (9b)

increases and finally reaches the sample size. In other
words, the wave system becomes coherent across the en-
tire sample and can be practically considered as a BEC.
Nevertheless, to be formally rigorous, we will refer to this
system as quasi-BEC [25].

III. FLUX EQUILIBRIUM WITH WEAK
PUMPING: QUASI-EQUILIBRIUM REGIME

In this Section we consider an isotropic system with
a parabolic dispersion law Eq. (1) and relatively weak
pumping, such that in the stationary case the system can
be considered close to the thermodynamic equilibrium.
Then, similar to the equilibrium regime, main contribu-
tions to all Ntot- and Etot-integrals, given by Eqs. (5),
come from the range k < k×, i.e., below the crossover
between the quantum and classical scales. To simplify
the appearance of our results, we approximate, analo-
gous to the previous Sec. II B, the BE distribution (4a)
in this range by the Rayleigh-Jeans distribution (4b).
The idea of the theoretical analysis of the BE conden-

sation in the quasi-equilibrium regime is simple. By bal-
ancing the rate of the quasiparticle input with the rate
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of their loss, we will find their total number Ntot in the
flux-equilibrium regime. A similar analysis of the rate
equation for the energy allows us to find the total energy
of the system Etot. Because the system is assumed to be
close to the thermodynamic equilibrium in the vicinity
of the energy minimum, we can find an effective temper-
ature Teff, describing a local Rayleigh-Jeans distribution
in this region. In turn, this allows us to find the number
of excited quasiparticles Ngas, occupying energy levels
Ek > E0. If Ngas turns out to be smaller than Ntot, the
excess quasiparticles create the BEC:Ntot−Ngas = NBEC.
Otherwise, there is no BEC.

A. BEC in 3D-systems

To study BE condensation in 3D systems along the
lines of the suggested procedure, consider now the con-
tinuity equation for the quasiparticle numbers nk with
a damping frequency γ (taken for simplicity as k-
independent) and a source (influx) of quasiparticles f
at a surface of the sphere of radius kf:

k2

2π2

∂nk

∂t
+

∂ηk
∂k

= −γk2

2π2
nk +

k2f f

2π2
δ(k − kf) . (10)

Here ηk is the flux of quasiparticles in the 1D-space of
k = |k| (the angle-averaged 3D k-space),
The rate equation for the energy (measured from E0)is

obtained by multiplying Eq. (10) by ℏδωk = ℏω0a
2k2.

Integrating the result, we obtain for the total energy in
3D:

E
3D

tot =
ℏω0a

2fk4f
2π2γ

. (11a)

Now, using the definition Eq. (1d) and in analogy to
Eq. (6b) with the effective temperature T = Teff and the
effective mass m = meff, as well as assuming the presence
of the BEC (i.e. µ = E0), we rewrite Etot as:

E
3D

tot =
Teffk

3
×

6π2
. (11b)

Equations (11) allows us to find Teff. Using it to find, with
the help of Eq. (6a), the total number of exited (gaseous)
quasiparticles with k > 0 we obtain:

N
3D

gas =
Teff k×

2π2ℏ a2 ω0
=

3fk4f
2π2k2×γ

. (12)

On the other hand, the total number of quasiparticles
Ntot can be found by integration of the particle rate
Eq. (10):

N
3D

tot =
f k2f
2π2γ

. (13)

The excess of N
3D

tot over Ngas is the number of BE con-
densed quasiparticles:

N
3D

BEC = N
3D

tot −N
3D

gas =
fk2f
2π2 γ

(
1− k2f

k2cr

)
, k2cr ≡

k2×
3

.

(14)

Recall that by setting µ = E0 we assumed that the BEC

is formed, i.e., N
3D

BEC > 0. We see that the BEC appears
only if the spectral location of the quasiparticle influx f
is below the critical value kcr, which is independent of the
value of f . However, if the condition kf < kcr is fulfilled,
the particle number in the BEC is proportional to f/γ.
The numerical factor 3 in Eq. (14) is a consequence of the
simplifying assumption that γk is k-independent.
The requirement of the smallness of kf for BE conden-

sation has a simple physical meaning. In our model with
monochromatic pumping [at a single frequency ω(kf)] of
the energy (counted from E0) and the quasiparticles,
their influxes, P

E
and P

N
are related: P

E
= ℏ[ω(kf) −

ω(0)]P
N
. This means that at the constant quasiparticle

influx P
N

(and, consequently, constant N
3D

tot), the energy
influx P

E
, being proportional to k2f PN

, decreases with de-
creasing kf. Accordingly, Etot and Teff also decrease with
decreasing kf. Clearly, the wave system with the constant
Ntot will unavoidably experience BE condensation when
kf (and consequently Teff) become smaller and smaller.
On the other hand, for large kf in the hot system there
will be no BEC. Hence, there is a critical value kf = kcr,
Eq. (14), at which BE condensation happens.

B. Quasi-BEC in 2D-systems

As we discussed in Sec. II C, one expects the appear-
ance of a quasi-BEC in a finite-size 2D-space, say in a
square domain L × L. Assuming for concreteness peri-
odical boundary conditions, we end up with a discrete
k-space, in which kx = ±2πnx/L and ky = ±2πny/L
with nx and ny = 0 , 1 , 2 , . . . L . The wave vector k = 0,
i.e. kx = ky = 0, can be considered as the position of the
quasi-BEC, while the rest of the k-space can be roughly
approximated as a continuous k-space, restricted by the

inequality k > k̃min ≈ 2π/L. If so, the quasiparticle
distribution in 2D case reads:

nk =
Tθ(kmin)

ℏω0(a k)2
+ (2π)2NBECδ

2(k) , k < k× , (15)

where θ(kmin) is the Heaviside step function.
The 2D version of the quasiparticle rate equation (10)

is:

k

2π

∂nk

∂t
+

∂ηk
∂k

= −γk

2π
nk +

kff

2π
δ(k − kf) . (16)

Multiplying the stationary version of this equation by
ℏω0a

2k2 and integrating over dk gives for the total en-
ergy

E
2D

tot =
ℏω0f a2k3f

2πγ
, (17a)
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similar to Eq. (11a). By analogy with Eq. (6b), E
2D

tot in
terms of the effective temperature reads

E
2D

tot =
Teffk

2
×

4π
. (17b)

Similar to the 3D case, these equations allow one to find
Teff and, by the help of a 2D version of Eq. (6a), the total
number of gaseous quasiparticles in 2D:

N
2D

gas =
Teff

2πℏω0a2
ln
( k×

k̃min

)
=

fk3f
k2×γ

ln
( k×

k̃min

)
, k̃min ≈ 2π

L
,

(18)

instead of Eq. (12) for the 3D case.
Now, integrating the stationary Eq. (16) over k, one

gets a new equation for the total particle number N
2D

tot

which gives, similar to Eq. (13) for N
3D

tot:

N
2D

tot =
fkf
2πγ

. (19)

As in the 3D case, the excess of N
2D

tot over N
2D

gas gives
the number of BE condensed quasiparticles:

N
2D

BEC = N
2D

tot −N
2D

gas =
fkf
2π γ

(
1−

k2f
k2cr

)
, (20a)

k2cr ≡ k2×

/[
2 ln

( k×

k̃min

)]
. (20b)

We see that also in 2D the BEC appears only if the po-
sition of the quasiparticle influx f is below the critical
value kcr, now given by Eq. (20b). As before, kcr is in-
dependent of the value of this influx f and kcr < k×.
Also, similar to the 3D case, when kf < kcr, the particle
number in the BEC is proportional to f/γ.

IV. FLUX EQUILIBRIUM WITH STRONG
PUMPING: SCALE-INVARIANT REGIMES

A. Kinetic equation and damping frequency

A consistent description of the evolution of an over-
populated wave system towards the formation of a BEC
may be achieved in the framework of the theory of weak
wave turbulence [27, 29]. The main tool of this theory is
a kinetic equation (KE) for the occupation numbers n(k)
of quasiparticles:

∂nk

∂t
= St(k , t) . (21)

The collision integral St(k , t) may be found by various
ways [27, 29], including the Golden Rule, widely used in
quantum mechanics [30]. In the case of the three-wave
decay

ωk = ω1 + ω2 , k = k1 + k2 , (22a)

and confluence processes

ωk + ω1 = ω2 , k + k1 = k2 , (22b)

the collision integral takes the form [27, 29]:

3St(k , t) = π

∫
dk1dk2

[1
2
|V 12

k |2 µ12
k

×δ(k − k1 − k2)δ(ωk − ω1 − ω2)

(23a)

+|V k1
2 |2 µk1

2 δ(k2 − k1 − k)δ(ωk2 − ω1 − ωk) . (23b)

Here ωj ≡ ωkj ≡ ω(kj), nj ≡ nkj , V
12
k ≡ V (k,k1k2)

is the 3-wave interaction amplitude and µ12
k ≡ n1n2 −

nk(n1 + n2).
If the three-wave processes (22) are suppressed or for-

bidden, the main role is played by four-wave 2 ⇔ 2 pro-
cesses

ωk + ω1 = ω2 + ω3 , k + k1 = k2 + k3 . (24a)

In this case, the collision integral reads [27, 29]:

4St(k, t) =
π

4

∫
dk1dk2dk3 δ(k + k1 − k2 − k3)

× δ(ωk + ω1 − ω2 − ω3) |W 23
k1 |2

× [n2n3(nk + n1)− nkn1(n2 + n3)] .

(24b)

Here W 23
k1 = Wk2,k3

k,k1
= W (k,k1;k2,k3) is the four-wave

interaction amplitude.
The kinetic equations (21), (23) and (24b) have a sta-

tionary thermodynamic equilibrium solution in the form
of the RJ distribution (4b). To describe the evolution of
the system close to the RJ distribution, Eq. (21) can be
approximately reformulated as follows,

∂nk

∂t
= γk

[
n

RJ

k − nk

]
(25)

where γk is proportional to the part of the collision inte-
gral that explicitly includes nk. In the case of four-wave
processes (24a) with the collision integral (24b) we find:

.4γk =
π

4

∫
dk1dk2dk3|W 23

k1 |2δ(k + k1 − k2 − k3)

× δ(ωk + ω1 − ω2 − ω3)[n1(n2 + n3)− n2n3] .

(26a)

According to Eq. (25), near the equilibrium

nk − n
RJ

k ∝ exp[− 4γkt] .

Therefore, 4γk (26a) has a meaning of the damping (or re-
laxation) frequency in the four-wave scattering processes
(24a). Close to and at equilibrium it is positive 4γk > 0.
In general, the kinetic Eq. (21) with the collision

term (24b) can be written as follows:

∂n(k)

∂t
= Φ(k)− γ(k)n(k) , (26b)
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where n(k) ≡ nk, γ(k) =
4γ(k) is given by Eq. (26a) and

the source term has the form

Φ(k) =
π

4

∫
dk1dk2dk3 δ(k + k1 − k2 − k3)

× |W 23
k1 |2δ(ωk + ω1 − ω2 − ω3)n1n2n3 .

(26c)

In thermodynamic equilibrium nj = n
RJ

j , Φ(k) =

γ(k)n
RJ

k and Eq. (26b) coincides with Eq. (25), as ex-
pected.

