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Quenched disorder slows down the scrambling of quantum information. Using a bottom-up ap-
proach, we formulate a kinetic theory of scrambling in a correlated metal near a superconducting
transition, following the scrambling dynamics as the impurity scattering rate is increased. Within
this framework, we rigorously show that the butterfly velocity v is bounded by the light cone ve-
locity v set by the Fermi velocity. We analytically identify a disorder-driven dynamical transition
occurring at small but finite disorder strength between a spreading of information characterized at
late times by a discontinuous shock wave propagating at the maximum velocity v, and a smooth
traveling wave belonging to the Fisher or Kolmogorov-Petrovsky-Piskunov (FKPP) class and prop-
agating at a slower, if not considerably slower, velocity v. In the diffusive regime, we establish the
relation Uz/)\FKpp ~ D¢ where Arkpp is the Lyapunov exponent set by the inelastic scattering rate

and D, is the elastic diffusion constant.

Information scrambling refers to the efficient spreading
and loss of information throughout an extended many-
body system. Its characterization is fundamental to the
foundations of quantum chaos and has implications in
the development quantum computing technologies. The
picture that has emerged from the exact or numerical
solutions to a variety of classical and quantum thermal-
izing models with local interactions is a ballistic spread-
ing of information at a so-called butterfly velocity. In
dual-unitary circuits, the information scrambling occurs
precisely on the light rays propagating at the maximum
velocity allowed by causality [1, 2]. In random quan-
tum circuits made of Haar-distributed unitaries, scram-
bling dynamics was related to classical growth processes
with slower ballistic fronts that broaden either diffu-
sively in d = 1, or according to fluctuations governed
by the Kardar-Parisi-Zhang universality class in d = 2
and d = 3 [3, 4].

Alongside these minimal models, as well as classical [5—
8], semi-classical, large N or holographic models [9-12],
it is essential to address those questions in realistic situa-
tions where exact or numerical solutions are out of reach.
Aleiner, Faoro and Ioffe articulated those questions in
the larger framework of electronic transport by deriving
a quantum kinetic equation for out-of-time-ordered cor-
relators (OTOCs) within a so-called many-world Keldysh
formalism [13]. They argued that the scrambling dynam-
ics in metals with either phonon or Coulomb interactions
are governed by FKPP equations, resulting in smooth
non-broadening scrambling fronts propagating at a but-
terfly velocity set by the Fermi velocity, vp. Interestingly,
it was argued that the presence of disorder would signif-
icantly reduce this butterfly velocity [13-16].

Building on the approach of Ref. [13], we worked out
the kinetics of quantum information scrambling in a

paradigmatic model of clean interacting metals in the
vicinity of a superconducting phase transition, where
electron-electron interactions are dominated by super-
conducting fluctuations [17]. We found scrambling fronts
that travel at vp but do not belong to the FKPP univer-
sality class. Remarkably, their late-time spatial profiles
develop a shock-wave discontinuity at the boundary of
the light cone.

In this Letter, we investigate the impact of impurity
scattering on the dynamics of the scrambling front. Mo-
mentum relaxation is indeed significant in metals with
an elastic timescale typically in the tens of femtoseconds,
i.e. much shorter than the scattering time due to elec-
tronic interactions, especially at low temperatures. We
first derive an effective set of two coupled partial differen-
tial equations (PDEs) governing the scrambling dynam-
ics at large scales. Then, we analytically elucidate how
the traveling-wave solutions that develop at late times
are affected by the presence of disorder, from the clean
case to the diffusive regime. We find that the shock-wave
phenomenology found in the clean case is robust against
weak disorder. However, we unravel a dynamical phase
transition that causes the scrambling kinetics to abruptly
conform to the FKPP class when the disorder strength
exceeds a critical value, see Fig. 1. We fully character-
ize the information scrambling in the FKPP regime by
working out the profiles of the traveling fronts and their
butterfly velocities.