B. Scale-invariant solutions of the kinetic equation

Weak wave turbulence theory [27, 29] also allows us to
find stationary flux solutions of the KE in the isotropic
scale-invariant case, for which the wave frequency de-
pends only on k = |k| and the interaction amplitude
W 23

k1 is a homogeneous function,

ωk = ωk ∝ kα , Wσk3,σk4

σk1,σk2
= σmWk3,k4

k1,k2
. (27)

Here, α is the frequency scaling index (for example, for
magnons at the beginning of the exchange-dominated dis-
persion branch α = 2), m is the four-wave interaction-
amplitude scaling index and σ is a positive constant. For
simplicity, let us take

W 34
12 = W0a

m(k1k2k3k4)
m/4 , (28)

where W0 is a constant. Up to now, our analysis has a
general character, applicable to any nonlinear wave sys-
tem. Below, having in mind the comparison of our pre-
dictions with spin waves in a ferromagnetic material, we
choose the interaction parameters typical for this system
for further discussion. In the ferromagnetic material, at
sufficiently large k, the exchange interaction with m = 2
is dominant. In the low-k range, the dipole-dipole inter-
action dominates, with m = 0.
The scaling solutions (up to a dimensionless prefactor)

read

nε(k) ≃
ε1/3

W
2/3
0 (a k)xε

, xε = d+
2m

3
, (29a)

nη(k) ≃
η1/3

W
2/3
0 (a k)xη

, xη = d+
2m− α

3
. (29b)

Here ε and η are the energy and the quasiparticle (mag-
non) number fluxes, and d is the dimensionality of the
space.

C. Directions of the fluxes and realizability of the
flux solutions in ferromagnets

Following the Fjørtoft argument [31], one can show
(see, e.g. [27, 29]) that the energy flux solution (29a) is
oriented toward large k (“direct energy cascade”), while

the quasiparticle-flux solution (29b) flows toward small k
(“inverse particle cascade”). This conclusion is based on
the analysis of the energy and quasiparticle number bal-
ance in the stationary, scale-invariant, isotropic situation,
in which the energy and the quasiparticles are pumped
around some intermediate wave number kf and dissi-
pate at both very small k<- and very large k>-numbers:
k< ≪ kf, k> ≫ kf.
Now we are going to verify that the scale-invariant so-

lutions (29) do have the directions of the energy and mag-
non number fluxes that agree with the Fjørtoft argument.
For that, we analyze the behavior of these fluxes for

the distributions n(k) ∝ k−x with an arbitrary value
of x. We expect that for a very steep spectrum, the
fluxes will act to change it toward the equilibrium spec-
tra. Therefore, for large and positive x, given that n(k)
decreases sharply toward larger wave numbers, we expect
both ε and η fluxes to be positive, i.e., directed toward
large k. On the other hand, for large negative x, when
the spectra are growing toward high wave numbers, we
expect ε, η < 0. Furthermore, both fluxes will be zero

for both thermal equilibrium exponents x
TE

η = 2 (be-

cause nRJ ∝ 1/ωk) and x
TE

ε = 0. In addition, the flux
of magnons η(x) vanishes for the pure energy flux spec-
trum with exponent xε given by Eq. (29a), and the energy
flux ε(x) vanishes for the pure particle flux exponent xη,
given by Eq. (29b). By continuity, the signs of both fluxes
for all x are fully determined by their signs at infinity
and the locations of their zero crossings. The fluxes vary
in the manner schematically shown in Figs. 2(a) and (b)
for the 2D and 3D case, respectively, with the exchange-
dominated interaction with m = 2, and Figs. 2(c) and
(d) for the 2D and 3D case, respectively, with the dipole-
dipole dominated interaction with m = 0 [32].
First, we consider the exchange-dominated case in fer-

romagnets (m = 2) for which

xε =
10

3
, xη =

8

3
, for d = 2 , (30a)

xε =
13

3
, xη =

11

3
, for d = 3 . (30b)

We see in Figs. 2(a,b) that in both 2D and 3D at the
spectral index x = xε, corresponding to the pure energy
flux ( 103 and 13

3 respectively), the energy flux is positive,
ε > 0. Similarly, we see that for x = xη, corresponding
to the pure flux of magnons ( 83 and 11

3 respectively), the
flux of magnons is negative, η < 0. These findings are in
full agreement with the Fjørtoft prediction.
In the dipole-dipole interaction-dominated case, when

m = 0,

xε = 2 , xη =
4

3
, for d = 2 , (31a)

xε = 3 , xη =
7

3
, for d = 3 . (31b)

These exponents are the same as in the Nonlinear
Schrödinger (NLS) equation, studied in Refs. [27, 33, 34].
Consequently, our schematic representation of the fluxes
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(a)

(c)

(b)

(d)

FIG. 2. Schematic presentation of the particle flux η(x) (in
red) and the energy flux ε(x) (in blue) as a function of spec-
tral index x. (a) exchange-dominated interaction, 2D; (b)
exchange-dominated interaction, 3D; (c) dipole-dipole dom-
inated interaction, 2D; (d) dipole-dipole dominated interac-
tion, 3D.

Fig. 2(c,d) looks similar to Fig. 1(c,d) in Ref. [34]. For
completeness, the analysis that led to the conclusions
made in Ref. [34], is briefly reproduced below.

In 3D, ε is positive at xη and η is negative at xε in
agreement with the Fjørtoft argument. We therefore can
expect that in 3D the Kolmogorov-Zakharov flux cas-
cades with exponents (31b) are possible. A more detailed
analysis [27, 33] shows that the inverse particle cascade
Kolmogorov-Zakharov spectrum is indeed realized, while
the direct energy cascade is marginally nonlocal and the
respective spectrum must be modified by the logarithmic
corrections.

As seen in Fig. 2(d), in spectra (29) the quasiparticles
cascade is directed to large k and the energy cascade is
zero. This contradicts the robust Fjørtoft-type analysis
based on the energy and the quasiparticles number bal-
ance for the situation when the energy and quasiparticles
are pumped around some intermediate wave number kf
and dissipate in both ranges of very small k<- and very
large k>-numbers. The contradiction may be resolved
if, instead of the pure scaling spectra (29), the inverse
quasiparticles and the direct energy cascades are real-
ized by spectra with a shape close the thermodynamic
RJ equilibria (4b) with small corrections which take care
of the magnon and energy fluxes toward small and large
k, respectively.

D. Transition from 3D- to 2D-cases in thin films

In thin films, we chose the direction z orthogonal
to the film surface. The corresponding wave vector is
kz = πnz/∆, where ∆ is the film thickness. Accordingly,
the wave frequency is also quantized, and the frequency
of the fundamental mode with nz = 1 is separated from

the frequency of the next mode with nz = 2, etc. This re-
sults in the appearance of a crossover wave number k2↔3

between the 2D and 3D regimes in the flux solutions. For
k ≫ k2↔3, the 3D flux solutions can be realized, while
for k ≪ k2↔3 the energy and quasiparticles exchange be-
tween waves with different nz are strongly suppressed,
or even forbidden. Roughly speaking, for k2↔3 the fre-
quency gap between waves with neighboring nz is of the
order of the interaction frequency (or damping frequency)
of waves with k ∼ k2↔3.
For the problem at hand it means the following: if

the pumping wave number strongly exceeds the crossover
kf ≫ k2↔3, there exists a direct energy flux toward
large k for k > kf, whereas in the intermediate range
k2↔3 < k < kf, an inverse particle flux toward small
k is realized. For small wave numbers k < k2↔3, the
wave system falls into the 2D regime, in which the scale-
invariant flux solution cannot be realized. Instead, it ap-
proaches a solution close to the thermodynamic equilib-
rium with small deviations ensuring the required particle
flux.

V. ULTRA-STRONG PUMPING: KINETIC
INSTABILITY AND BEC

In this Section, we consider ultra-strong parametric
pumping by an external monochromatic field of frequency
ωpump, exciting a very intense package of quasiparticles
near the resonant frequency ωpar = ωpump/2 according
to Eq. (2), see Fig. 1. As predicted in Ref. [21], the scat-
tering process with the conservation law

ω(kpar) + ω(k′
par) = ω(kbot) + ω(ktop) , (32)

shown in Fig. 3(a) decreases the damping frequency of
the bottom and top waves γ(kbot) and γ(ktop) such that
they may become negative. If so, the cascade processes,
discussed in Sec. IVB, may be augmented by a direct
transfer of the parametrically injected quasiparticles to
the lowest energy states, creating a dense cloud of inco-
herent “bottom” quasiparticles formed close to the BEC
point [35] and a similar cloud at the high energy state
(“top quasiparticles”).

The linear stage of this phenomenon, referred to as
kinetic instability [21–23, 36], is considered below in sec-
tionVA. The exponential growth of the number of the

(a)
par’

par

top

bot

(b)
par’par

bot’bot

(c)

par’par

top’top

FIG. 3. (a) Interaction processes Eq. (32) leading to the ki-
netic instability. (b) and (c), scattering processes (33), lead-
ing to the widening of the frequency distribution of the bot-
tom and top quasiparticles.
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bottom and top quasiparticles due to kinetic instability
alters the damping of the parametric ones. This process
is discussed in VB. In its turn, two other scattering pro-
cesses, shown in Figs. 3(b) and (c), involve parametric,
bottom, and top waves

ω(kpar) + ω(kbot) = ω(k′
par) + ω(k′

bot) ,

ω(kpar) + ω(ktop) = ω(k′
par) + ω(k′

top) .
(33)

It widens the frequency distribution of the bottom and
top quasiparticles, as described in VC. Combining all
processes together, we formulate the nonlinear descrip-
tion of the kinetic instability in VD.

Although the kinetic instability was first discovered in
a system of parametrically excited magnons [21], it is
a general physical phenomenon in nonlinear wave sys-
tems. To stress this generality and to clarify the under-
lying phenomena, we describe it here for the isotropic
homogeneous wave system with the parabolic dispersion
law (1a). We postpone the discussion of the specific fea-
tures related to the anisotropic spectrum of magnons,
shown in Fig. 7, until Sec. VI, which addresses the exper-
imental study of magnon BEC formation in ferrimagnetic
YIG.

A. Linear stage of the kinetic instability

To clarify the physics of the kinetic instability, we sub-
stitute the RJ distribution (4b) into Eq. (26a) for the
damping frequency. We see that near the equilibrium
γk > 0, meaning that the wave system, being close to the
equilibrium, monotonically relaxes toward it. However,
the right-hand-side (RHS) of Eq. (26a) has the negative
term proportional to n2n3, which under some conditions
may dominate.

To demonstrate this, let us conside the distribution as
a sum of the equilibrium waves (4b) and a package of the
parametric waves with k = kpar and total number Npar.
In the isotropic 3D case:

n(k) = n
RJ

(k) + npar(k) , (34a)

npar(k) =
Npar

4πk2par
δ(k − kpar) . (34b)

Consequently, the rate Eqs. (26) for the bottom and
top quasiparticles nbot(k) and ntop(k) appearing in the
scattering process (3), are as follows:

∂nbot(k)

∂t
= −γbot(k)nbot(k)− γKI(k)

[
nbot(k) + ntop(k)] ,

∂ntop(k)

∂t
= −γtop(k)ntop(k)− γKI(k)

[
nbot(k) + ntop(k)] .

(35)

Here, γbot > 0 and γtop > 0 are the original (posi-
tive) damping frequencies originating from the equilib-

rium quasiparticles n
RJ

k . The new terms, proportional

to γKI(k) < 0, which leads to the kinetic instability, can
be found from the last term −npar(k2)npar(k3) in the
RHS of Eq. (26a) for 4γk in both the bottom and the top
quasiparticles

γKI(k) = −π

4

∫
dk1dk2dk3δ(k + k1 − k2 − k3)

× |W 23
k1 |2δ(ωk + ω1 − ω2 − ω3)n

par(k2)n
par(k3) .

(36a)

As we see (following Ref. [21]), the value of γKI(k) is
negative. For clarity of the presentation, it is conve-
nient to introduce a positive object ΓKI(k) = −γKI(k) > 0
and to rewrite Eqs. (35) for the total number of the top
and the bottom quasiparticles, Nbot =

∫
nbot(k)dk and

Ntop =
∫
nbot(k)dk as follows:

∂Nbot

∂t
=ΓKI

[
Nbot +Ntop]− γbotNbot ,

∂Ntop

∂t
=ΓKI

[
Nbot +Ntop]− γtopNtop .

(36b)

Next, we integrate Eq. (36a) with respect to the direc-
tions of all kj . Using the procedure of averaging as in
Refs. [33, 37], we conclude (up to a numerical prefactor)
that

ΓKI (k) ≃
1

k

∫
dk1dk2dk3k1k2k3 min{k, k1, k2, k3}|W 23

k1 |2

×δ(ωk + ω1 − ω2 − ω3)n
par(k2)n

par(k3) .

(36c)

Note that in our case min{k, k1, k2, k3} = k which cancels
against the prefactor of the integral 1/k.

Substituting Eq. (34b) for npar(k) we finally arrive at
the following estimate for the positive contribution to the
rate Eq. (36b), leading to the kinetic instability:

ΓKI(k) ≃
(Ωpar

W
)2

ωpar
, Ωpar

W
≡ |W0|2Npar . (37)

Here, we assume for simplicity that W 23
k1 = W0 in agree-

ment with Eq. (28) with m = 0 and we approximate
ω0(a kpar)

2 ≃ ωpar.
The linear Eqs. (36b) have exponential solutions

Nbot(k, t) ∝ exp(ν±k t) , Ntop(k, t) ∝ exp(ν±k t) , (38a)

with

ν±k =Γpar −
1

2

(
γtop + γbot

)
± 1

2

√(
γtop − γbot

)2
+ 4Γ2

KI .

(38b)

The increment ν+k becomes positive if

.ΓKI > Γth
KI =

γtopγbot
γtop + γbot

≃ γbot, for γbot ≪ γtop. (38c)

This condition may be fulfilled for low-frequency waves
near the bottom of their frequency spectra, where γbot(k)
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is small. If so, these waves become unstable, and their
numbers Nbot(t) and Ntop(t) are related as follows,

NbotΓKI =
Ntop

2

[
γtop − γbot

+

√(
γtop − γbot

)2
+ 4Γ2

KI

]
∝ exp(ν+k t) ,

(39a)

and grow exponentially until the nonlinear effects become
significant. The description of these effects is the subject
of the Sec.VD.

Under stationary conditions, when ν+k = 0, the rela-
tionship between Nbot and Ntop is even simpler:

Nbotγbot = Ntopγtop . (39b)

Near the threshold Γpar = Γth
par, Eq. (38b) gives

ν+k ≈ [ΓKI(k)− Γth
KI(k)]

(γbot + γtop)
2

γ2
bot + γ2

top

+ . . . (39c)

The condition ν+k = 0 defines the threshold of the ki-
netic instability if one neglects the scattering of the bot-
tom and top quasiparticles on the parametric ones, con-
sidered in Sec.VC.

Using the estimate (37) for Γpar, we find from Eq. (38c)
the critical value N cr

par corresponding to the threshold of
the kinetic instability in which νk = 0:

π|W |N cr
par ≃

√
ωpar γbotγtop

/
(γbot + γtop) . (40)

Corrections to this estimate caused by the scattering of
the bottom and parametric quasiparticles will be dis-
cussed in Sec.VC.

B. Mean-field approximation for parametrically
excited waves and feedback limitation of the kinetic

instability

The statistical behavior of parametrically-excited
waves in ferromagnets was intensively studied experimen-
tally, theoretically and numerically since their discovery
by Suhl in 1959 [38] and by Schlömann in 1962 [39]. A rel-
atively simple theory of this phenomenon in the mean-
field approximation, called the “S-theory”, was devel-
oped later by Zakharov, L’vov and Starobinets, and pre-
sented in their review [40]. Further important achieve-
ments in this problem were summarised, for example, in
the books [32, 41].

The evolution equations for the total number of
parametrically-excited waves Npar and their mean phase
Ψpar (cf. Eqs. (5.4.13) of the book [32]) is our start-
ing point. Here we augment them with the new term
ΓparNpar, which describes the loss of parametric waves
due to their direct transfer to the bottom and the top
waves by the kinetic instability described below.

In the spherically symmetric case, these equations take
the form

dNpar

dt
=
(
hV sinΨpar − γpar − Γpar

)
Npar , (41a)

dΨpar

dt
=hV cosΨpar +Ω

S
, Ω

S
≡ SNpar , (41b)

Here, h is the amplitude of the external homogeneous
oscillating field, V is the interaction amplitude of this
field with the parametric waves, γpar is their damping
frequency, and S is the mean interaction amplitude of
a pair of parametric waves with opposite wave vectors
±kpar, with another pair ±k′

par:

S =
〈
W

k′
par,−k′

par

kpar,−kpar

〉
. (41c)

To estimate the additional damping Γpar, consider
KE (21) with the collision term 4St(k, t), given by
Eq. (24b), with the resonance conditions (24a), in which
we take k = kpar, k1 = k′

par, (where |kpar| = |k′
par| =

kpar), k2 = kbot, k3 = ktop or k3 = kbot, k2 = ktop.
The last choice gives the same contribution as the pre-

vious one and can be accounted for by replacing the
numerical prefactor π/4 → π/2. Corresponding val-
ues of the frequencies are as follows: ωk = ω1 = ωpar,
ω2 = ωbot, ω3 = ωtop. This way we get

.Γpar(kpar)≃
π

2

∫
dk1dk2dk3 δ(kpar + k1 − k2 − k3)

× δ(2ωpar − ωbot − ωtop) |W 23
k1 |2

× npar(k1)
[
nbot(k2) + ntop(k3)

]
.

(42a)

Note that the numerical prefactor here is twice as large
as in Eq. (36a) for γKI(k). Estimating Γpar(kpar) from
Eq. (42a), in the same way we obtained the estimate (37)
for ΓKI(k) from Eq. (36a), we finally get:

Γpar(kpar) ≃
2|W |2NparN+

ω0(akpar)2
≃ 2|W |2NparN+

ωpar
,

N+ ≡ Nbot +Ntop .

(43a)

Comparing this estimate with Eq. (37) for ΓKI(k), we
see that NparΓpar, the rate of dissipation of parametric
waves due to the kinetic instability, is about 2NbotΓKIN+,
the total input rate of the bottom and top quasiparticles.
A more detailed analysis shows that this relationship is
exact. Namely, the positive contribution Γpar to the rate
Eq. (36b), leading to the kinetic instability, and the ad-

ditional damping frequency Γtop
bot in Eq. (41a) are related

as follows:

ΓparNpar = 2ΓKIN+ . (43b)

Both effects are caused by the same 4-wave scattering

ω(k1) + ω(k2) =⇒ ω(k3) + ω(k4) , (43c)

in which the “initial” waves with wave vector k1 and
k2 are parametric waves with ω(k1) ≃ ω(k2) ≃ ωpump/2,
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while the “resulting” waves are the bottom and top quasi-
particles with the frequencies ωbot and ωtop = 2ωpar −
ωbot.

From the quantum-mechanical viewpoint, one act of
the scatteringEq. (43c) leads to the disappearing of two
parametric quasiparticles and the creation of one bot-
tom quasiparticle and one “top” quasiparticle with ωtop.
Therefore, the corresponding damping −ΓparNpar in the
rate Eq. (41a) for the parametric quasiparticles must be
negative. Its modulus must be positive and exactly equal
to the input contributions 2 Γ KIN+ to the RHS of the
sum of the rate Eqs. (35) for the bottom and top quasi-
particles.

Equations (41) have the stationary solution

(SNpar)
2 = (hV )2 − (γpar + Γpar)

2 . (44)

Furthermore, Eqs. (43a), (43b) and (44) allow us to find
Npar for a given hV and N+ for a given hV and Npar:

Npar =
ωpar

ω2
parS

2 + 4W 4N2
+

[
− γparW

2N+ (45a)

+
√
(hV )2

(
ω2
parS

2 +W 4N2
+

)
− γ2

parω
2
parS

2
]
,

N+ =
ωpar

W 4N2
par

[
− γparW

2Npar

+
√

(hVW 2Npar)2 − S2(WNpar)4
]
.

(45b)

Using Eq. (39b), one easily reconstructs Nbot and Ntop

from N+:

Nbot =
N+γtop

γbot + γtop
, Ntop =

N+γbot
γbot + γtop

. (45c)

Below the threshold of the kinetic instability, when
N+ = 0, Eq. (45a) simplifies to

|S|Npar =
√

(hV )2 − γ2
par . (45d)

In addition, the threshold amplitude hth of the paramet-
ric instability (for which Npar = N+ = 0) reads

hthV = γpar . (45e)

C. Scattering of the bottom and parametric waves

In the nonlinear theory of kinetic instability, we have
to account for one more process: scattering of the bottom
or top quasiparticles on the intense parametric quasipar-
ticles with the conservation law (24a), in which ω1 ≃
ω2 ≃ ωpar and ωk ≃ ω3 ≃ ωbot or ωk ≃ ω3 ≃ ωtop:

ω(kbot) + ω(kpar) = ω(k′bot) + ω(k′par) . (46)

To do this, we have to account for an additional term
Stscat in the RHS of the rate Eq. (35):

∂nk

∂t
= ν+k nk + Stscat(k) , (47a)

where ν+k is given, with required accuracy, by Eq. (39c)
and

Stscat(k) =
π

4

∫
dk1dk2dk3|Wk2,k3

k,k1
|2npar(k1)

× npar(k2)δ(ωk + ω1 − ω2 − ω3)

× (n3 − nk)δ(k + k1 − k2 − k3) .

(47b)

In Eq. (47a) and below in this section, nk should be un-
derstood as nbot(k) or ntop(k). This term originates from
the collision term 4St(k, t) [Eq. (24b)], in which we ac-
count only for the leading terms npar(k1)npar(k2) with
the frequencies ω1 ≃ ω2 ≃ ωpar.
In the isotropic case, following Refs. [33, 37], we can

rewrite Eqs. (47) in the ω-representation:

∂nω

∂t
= ν+ω nω +

∫
dω1dω2dω3 S(ω, ω1, ω2, ω3)

×δ(ω + ω1 − ω2 − ω3)n
par
ω1

npar
ω2

(nω3
−
√

ω3

ω
nω).

(48a)

Here ω and k are related by Eq. (1a): ω = ω0[1 + (ak)2],
and the particle number densities in the k- and ω-spaces,
nk and nω, in isotropic case are related as follows,

nω =
2πk

ω0a2
nk . (48b)

It is important to take into account that parametrically
excited waves usually experience auto-oscillation with a
characteristic frequency about ΩS, given by Eq. (41b)
[32]. Therefore, in the ω-representation the distribution
np(ω) is not proportional to δ(ω − ωp), but has some
width ∆ of the order of ΩS around ωpar. For concrete-
ness, we assume the simple Gaussian form of npar(ω):

npar
ω =

Npar√
2π∆

exp
[
− (ω − ωpar)

2

2∆2

]
,

Npar =

∞∫
−∞

npar
ω dω , ∆ ≃ ΩS ≃ SNpar .

(48c)

The collision integral in the RHS of Eq. (48a) is taken
over the positive values ω1, ω2, and ω3. The kernel of
the integral (up to a dimensionless order-one constant)
reads:

.S(ω, ω1, ω2, ω3) ≃
min{

√
ω,

√
ω1,

√
ω2,

√
ω3}√

ω1ω2ω3
|W 23

k,1|2. (49)

Substituting npar
ω1

and npar
ω2

from Eq. (48c) and keeping in
mind that in this case ω ≃ ω3 ≃ ω0 < ω1 ≃ ω2 ≃ ωpar

we conclude that

S(ω, ω1, ω2, ω3) ≃
|W|2

ωpar
, W = W

kpark0,
k0,kpar

. (50)

Furthermore, replacing the dummy variable ω3 by ω̃
and integrating the resulting equation over ω1 and ω2,
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we get (up to a numerical prefactor in the integral)

∂nω

∂t
= ν+ω nω +

Ω2
W

ωpar

∞∫
ω0

dω̃

∆
(nω̃ − nω) exp

[
− (ω − ω̃)2

4∆2

]
,

ΩW = WNpar . (51)

Equation (51) was derived for the 3D case. In 2D, it
has exactly the same form (51) but with a slightly differ-
ent value of the numerical prefactor, which we are not
controlling anyway.

Already at this stage, we can formulate an important
consequence of Eq. (51): integrating it over ω from ω0

to ∞ one gets a rate equation for the total number of
bottom quasiparticles Nbot (or Ntop):

dNbot

dt
=

〈
ν+ω

〉
Nbot ,

〈
ν+ω

〉
≡

∫∞
ω0

ν+ω nωdω∫∞
ω0

nωdω
. (52)

The integral term in Eq. (51) does not contribute to
Eq. (52) due to the anti-symmetry of its integrand.

D. Nonlinear theory of the kinetic instability

Some aspects of the nonlinear theory of the kinetic
instability were discussed a long time ago in Ref. [36] fo-
cusing only on the case of small super-criticality over the
threshold of kinetic instability when ΓKI − Γth

KI ≪ Γth
KI.

Here, we extend this theory to the range of moderate
and large super-criticality, i.e., when ΓKI − Γth

KI ≳ Γth
KI or

when ΓKI ≫ Γth
KI.

The goal of the nonlinear theory of kinetic instabil-
ity, developed here, is to find the spectral profile of the
bottom quasiparticles nω, the total number of the para-
metric, bottom, and top quasiparticles, Npar, Nbot, and
Ntop, as a function of the pumping amplitude h, ac-
counting for the main interactions in the system only.
The interactions among the parametric waves in the S-
theory approximation are described in Sec.VB, the parti-
cle number flux from the parametric to the bottom quasi-
particles – in Sec.VA and scattering of the bottom and
parametric quasiparticles – in Sec.VC. At this stage, we
neglect other nonlinear effects that might be important
depending on the particular characteristics of the sys-
tem at hand (e.g., the value and orientation of the exter-
nal magnetic field, etc). The list of possibly important
effects includes cascade mechanisms of particle transfer
from the parametric and top quasiparticles to bottom
ones, as described in Sec. IV, and nonlinear interactions
in the system of the bottom quasiparticles, which can
lead to the redistribution of the bottom quasiparticles
and the growth of the damping frequency of the bottom
quasiparticles with their number (see, e.g., Ref. [42] and
book [32]).

1. Narrow package approximation

Assuming initially that the package nω is extremely
narrow, such that νω can be considered a constant, de-
noted ν0 = ν+k0

, one obtains from Eq. (51):

dNbot

dt
= ν0Nbot . (53)

Below the kinetic instability threshold, when ν0 < 0,
the total number of the bottom quasiparticles decays ex-
ponentially, and in the stationary condition Nbot = 0
holds. Thus, according to Eq. (45d), Npar increases with
the pumping amplitude hV , see Fig. 4, dashed light-blue
line, until it reaches the value N cr

par given by Eq. (40).
The balance between the number of bottom and para-

metric quasiparticles is maintained by the increments ν+

and Γpar. As Npar > N cr
par, the increment ν+k becomes

positive in a narrow range around k0, and Nbot starts
growing exponentially according to Eq. (39a). The bot-
tom quasiparticles take energy from the parametric ones
as described by the additional damping frequency Γpar in
the rate Eq. (41a) for the number of parametric quasipar-
ticles Npar. As a result, Npar drops back to N cr

par and the

increment ν+k0
→ 0. Therefore, Npar becomes frozen at

the level N cr
par for any h > hcr, see the horizontal dashed

line in Fig. 4.
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FIG. 4. Qualitative representation of the normalized number
of parametric SNpar/γpar (light blue dashed line) and bot-
tom quasiparticles SNbot/γbot (red dashed line) according to
Eqs. (45). For concreteness, we took S = W , γpar = γbot ≪
γtop, ωpar = 1000γpar. Below the threshold of kinetic instabil-
ity, SNpar/γpar is defined by Eq. (45d). Above the threshold,
SNpar/γpar is frozen at its value at the threshold defined by
Eq. (40). Nbot is a fraction of N+ according to Eq. (45c). In
its turn, N+ as a function of h is defined by Eq. (45b) with
Npar = Ncr

par. Note that Nbot = 0 for h ≤ hcr. Solid lines:
the same, but accounting for the scattering of the bottom
quasiparticles on the parametric ones in the framework of the
exponential model (cf. Sec. VD3). Here the spectral width
of package is Dpar = 15, giving λmod

0 = 0.26.
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Substituting in Eq. (45b) Npar = N cr
par from Eq. (40)

and using Eq. (45d) for h = hcr, we obtain an equation
forN+ in which we assume for simplicity thatW = S > 0

SN+ =
ωpar

SN cr
par

[
−γpar+

√
γ2
par + V 2(h2 − h2

cr)
]
. (54a)

For small super-criticality over the threshold of the ki-
netic instability δh ≡ h − hcr ≪ hcr, one gets from
Eq. (54a)

SN+ ≃ SNcr
ωpar

γpar

δh

hcr
. (54b)

One sees from Fig. 4 that Nbot grows sharply just above
hcr as predicted by Eq. (54b): Nbot reaches the level of
N cr

par (crossing of the blue and red lines) for very small
(δh/hcr) ≃ γpar/ωpar ≪ 1.
Now, we include the scattering of the bottom quasipar-

ticles on the parametric ones, as described by the integral
term in Eq. (51). Then Eq. (52) is identical to Eq. (53)
upon replacement of ν0 by the mean value ⟨νω⟩. Due
to the linearity of scattering Eq. (51), the profile of the
bottom quasiparticles nω is independent of their total
number Nbot. Instead, it depends only on the number of
the parametric quasiparticles Npar, which is constant for
h > hcr. Therefore, in the estimation of Ω

W
= WNpar

and ∆ ≃ |S|Npar in Eqs. (51) and (48c) we have to take
Npar = N cr

par. Thus, we conclude that nω and ⟨νω⟩ are
h-independent for h > hcr.

2. Numerical analysis of the particle rate equation

To extend the nonlinear theory of the kinetic instability
beyond the narrow package approximation, we studied
the rate Eq. (51) numerically. It is convenient to do this
by transforming Eq. (51) to the dimensionless form by
introducing τ = γbott, Dpar = ∆/γbot, x = (ω−ω0)/γbot
and y = (ω̃ − ω0)/γbot:

∂nx

∂τ
=λxnx + Intx ,

Intx ≡
√

2

π

A
Dpar

∞∫
0

dy(ny − nx) exp
[
− (x− y)2

2D2
par

]
.

(55a)

Here, the dimensionless increment is λx = νω/γbot(ω0).
Assuming for concreteness γbot(ω) ∝ ω, i.e. γbot(ω) =
γbot(ω0)ω/ω0, we have

λx =λ0 −
x

x0
, λ0 ≡

(Npar

N cr
par

)2

− 1 ,

x0 =
ω0

γbot(ω0)
.

(55b)

Taking into account Eqs. (51), we estimate

A ≃ ωpar

4πω0

(W
W̃

)2

(55c)
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FIG. 5. Normalized stationary solutions of Eqs. (55a) nx/n0

for Dpar = 5, (red line) Dpar = 15, (blue line) and Dpar = 45
(pink line) with x0 = 100 and A = 1. Respectively colored
dashed lines show their approximated exponential fit with
Eq. (56).

which is of the order of unity.

To get more detailed information about nx and λ0, we
numerically solve Eq. (55a) together with the S-theory
Eqs. (41) for nω using Dpar = 5, 15 and 45, and taking
for concreteness x0 = 100. Resulting profiles of nx are
shown in Fig. 5 by color solid lines together with their
approximate exponential fits,

nx =
1

Dbot
exp

(
− x

Dbot

)
, (56)

shown by dashed lines with matching colors. The values
of λ0 = λnum

0 , corresponding to the stationary conditions,
and Dbot = Dfit

bot for these three values of Dpar are given
in the Tab. I.

1 Dpar 5 15 45

2 ⟨λx⟩num, Eq. (55) 0.13± 0.01 0.27± 0.01 0.46± 0.01

3 ⟨λx⟩mod, Eq. (60) 0.13 0.26 0.48

4 Dfit
bot, Eq. (56) 19± 5 33± 5 46± 5

5 Dmod
bot , Eq. (60) 13 26 48

6 Dmix
bot , Eq. (57c) 13 27 48

TABLE I. The increments λx and the width Dbot for three
values of Dpar. The quantities are listed in lines: (1): Dpar [cf.
Eqs. (55)]; (2): Numerically found value of ⟨λx⟩st = ⟨λx⟩num,

Eqs. (55); (3): ⟨λx⟩st = ⟨λx⟩mod, found from the exponential
model Eq. (57c); (4): The approximate width Dfit

bot of expo-
nential fit Eq. (56), shown in Fig. 5 by dashed lines. (5):Dmod;
(6): Dmix

b – “mixed” value of Dbot found by the model
Eq. (57c) in which λ0 is numerically found ⟨λx⟩num shown in
the line 2.
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3. Exponential model of the bottom quasiparticles
distribution

Based on the results of the numerical solution of
Eq. (55a), we assume that the profile nx has an exponen-
tial form (56) with some yet unknown value Dbot. Under
this assumption, we have two free parameters, λ0 and
Dbot. To find them, we need two relations. The first
relation between them comes from the rate equation for
the number of bottom quasiparticles Nbot =

∫∞
0

nxdx.
We integrate the stationary Eq. (55a) with nx given by
Eq. (56) and take into account that the term Intx van-
ishes upon integration. Then we have:

dNbot

dt
= ⟨λx⟩Nbot , (57a)

⟨λx⟩ ≡
∞∫
0

λxnx dx = λ0 −
Dbot

x0
. (57b)

Obviously, Eq. (57a) describes a steady state if ⟨λx⟩ = 0,
i.e.

Dbot = x0 λ0 . (57c)

The second relation between λpar and Dbot is provided by
the first moment of Eq. (55a). Multiplying this equation
by x and integrating over x from zero to infinity, we find:

0 = ⟨xλx⟩+ ⟨x Intx⟩ , (58a)

⟨xλx⟩ =
∞∫
0

xλxnx dx = −x0λ
2
0 = −D2

bot

x0
. (58b)

To simplifyn Eq. (58b) we used Eq. (57c).
With nx given by Eq. (56), the integral (55a) for Intx

can be found analytically:

Intx =nx

[
1 + erf

( x√
2Dpar

)
− exp

( D2
par

2D2
bot

)
erfc

(D2
par −Dbotx√
2DbotDpar

)]
.

(59)

Here, erf(z) = 2√
π

∫ z

0
exp(−t2)dt is the Gauss error func-

tion and erfc(z) = 1− erf(z).
Unfortunately, we cannot find the integral ⟨xIntx⟩ =

∞∫
0

xIntxdx analytically. Therefore, we have solved

Eqs. (58) for Dbot,

D2
bot =x0

∞∫
0

xnx

[
1 + erf

( x√
2Dpar

)

− exp
( D2

par

2D2
bot

)
erfc

(D2
par −Dbotx√
2DbotDpar

)]
dx,

(60)

numerically. The results for Dbot denoted Dmod
bot with

x0 = 100 (blue line) and x0 = 300 (red line) are shown
in Fig. 6b.
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FIG. 6. Stationary solutions of the exponential model for
(a) ⟨λx⟩ = ⟨λx⟩st [Eq. (57b)], and (b) Dmod

bot , as a function of
Dpar. The results for x0 = 100 are shown by solid blue lines
and for x0 = 300 by dashed red lines. Blue dots with error
bars denote numerical values ⟨λx⟩st = ⟨λx⟩num [Eq. (55b)] for
x0 = 100.

4. Comparison of the numerical solution of quasiparticle
rate equation and predictions of the exponential model

To clarify how the solution of Eq. (60), derived in
the framework of the approximations of the exponential
model for the bottom quasiparticle distributions, corre-
sponds to the “exact” numerical solution of the basic
Eqs. (55), we compare corresponding results for the ef-
fective increment ⟨λx⟩, the characteristic width Dbot and
the effective increment λ0 obtained in both ways.

a. Effective increment ⟨λx⟩. The values of ⟨λx⟩st =
⟨λx⟩num, found from numerical stationary solution of
Eqs. (55), are given in line 2 of Tab. I. Corresponding

values of ⟨λx⟩mod
, obtained from the exponential model

Eq. (57c) in which Dmod
bot is the solution of the model

Eq. (60), are listed in line 3. To get a more general view
on the model dependence ⟨λx⟩ vs Dpar, we have presented
these dependencies in Fig. 6(a) for x0 = 100, blue line,
and x0 = 300, red line. Blue dots with error bars de-
note values of ⟨λx⟩num found numerically for x0 = 100,
Dpar = 5, 15 and Dpar = 45. We see a very good quan-
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titative agreement between these two approaches.
b. Effective width Dbot in the approximate exponen-

tial distribution (56). The numerical profiles, shown by
the solid lines in Fig. 5, where fitted by the exponential
function (56) by finding the parameter Dbot which min-
imizes the mean-square deviation. The resulting values
of Dbot = Dfit

bot are given by line 4 in Tab. I, and the
corresponding exponential profiles are shown in Fig. 5 by
dashed lines. We see that although the fitted profiles
describe the “exact” numerical profiles reasonably well,
there are some systematic deviations between them. For
example, for Dpar = 45, the fitted profile goes above
the numerical one for nx > 0.35 while for nx < 0.35,
the fitted profile goes slightly below the numerical pro-
file. This means that for nx > 0.35 the current value
of Dbot < Dfit

bot = 46, while for nx < 0.35 the current
value of Dbot > Dfit

bot = 46. Analyzing the current values
of Dbot for different x, we estimate the error bars as ±5.
For completeness, in line 6 of Tab. I we also list a “mixed”
value of Dbot = Dmix

bot obtained from the model Eq. (57c)
in which λ0 = λnum

0 . To complete the comparison, in
Fig. 6, we have plotted the “fit” values of Dbot = Dfit

bot
(blue dots with error bars), where the model dependence
Dbot vs. Dpar is shown for the same value of x0 = 100
by the solid blue line.

In all the cases, we see a very reasonable agreement
between the model values of ⟨λx⟩ and Dpar with the cor-
responding “exact” values found from the numerical so-
lutions of the basic Eqs. (55).

As we have discussed above, the scattering of the bot-
tom quasiparticles on the parametric ones results only in
replacing of ν0 by ⟨νω⟩ in the rate Eq. (52) forNbot. In di-
mensionless units we need to replace λ0, given Eq. (55b),
by ⟨λx⟩, given in our exponential model by Eq. (57b):

⟨λx⟩ =
(Npar

N cr
par

)2

− 1− Dbot

x0
. (61)

As before, the stationarity of the bottom quasiparticles
requires ⟨λx⟩ = 0, which can be achieved in the presence
of scattering for some Npar ≡ N st

par > N cr
par. Denoting the

stationary value of ⟨µx⟩ as ⟨µx⟩st, we can write

⟨µx⟩st =
(N st

par

N cr
par

)2

− 1− Dbot

x0
= 0 , (62)

or

N st
par = N cr

par

√
1 +Dbot/x0 . (63)

Now, in order to account for the scattering of the bottom
quasiparticles, we need to replace N cr

p by N st
par > N cr

par in
Eqs. (45b) and (45d) for the dependence of Npar and Nbot

on hV . Considering for concreteness the case Dpar = 15,
we find λmod

0 = 0.26; see Tab. I. In Fig. 4 (solid lines),
we have plotted the total number of the parametric Npar

and the bottom quasiparticles Nbot vs. amplitude of the
parametric pumping hV taking for concreteness hcr =
10γpar.

We see that for large enough hV the number of the
bottom magnons can essentially exceed the number of
the parametric magnons. In this case, besides the scat-
tering of the bottom magnons on the parametric ones,
one should also account for the four-magnon scattering
in the subsystem of the bottom magnons and for the
Kolmogorov-Zakharov cascade of the top magnons down
to the bottom ones. The corresponding theory is beyond
the scope of the present paper.

VI. EXPERIMENTAL RESULTS, DISCUSSION
AND COMPARISON WITH THEORY

In the preceding sections, we discussed possible
regimes of Bose-Einstein condensation for various inten-
sities of the energy input. In Sec. III, we studied the BEC
scenario under weak pumping, when quasiparticles ( e.g.,
magnons) near the bottom of their frequency spectrum
are in local thermodynamic equilibrium. In the following
Sec. IV, we addressed Bose-Einstein condensation in the
case of strong pumping, when quasiparticles are trans-
ferred from the pumping region to the BEC region at the
bottom of the frequency spectrum by a step-by-step cas-
cading Kolmogorov-Zakharov process. SectionV was fo-
cused on the situation of ultra-strong pumping, in which
there is a direct transfer of the pumped magnons to the
spectrum bottom due to the process of kinetic instabil-
ity. In particular, in Sec.VD, we developed a nonlinear
theory of the kinetic instability that allowed us to find
the frequency distribution of the bottom magnons and to
estimate the number of magnons in both the pump and
BEC regions as a function of pumping power.
The kinetic instability regime considered in Sec.V ap-

pears to be the most interesting from both theoretical
and practical points of view. Being the physically most
nontrivial regime, it also allows the formation of the dens-
est magnon condensates suitable for practical applica-
tions. Therefore, in this Sec.VI, devoted to the experi-
mental results, we focus on the case of ultra-strong para-
metric pumping of magnons. Here, we will compare our
theoretical conclusions with both existing and new ex-
perimental data obtained in our work. Our main goal is
to determine the main factors contributing to the transi-
tion of magnons toward the lower part of their frequency
spectrum in YIG films and to analyze their frequency
distribution in the BEC region.

A. Actual frequency spectrum in YIG films

Most experimental studies of the magnon Bose-
Einstein condensation, as in this work, have been carried
out in tangentially magnetized YIG films using paramet-
ric pumping and Brillouin light scattering (BLS) spec-
troscopy. This is because microwave parametric pump-
ing is one of the most efficient methods of magnon in-
jection, and BLS spectroscopy allows access to the broad
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frequency–wave-vector domain of the magnon spectrum.
The strong reduction of the BLS signal upon transition
to normal magnetization of a magnetic film favors the use
of tangential magnetization geometry. The low-damping
ferrimagnetic YIG films provide the highest possible ratio
between the spin-lattice relaxation time of the magnon
gas and the thermalization time of the pumped magnons,
which motivates the preference of these films over metal-
lic ferromagnetic films or Heusler compounds.

To start our analysis of the experiment, we performed
numerical calculations of the magnon frequency spectrum
corresponding to our experimental conditions, i.e., in a
5.6-µm-thick YIG film tangentially magnetized by the
magnetic field H = 1500Oe (see Fig. 7). This spectrum
qualitatively corresponds to the spectra of all magnetic
films with thicknesses ranging from a few microns to tens
of microns, widely used in experimental studies of kinetic
instability and Bose-Einstein condensation of magnons.
In an unbounded film, the spectrum of magnon modes is
discrete in the direction z normal to the film plane and
continuous in its plane. Magnons condense at the lowest-
frequency (fundamental) mode with the homogeneous or
quasi-homogeneous distribution of dynamical magnetiza-
tion over the film thickness. This mode ω(k∥, k⊥, kz = 0)
is shown in Fig. 7.

Unlike the spectrum presented in Fig. 1, the spec-
trum of magnons in tangentially magnetized films is
strongly anisotropic, being very different for k = k∥ ∥ H
(lower part of the spectrum, magenta curves), and for
k = k⊥ ⊥ H (upper part, magenta curves). Gray
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FIG. 7. The spectrum of the fundamental magnon mode in
a 5.6-µm-thick YIG film planarly magnetized by a magnetic
field H = 1500Oe. The spectrum is shown for the wave vec-
tor k ∥ H, for k ⊥ H, and for several intermediate wave
vector directions (gray curves). The blue arrows and light
blue shadow areas illustrate the process of magnon injection
by parallel parametric pumping with frequency ωpump. The
frequency of parametric magnons ωpar = ωpump/2 is marked
with a dotted line. The red dots indicate the positions of
the frequency minima ωbot(+kbot) and ωbot(−kbot) occupied
by +k- and −k-BECs of magnons. The two magenta squares
show the magnon pair with the lowest threshold of parametric
instability [43].

curves show several intermediate directions of in-plane
wave vectors k = (k∥, k⊥, kz = 0). It is remarkable
that for k∥ ∥ H the spectrum has two equivalent min-

ima with k∥ = ±kbot (with kbot ≈ 4.5 · 104 cm−1). The
red dots indicate the positions of these frequency min-
ima ωbot(+qbot) and ωbot(−kbot) occupied by +k- and
−k-BECs of magnons.
Blue arrows and light blue shadow areas illustrate the

process of magnon injection by parallel parametric pump-
ing leading to filling by parametric magnons the entire
surface ω(k) = ωpump/2 for large pumping power [32].

Despite the significant difference between the spectra
presented in Fig. 1 and Fig. 7, the qualitative results ob-
tained in the previous sections remain valid. Both cases
can be described by the same Gross-Pitaevskii equa-
tions with the position of the frequency minima prop-
erly rescaled, as well as the scale of wave vectors in their
vicinity. The theory developed for the isotropic disper-
sion law (1a) can be easily generalized to the case of the
real spectrum of a YIG film shown in Fig. 7. The main
reason is that the processes of BE condensation occur in
each frequency minimum independently and practically
identically, as is confirmed by our experiments. The num-
ber of quasiparticles near each minimum is approximately
equal, N+

tot ≈ N−
tot and each of them (and not only their

sum) is an integral of motion. [44].
For example, in the quasi-equilibrium regime under

weak pumping, discussed in Sec. III, one should replace

the simple Eqs. (11a) and (12) for E
3D

tot and N
3D

gas obtained
for the isotropic dispersion law (1a) with a sum of two
contributions, obtained near each minimum of the “re-
alistic in YIG” frequency spectra. In this case, we do
not have an equally simple expression, and the integra-
tion should be performed numerically for the actual fre-
quency spectrum. However, the qualitative result that
BEC occurs only if the wavenumber localization of the
quasiparticle influx kf is below some critical value kcr,
which is independent of the value of f , still holds. Sim-
ilarly, in the case of strong pumping, we cannot obtain
analytical results in the k ∼ ±k0 regions for the values
and direction of the energy and number of particle fluxes
for the “realistic in YIG” dispersion law. Nevertheless,
for large enough k ≫ k0, when the exchange interaction
dominates, the quadratic dispersion law (1a) is recovered,
and our results from Sec. (IV) are valid directly. In this
case, the particle flux goes down to the region of small
k and then separates into two equal fluxes going to each
minimum separately. Most of our theoretical results for
the case of ultra-strong pumping are not sensitive to the
particular form of the dispersion law and, as we will see
below, can be directly compared with experiments.

B. Experimental procedure

The experiments were performed using samples with a
YIG film of a thickness 5.6µm and 6.7 µm. All samples
were grown by liquid-phase epitaxy in (111) crystallo-
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FIG. 8. Schematic setup of the wave-vector-resolved BLS
experiment. The probing laser beam is focused on the para-
metrically pumped area of the YIG sample by an objective
lens. The laser light incidence angle Θq∥ is steered using a
combination of three dielectric mirrors mounted on a rotary
stage (not shown), allowing for a change in the incident an-
gle from −90◦ to 90◦. The plane of incidence is oriented
along the direction of the bias magnetic field. Therefore, the
probed magnon wave vectors are also oriented in the same di-
rection. Light inelastically scattered by magnons propagates
along the backward path and is directed using a beam splitter
(not shown) to the Fabry-Pérot interferometer for frequency
analysis and photon counting.

graphic plane on a gallium gadolinium garnet substrate.

To detect the magnons, we used Brillouin light scatter-
ing spectroscopy that allowed us to obtain the frequency-,
wave-vector-, space-, and time-resolved spectra. It was
equipped with electromagnetic parametric pumping cir-
cuits.

The experimental setup is shown schematically in
Fig. 8. To achieve a large amplitude of the pumping mag-
netic field and, thus, a high magnon density, microwave
pumping is supplied using half-wavelength microstrip res-
onators with a quality factor of about 25. The samples
were placed in the middle of the resonators in the antin-
ode of the microwave magnetic field. Both 50 µm- and
100 µm-wide microstrip resonators, with resonance fre-
quencies of 13.2GHz, 13.6GHz, and 14.4GHz were uti-
lized. The pumping was performed with 1µs long pulses
with the peak power of up to 40W. A repetition inter-
val of more than 200µs ensured that the spin system is
brought into equilibrium and that the thermal stability
of the sample is maintained from pulse to pulse. The
bias magnetic field H was oriented perpendicular to the
longitudinal axis of the resonators in the plane of the
samples.

A probing laser beam of 532 nm wavelength is focused
onto a spot with a diameter of about 20 µm in the para-
metrically pumped area of the YIG films. By setting
the beam incidence angle Θk∥ in a plane perpendicular
to the film surface and oriented along the H bias field

(see Fig. 8), one can selectively detect magnons with wave
vectors k∥ [45]. Varying Θk∥ from 0 to ±58◦ allows us
to detect magnons with wave vectors ranging from 0 to
±2 · 105 cm−1 with a resolution of about 1.5 · 103 cm−1

[46].
In the backward Brillouin scattering geometry used,

the component of the wave vector of the probing light
lying in the film plane is reversed due to interaction
with magnons. The component perpendicular to the film
plane reverses direction by elastic reflection [43]. Thus, it
is necessary to ensure efficient and spatially homogeneous
reflection of the probing beam after it passes through
the film. This is achieved by covering the surface of the
6.7 µm-thick films facing the pump resonator with a thin
dielectric mirror coating (< 1 µm) [45–47]. In the ex-
periments with 5.6 µm-thick YIG films, light reflection
occurred from the surface of the microstrip pumping res-
onator, which was in direct contact with the YIG film
[43, 48]. The scattered light is sent to the Fabry-Pérot in-
terferometer to analyze the Stokes and anti-Stokes spec-
tral components, whose frequency shifts are equal to the
magnon frequencies and whose intensities are propor-
tional to the corresponding magnon densities.
A temporal analysis of the magnon dynamics with a

resolution of up to 400 ps is achieved by recording the
moments of detection of the scattered photons relative
to the moment of application of the pump pulse [46, 49].
The spatial analysis is realized by moving the sample
together with the pump resonator relative to the BLS
measurement point [46, 49].
The automation system thaTEC:OS (THATec Innova-

tion GmbH) [50] was used to control the experimental
setup and to collect data.

C. Spatial distribution of bottom magnons at
various magnetic fields

Before proceeding to the experimental verification of
the obtained theoretical results, we need to clearly define
the region of experimental parameters at which one of
the two mechanisms of the transition of parametric mag-
nons to the bottom of the frequency spectrum prevails:
the Kolmogorov-Zakharov cascade described in Sec. IV
and the kinetic instability of bottom magnons analyzed
in Sec.V. For this purpose, we started with studying the
spatial distribution of the bottom magnons in the pump-
ing area at different magnetic fields H.
In these measurements, we employed a 100 µm-wide

microstrip pumping resonator and a 6.7 µm-thick YIG
film. The dielectric mirror coating of this sample al-
lowed us to make measurements not only directly above
the resonator but also in the surrounding regions of the
YIG film. Owing to this mirror coating, the intensity
of the back-scattered light is independent of the reflec-
tivity of the microstrip material and its dielectric sub-
strate and thus reflects the magnon density distribution
well. The pumping frequency, determined by the length
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FIG. 9. Spatial distribution of the bottom magnon density
across a 100µm-wide microstrip pumping resonator measured
for different magnetizing fields H. The pumping frequency is
14.4GHz.

of the microstrip resonator, was 14.4GHz. The max-
imum available pumping power in our experiment was
applied, which was 40W.

The incident angle Θk∥ was set to 11◦, which corre-
sponded to the detection of magnons with wave numbers
around 4.5 ·104 cm−1. Therefore, only magnons from the
bottom part of the spectrum (see Fig. 7) were registered.
The spatial distribution of the BLS intensity plotted in
Fig. 9 consists of the integrated anti-Stokes parts of two
different spectra of inelastically scattered light measured
for angles Θk∥ = ±11◦. Thus, the ±k bottom magnons
are shown simultaneously in this figure.

At the longitudinal axis of the resonator, where the
microwave pumping magnetic field is parallel to the bias
field H, the conditions for the parallel pumping [51, 52]
are realized. At the edges of the resonator, where the
pump field is perpendicular to the field H, perpendicu-
lar pumping occurs [51, 52]. In the latter case, the di-
rect pumping source is not the external electromagnetic
field itself but the dynamic magnetization non-resonantly
driven by this field.

At a field H = Hcr, corresponding to the minimal
threshold of parametric instability, a blue region of low
concentration of near-bottom magnons is well visible
above the resonator. In this case, under the condi-
tions of parallel pumping, parametric magnons with rel-
atively small wave vectors k⊥ ⊥ H and a frequency
close to the ferromagnetic resonance frequency are ex-
cited, as schematically shown in Fig. 7 by the two ma-
genta squares. For this magnon group, the process of ki-
netic instability is forbidden by the laws of conservation
of energy and momentum [22, 35]. The BLS intensity
increases for lower and higher magnetic fields since the
kinetic instability process allowed here leads to a higher
magnon density at the bottom of the spectrum.

At the same time, for perpendicular pumping, when
magnons with large wave vectors directed at an angle of
45–55◦ to H are excited [51], there is no such strict pro-
hibition. Consequently, no such significant difference in
the bottom magnon density is observed at the sides of
the microstrip resonator over the entire range of the bias
magnetic fields. Moreover, the magnons excited by per-
pendicular parametric pumping propagate at non-zero
angles to the resonator axis over quite considerable dis-
tances, thus expanding the spatial region of the overpop-
ulated magnon gas. As a result, the area populated by
bottom magnons born from the kinetic instability process
is also expanded.
The conducted measurements allow us to determine

the regions of the film in which the physical mechanisms
of injection, thermalization, and spectral transfer of mag-
nons analyzed in the previous sections are realized in the
best and simplest way. Based on our findings, we can dis-
tinguish regions with parallel and perpendicular pumping
of parametric magnons. Going forward, we will concen-
trate on the most effective and well-researched case of
parallel pumping. In doing so, we avoid the need to take
into account the spatial transport of parametric magnons
and the associated effective damping.

D. From kinetic instability to BEC

In the previous section, we observed a distinct forbid-
den area, surrounded by two regions of the allowed ki-
netic instability at lower and higher magnetic fields. To
delve deeper into this phenomenon and to reveal the con-
nection between the processes of kinetic instability and
Bose-Einstein condensation, we have conducted an exten-
sive experimental analysis of its properties under parallel
parametric pumping.
To increase the amplitude of the pumping magnetic

field, we used a resonator of 50 µm width. The BLS mea-
surements were carried out in the 5.6 µm-thick film at a
point on the longitudinal axis of this resonator, i.e., under
the exclusive action of parallel pumping. The pumping
frequency of 13.6GHz was determined by the resonator
geometry. The obtained results are presented in Fig. 10.
An analysis of the conservation laws in thin YIG films

performed in Ref. [35] for the same experimental condi-
tions as in the current work shows that the kinetic insta-
bility is allowed in two ranges of magnetic field: Area 1
– from H1,min ≈ 1100Oe to H1,max ≈ 1600Oe; and Area
2 – from H2,min ≈ 1750Oe to H2,max ≈ 2400Oe.
In Figure Fig. 10(a), the blue empty circles show the

dependence of the parametric instability threshold hth,
introduced by Eq. (45e), on the magnetic field. We see
that in area 1, below Hcr = 1700Oe, the value of hth

is practically independent of H. Bearing in mind that
with good accuracy ω0 ∝ H and that the wave vec-
tors of the parametric magnons kpar satisfy the relation
ωkpar

= ωpump/2 decreasing to zero when H approaching
Hcr, we conclude that in this area the damping of para-
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FIG. 10. Panel (a): Measured parametric instability threshold (red squares) compared to the BLS signal from the bottom
of the magnon spectrum (blue empty circles). Areas with blue shading, in which KI processes are allowed by the momentum
and energy conservation laws, are marked as the “Kinetic instability area 1 and 2”. Panels (b), (c), and (d) show the temporal
dynamics of BLS signals from bottom magnons in the presence [panels (b) and (d)] and absence [panel (c)] of the kinetic
instability process. The pumping frequency is 13.6GHz.

metric magnons γk ∝ hth is practically independent of
k. For many reasons not discussed here, the relationship
between γk and hth in area 2 is more complicated [51],
and here we leave the question about k-dependence of γk
for H > Hcr open.

In the same Fig. 10(a), we also show by red squares
the magnetic field dependence of the BLS signal inten-
sity proportional to the total number of bottom mag-
nons. It can be seen that in areas free from the kinetic
instability, the number of the BLS counts is about 250,
while with the KI active it jumps up to about 1800. As
seen from the comparison with Fig. 9, this dependence
correlates well with the density of bottom magnons on
the magnetic field measured on the longitudinal axis of
a wide (100 µm) pumping resonator. The difference in
the value of the critical field Hcr in Fig. 9 and Fig. 10(a)
is due to the difference in the frequencies of parametric
pumping. We interpret these observations as evidence
that the dominant contribution to the bottom magnons
(above 80%) comes from the kinetic instability and only
a small part (below 20%) originates from the cascade
processes.

The temporal dynamics of BLS signals from the bot-
tom magnons are shown in the presence [see Figs. 10(b,d)]
and absence [see Figs. 10(c)] of the kinetic instability pro-
cess. In the latter case, one finds a significantly lower
density of the bottom magnons during the pumping ac-
tion and a jump-like increase in their density after turn-

ing off. This jump is the result of the effective popu-
lation of the lowest energy states by the Kolmogorov-
Zakharov scattering cascade after the pumping field is
turned off and the disappearance of frequency-localized
dense groups of parametric magnons.
A similar but smaller jump in the magnon density can

be seen in panel (d). In this case, the parametric mag-
nons are excited closer to the bottom of the spectrum,
and the Kolmogorov-Zakharov cascade plays a role com-
parable to the kinetic instability process.
Concluding, we have to stress that when we compare

our theoretical results with experimental findings, we
must keep in mind that the pure impact of either the
Kolmogorov-Zakharov cascade or the kinetic instability
on particle transfer down to the BEC region is not fully
realized. Instead, what we typically observe is a combi-
nation of these two mechanisms.

E. Frequency–wave-number distribution of
magnons

In the sectionsVIC and VID, we presented qualita-
tive arguments in favor of the important role of the ki-
netic instability process in transporting parametrically
injected magnons to the lower end of their frequency
spectrum. In this section, we share our experimental
data on the frequency–wave-vector magnon distribution
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under microwave pumping. The analysis of this distribu-
tion reveals several specific nonlinear processes, including
the four-wave scattering process (32) responsible for the
kinetic instability. This gives us greater confidence that
we are dealing with the kinetic instability phenomenon
in our experiments, allowing us to compare it with our
theory given in Sec.V.

Figure 11 shows the BLS intensity spectra I(ω, k∥) of
magnons with wave vectors k = k∥ ∥ H. I(ω, k∥) is pro-
portional to the density of the corresponding magnons
n(ω, k∥). The spectra I(ω, k∥) were measured during mi-
crowave pumping at 13.2GHz in a YIG film magnetized
in plane by the field H = 1885Oe. The solid red line
shows the calculated magnon frequency spectrum ωk∥ ,

which has two minima ωbot ≡ mink∥{ωk∥} ≈ 4 · (2π)GHz

at k∥ = ±kbot with kbot ≈ 4 · 103 cm−1. The two bright-
est spots in the vicinity of the bottom of the magnon
spectra ωbot, ±kbot originate from the “bottom” mag-
nons associated with the left and right BEC states. They
are spread around the bottom of the spectrum due to the
scattering of the bottom magnons on the parametric ones
ω(kbot+κ1)+ω(kpar+κ2) = ω(kbot+κ3)+ω(kpar+κ4),
which was discussed in Sec.V. Here, κ1 + κ2 = κ3 + κ4

and κj ≪ kbot.
Above these brightest spots we see three spots with

ω ≈ 2ωbot and kleft ≈ −2kbot, kcenter ≈ 0, and kright ≈
2kbot. They are related to the confluence of two bottom
magnons, as shown by green arrows in Fig. 11(a):

i) left spot, ω−k∥ + ω−k∥ ⇒ 2ωbot and k = −2kbot;

ii) central spot, ω−k∥ + ω+k∥ ⇒ 2ωbot and k = 0;

iii) right spot, ω+k∥ + ω+k∥ ⇒ 2ωbot and k = 2kbot.
Note that neither ω = 2ωbot with k = ±2kbot nor
ω = 2ωbot with k = 0 are eigenmodes of the YIG film in
our magnetization geometry. Therefore, what we see are
the off-resonant waves driven by an appropriate nonlin-
earity, i.e., virtual magnons, called “double-bottom vir-
tual magnons” in [53].

In Fig. 11(a), the BLS spectra I(ω, k∥) are supple-
mented by two down-pointing orange arrows showing the
process of parametric pumping by the external quasi-
homogeneous microwave field with wave vector kpump ≈
0 and frequency ωpump. Precisely at this position, we see
a rather bright spot, indicating virtual “pumped” mag-
nons [53]. At the same time, at the frequency of the
parametrically pumped real magnons ωpar = ωpump/2
we see no BLS response because the wave numbers of
the parametric magnons are pretty large and lie outside
the sensitivity range of our BLS setup.

Two more spots visible at ωtop = 2ωpar − ωbot and
ktop = ±kbot indicate magnons with frequency of the top
magnons involved in the kinetic instability process [see
Eq. (32)].

If so, then the top magnons must have wave vec-
tors ktop = k1 + k2 ∓ kbot, where k1 and k2 are the
wave vectors of the parametric magnons with ω(k1) =
ω(k2) = ωpump/2. Assuming for a rough estimate that
ωtop > ωbot, we conclude that ktop ≳ k1 and ktop ≳ k2,
meaning that the top magnons lie outside the sensitivity

4

6

8

10

12

14

F
re

q
u

e
n

cy
 w

 (
G

H
z)

  
  

  
  

 
2
p

�

kbot-kbot

4 -1Wavenumber k (10 cm )

0 10-10 20-20

wbot

4

6

8

10

12

14

F
re

q
u

e
n

c
y 
w

 (
G

H
z)

  
  

  
  

 
2
p

�

4

6

8

10

12

14

F
re

q
u

e
n

cy
 w

 (
G

H
z
) 

  
  

  
  

2
p

�

(a)

(c)

(b)

2wbot

2kbot-2kbot

-kbot

w  2w �w= −top par bot

kbot

wbot

wbot

wpump

w =par

wpump

2
k   H

B
L
S

 i
n
te

n
si

ty
(c

o
u
n
ts

)

010

510

k   H

k   H

FIG. 11. Frequency- and wave-vector-resolved BLS inten-
sity spectrum of real and virtual magnons. The spectra were
measured during the action of 13.2GHz microwave pumping
on a YIG film magnetized in plane by the field H = 1885Oe.
The BLS intensity is proportional to the magnon density. The
experimental intensity spectrum is shown together with the
calculated magnon dispersion curve and diagrams showing the
relevant quasiparticle scattering processes in the system: (a)
Orange arrows show the process of parametric pumping. The
signal of virtual “pump” magnons is visible at the pumping
frequency ωpump. (b) The four-magnon kinetic instability pro-
cesses leading to the appearance of virtual “top” magnons at
ωtop frequency are shown by pairs of solid and dashed blue
and cyan arrows. (c) Virtual “double-bottom” magnons at
the frequency 2ωbot arise due to the confluence of the bottom
magnons at ωbot. Upward green arrows show the relevant
confluence processes.

region of our BLS setup, i.e., they are invisible in Fig. 11.
The origin of the two spots in Fig. 11(b) at frequency
ωtop = ωpump − ωbot, which is consistent with Eq. (32),
but with wave vectors ktop = ±kbot was clarified in [53].
It was stressed that the theory of kinetic instability is
formulated in the framework of the weak-wave kinetic
equation, which assumes weak correlations of the wave
phases. As a result, the scattering (43c) of real mag-
nons has a stochastic nature and appears only as the
second-order perturbation of the four-wave interaction
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amplitudes W 3,4
1,2 , Eq. (24b). Nevertheless, in our partic-

ular case with a large population of parametric and bot-
tom magnons, there are strong, externally determined,
phase correlations of the scattering waves. In particu-
lar, the full phase correlation in the pairs of parametric
waves with ±kpar arises due to their interaction with the
space-homogeneous pumping field [32]. Given this cor-
relation, |

〈
akpara−kpar exp[iωpar]

〉
| =

〈
|akpar |2

〉
≡ nkpar .

This allows us to consider a pair of parametric magnons
(akpara−kpar) as a “single”, coherent wave object with the
frequency 2ωpar = ωpump and phase being the sum of the
phases of the waves composing the pair. Therefore, four-
wave scattering (43c) with k1 = −k2, k3 = ±kbot, due to
its dynamic nature, appears much stronger than stochas-
tic scattering with k1 ̸= −k2, being now proportional to
the first power of the interaction amplitude W 3,4

1,2 , and

producing the driving force [53]

F =
∑
kpar

T
kpar,−kpar

±kbot,∓kbot
a∗2akpar

a−kpar
. (64)

This force has the same frequency (32) as that of real top
magnons [see Eq. (61)] but with the different wave vector
qtop = ∓qbot. This force excites off-resonant magnons,
seen in two bright spots, as discussed earlier.

F. Pumping power dependence of the parametric
and bottom magnon numbers

In Fig. 4, we plot theoretical predictions for the de-
pendence of the total number of parametric and bottom
magnons, Npar and Nbot as a function of the relative

amplitude of the microwave pumping field
hV

γpar
=

h

hth
.

Our theory considers only the kinetic instability mecha-
nism of the transfer of parametric magnons to the lower
magnon region and does not take into account the mech-
anism of the step-by-step Kolmogorov-Zakharov cascade.
Therefore, for the comparison of theory and experiment,
we have to choose the range of bias magnetic fields H,
where kinetic instability is allowed, see Fig. 10. In the
range of lower magnetic fields H, denoted “kinetic in-
stability area 1”, the wave numbers of the parametric
magnons are large and cannot be detected by BLS spec-
troscopy. For this reason, we have chosen for the com-
parison the magnetic field range designated as “kinetic
instability area 2”, taking for the sake of concreteness
H = 1885Oe as in Fig. 11.

In Fig. 12, one can see the numbers of BLS counts Npar

and Nbot obtained from the parametric and bottom mag-
nons at different pumping supercriticalities h/hth and
represented by blue circles and red squares, respectively.
Assuming a smooth dependence of Npar and Nbot on
h/hth, we used the procedure of interpolating the ex-
perimental data by a cubic spline, which resulted in the
blue and red solid lines. Moreover, we used the avail-
able data to extrapolate the desired dependence of Npar
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FIG. 12. Dependence of the number of BLS counts from
the parametric magnons Npar (blue circles) and that from
the bottom magnons Nbot (red squares) on the pumping field
amplitude h normalized by the parametric instability thresh-
old hth. H = 1885Oe. The pumping frequency is 13.2GHz.
The solid red and blue curves represent an interpolation and
an extrapolation of the corresponding experimental data us-
ing cubic splines. The dashed lines are extrapolations of the
experimental dependencies in the region of relatively low lev-
els of parametric pumping.

and Nbot on h/hth to the region of low pumping powers,
where the low signal-to-noise ratio did not allow for ex-
perimental observations. These results are shown by blue
and red dashed lines. By finding the value of h, at which
Npar → 0, we accurately estimated the threshold value
hth for parametric instability. This value was used to
normalize the scale of the abscissa axis in Fig. 12. Since
the sensitivity of the BLS setup to parametric and bot-
tom magnons is different, the ratio Npar/Nbot does not
reflect the ratio of their occupation numbers Npar/Nbot.
However, these experimental curves correctly reproduce
the dependence of Npar and Nbot on h in units of the
threshold field of parametric instability.
A comparison of the theoretically predicted dependen-

cies of Npar and Nbot on h/hth shown in Fig. 4 with
the experimental results shown in Fig. 12 demonstrates
a fairly good qualitative agreement. This is a strong ar-
gument for the validity of our nonlinear theory of ki-
netic instability, which evidences that this theory cap-
tures the essential physical mechanisms governing the
phenomenon.
At the same time, the experimental data shown in

Fig. 12 does not demonstrate a pronounced saturation
of the dependence Npar(h/hth), as predicted by the the-
ory. This may be due to some secondary effects, such
as the relatively small contribution of the Kolmogorov-
Zakharov cascade to the particle flux towards lower fre-
quencies, which is not yet considered in our theory. An-
other possible origin of the discrepancy is a change in
the magnon excitation region caused by a downward fre-
quency shift of the magnon spectrum due to a decrease in
magnetization at high pumping powers and a consequent
increase in the efficiency of parametric pumping.
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FIG. 13. Distributions of the bottom magnons by wave numbers at different time delays after pumping was turned on. Panels
(a), (b), and (c) show three-dimensional plots for three different bias magnetic fields H. The pumping pulse has a duration of
1 µs (note the direction of the time axis). To improve the signal-to-noise ratio, we integrated the spectra in the time window
of 100 ns and over the entire frequency range of the bottom magnons. The pumping frequency is 13.2GHz.

G. Time evolution at different magnetic fields

In Sections VIC, VID, and VIE, we theoretically an-
alyzed different aspects of the behavior of bottom mag-
nons during parametric pumping. We concluded that
the kinetic instability essentially contributes to the trans-
fer of magnons to their frequency minimum. In addi-
tion, the nonlinear kinetic instability theory developed
in Sect. VD also accounts for the scattering of the bot-
tom magnons on the parametric magnons and shows that
this scattering leads to a broadening of the near-bottom
magnon distribution in the vicinity of kbot, ωbot. If this
scattering ceases, we expect bottom magnons to evolve
into BECs, narrowing their frequency and wave vector
spectra.

Fortunately, the theory of kinetic instability suggests
how to test this statement experimentally: one can study
the evolution of the distribution of the near-bottom mag-
nons over frequencies and wave vectors after turning off
the parametric pumping. The frequency of parametric
magnons is higher than that of the bottom magnons.
Therefore, we can expect that their relaxation γpar in
the linear regime is larger than the linear relaxation γbot
of the bottom magnons. When the number of paramet-
ric magnons is very large, the kinetic instability opens
a very efficient additional dissipation channel for para-
metric magnons. This means that even if, in the lin-
ear regime, the relaxation rates of parametric and bot-
tom magnons are approximately equal, in the nonlin-
ear regime, the relaxation rate of parametric magnons
is much larger than that of the bottom magnons. Con-
sequently, after pumping is turned off, there is a period
during which parametric magnons are practically absent,
while bottom magnons continue to exist, and the ex-
pected narrowing of their spectrum can be detected.

According to Ref. [54], the distribution of magnons in
a system has been significantly narrowed down, as mea-
sured by detecting electromagnetic radiation in the fre-
quency domain. The resolution of BLS spectroscopy

is not fine enough to record this effect, but we have a
good resolution in the wave-number domain, as shown in
Fig. 11. By integrating the frequency distribution of the
bottom magnons, in Fig. 13 we plotted the BLS intensity
versus the magnon wave number k∥ and time for different
magnetic fields after turning on the parametric pumping.

Examining the data, we can see that during the first
1 µs of the pumping pulse, the peak of the distribution of
bottom magnons in k-space has a relatively constant and
broad shape. However, after the pumping is switched off,
this peak quickly narrows, which aligns with our theoret-
ical expectations. Eventually, the peak width reaches the
limit of the wave number resolution.

Figure 13(a) with H = 1200Oe corresponds to region
1 of the kinetic instability, see Fig. 10, while Fig. 13(c)
with H = 1900Oe corresponds to region 2 of the kinetic
instability. In these cases, the parametric magnons are
transferred directly to the bottom of the spectrum.

In Fig. 13(b), where H = 1500Oe, the Kolmogorov-
Zakharov cascade plays an important role in the mag-
non distribution process. This results in a significant
portion of magnons being distributed between the para-
metric and the bottom parts of the k-space. When the
pumping is switched off, these magnons continue to move
towards the bottom, creating an intense hump that is
clearly visible in Fig. 10(b).

Another perspective on the BLS spectra is shown in
Fig. 14. We now integrated them over wave number, ob-
taining frequency spectra for different magnetic fields and
times after switching off the parametric pumping. In
panel (a) we plot the results for the small magnetic field
H = 1200Oe. The value of ωbot/(2π) ≈ 3.5GHz is shown
as a vertical black dashed line, while 2ωbot/(2π) is shown
as a vertical black dotted line. One sees an intense peak of
the bottom magnons and a much smaller peak (by about
three orders of magnitude) of the double-bottom virtual
magnons. The parametric magnons with the frequency
ωpar = ωpump/2, shown by the vertical red dotted line,
are not seen in this panel. They have large wave num-
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FIG. 14. Frequency spectra at varios bias magnetic fields
and varios times after pumping is switched off. The pumping
frequency is 13.2GHz.

bers that are outside of the accesible zone for our BLS
setting. For a larger magnetic field, the wave numbers
decrease and we see peaks of the parametric magnons in
Figs. 14(b,c). For the largest magnetic fieldH = 2050Oe,
shown in Fig. 14(d), the frequency of the parametric mag-
nons is very close to the very intense peak of the bottom
magnons. Therefore the peak of the parametric magnons
just slightly disturbs the peak of the bottom magnons.

In all Figs. 14(b)-14(d) for H > 1200Oe, the frequency
2ωbot is outside the accesible zone and the peak 2ωbot

seen in Fig. 14(a) has disappeared. Instead, we see a
peak at ωtop that is exactly at the required position

ωpump − ωbot. This is another confirmation that the ki-
netic instability essentially contributes to the population
of the bottom magnons.
As an additional support for the kinetic instability pic-

ture, we note the absence of a continuous magnon distri-
bution between ωpar and ωbot, expected in the case of the
Kolmogorov-Zakharov step-by-step cascade.
In summary, the experimental findings and discussions

presented in this section lead us to conclude that the
primary cause of the transfer of magnons from the re-
gion of their parametric pumping with the frequency of
ωpar = ωpump/2 to the bottom of their frequency spec-
trum ωbot is the kinetic instability discussed in Sec.V.
The experiments confirm that the main mechanism that
limits the number of bottom magnons is their feedback
effect on the parametric magnons, as described in Section
Sec.VB. Additionally, the experiments confirm that the
scattering of the bottom magnons on parametric ones,
described in Sec.VD, plays the leading role in widening
the bottom magnons’ distributions.

VII. SUMMARY

We presented a systematic and comprehensive de-
scription of the physical mechanisms leading to the
Bose-Einstein condensation of quasiparticles. Unlike the
atomic BEC forming in the thermodynamic equilibrium
conditions, the quasiparticles condense under conditions
of flux equilibrium and represent a nonlinear wave system
with energy pumping and dissipation. We find the con-
ditions under which Bose-Einstein condensation of quasi-
particles is possible. The first and obvious constraint that
we took into account is the conservation (or almost com-
plete conservation) of the total number of quasiparticles
in the non-linear processes. This means that the four-
wave scattering processes 2 ⇔ 2 must dominate over the
three-wave processes near the bottom of the frequency
spectrum.
We started in Sec. III, with the pumping weak enough

to keep the wave system close to the thermodynamic
equilibrium. In this case, it is necessary to simply bal-
ance the pumping and damping rates of the total number
of quasiparticles Ntot and the total energy in the system,
giving the conditions under which the total number Ntot

of quasiparticles in the system exceeds the number of
quasiparticles Ngas. The excess NBEC = Ntot −Ngas can
occupy excited energy levels and create a BE-condensate
at the zero energy level.
The situation with strong pumping is less straightfor-

ward. It is necessary to consider the kinetic wave equa-
tion to describe the transport of quasiparticles from the
pumping range to the lower part of the wave frequency
spectrum. In Sec. IV, we have done this under the as-
sumption of the scale invariance of the system. In this
case, analytic solutions of the kinetic equation are avail-
able. For the 2 ⇔ 2 scattering, the kinetic equation can
have two differently oriented solutions for the energy and
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particle fluxes. We have specified the conditions under
which the particle flux is oriented toward small k, allow-
ing the creation of a BE-condensate.

An even more complicated scenario is realized by a
super-strong injection of quasiparticles into a narrow fre-
quency range, for example, by high-power parametric
pumping. In this case, the relaxation rate of quasipar-
ticles becomes negative, first at small wave vectors k at
the lower part of the frequency spectrum. This leads to
the phenomenon of exponential growth of the number
of quasiparticles with small k, known as kinetic instabil-
ity. In Sec.V, we developed a nonlinear theory of kinetic
instability that considers the feedback of unstable bot-
tom quasiparticles on their source – the parametrically
excited quasiparticles. This theory also accounts for the
2 ⇔ 2 scattering of bottom quasiparticles on parametric
quasiparticles, which broadens the bottom quasiparticle
packet.

In the last section Sec.VI, we presented an experimen-
tal study of BE magnon condensation in yttrium iron
garnet thin films using Brillouin light scattering spec-

troscopy. The theoretical and experimental results are in
qualitative agreement. Therefore, we conclude that, if al-
lowed by conservation laws, the kinetic instability serves
as the dominant source of bottom magnons in the vicin-
ity of their BE-condensation points, and that the nonlin-
ear theory of kinetic instability developed in V describes
the main physical mechanisms of this process quite well.
The above comparison of our analytical findings and ex-
perimental observations opens new directions for further
studies of this phenomenon.
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