Model. We consider a system of interacting electrons
in d > 2 dimensions that are subject to both elastic and
inelastic scattering. The former is due to static non-
magnetic impurities and defects. The latter is due to
electron-electron interaction in the Cooper channel. This
choice is guided by the relatively straightforward treat-
ment of superconducting fluctuations within the random
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FIG. 1. Quantum butterfly velocity v as a function of the
disorder strength . For k < k*, the front propagates at the
light cone velocity vic = 1 in units of vF/\/E For k > k™, the
solid line is the FKPP prediction made in Eq. (12). The red
marks are numerical results obtained by solving Egs. (5) for
d =1 up to times 7 = 3000 (y =1 i.e. K" :=14 v =2).

phase approximation. However, our approach can be ex-
tended to other models with different interactions as long
as a quasi-particle description is valid. For concreteness,
we have in mind the Hamiltonian

H:E GkCL,Cka-i- E Vk—k’c};gck’a
k,o kk’, o

+ U E CTk:a-ctk+kgfack”+k’EC—k”U' (1)
kk'k" , o

The operator c;fw creates a fermion with spin ¢ =71 or |

(¢ =l, 1) and momentum k in the Brillouin zone. ¢ is
the dispersion relation. Electronic energies are measured
relative to the chemical potential and Er is the Fermi
energy. For simplicity, we shall assume a spherical Fermi
surface, i.e. ¢ = 0 when k — kp.

The attractive interaction U < 0 facilitates supercon-
ductivity. In dimensions d > 2, this model exhibits a
finite-temperature phase transition towards a supercon-
ducting phase associated with the spontaneous breaking
of the U(1) symmetry. In d = 2, it is replaced by a
BKT transition with quasi-long-range order [18]. Here,
we work near criticality in the normal phase of the BCS-
type superconductor and in the regime of validity of the
Ginzburg-Levanyuk criterion, where the superconducting
fluctuations are sizable but weakly interacting [19, 20].

The disordered potential V(x) is assumed to be
short-ranged and Gaussian-distributed, with covariance
(V(z)V(z")) = (V(x))? = gd(x— ') with g > 0 [21]. We
work far from localization regimes, where the disorder
can be treated in a classical fashion, i.e. not account-
ing for coherent effects between scattering trajectories.
In practice, the impurity scattering is treated with the
Born approximation to second order in g [22].

We formulate the kinetic theory of quantum infor-
mation scrambling by starting from the quantum Kki-

netic equation on the many-world distribution functions
Fo5(t, z;w, k), where the indices «, 8 € {u,d} span two
replicated worlds (up and down) [13, 17]. The intraworld
components a = 3 correspond to the standard electronic
distribution functions. We concentrate on the interworld
components F,.g which are directly related to four-point
OTOCs and to the growth of operators. In the gradient
approximation, valid when the microscopic scales set by
h/Ep and 1/kp are much shorter than the spatiotempo-
ral variations of F,3, the dynamics of the latter are gov-
erned by a non-linear partial-integrodifferential equation
reading

[0 + v - Vi Fop = Iag, (2)

with the velocity vy := Vieg and where the collision inte-
gral I, is a non-linear functional of the F,3’s collecting
contributions from the disordered potential and the elec-
tronic interactions. The kinetic theory is considerably
simplified by working (i) in terms of the first two compo-
nents of a partial-wave expansion in k, (ii) on-shell, i.e.
w — ek, and (iii) near the Fermi surface, i.e. k — kp.
This amounts to working with the ansatz

Fup (t7 W, k) = €ap [¢(ta .’B) +ug - @1 (ta .’B)] ) (3)

with €4, = —€yq = 1, ug = k/k, and where ¢ and ¢,
are the isotropic and first anisotropic corrections, respec-
tively, to the on-shell interworld distribution function.
The validity of the above ansatz is discussed for the clean
case in Ref. [17], and the partial-wave truncation is all
the more accurate in the presence of impurity scattering
as it reduces momentum anisotropy. Following the steps
detailed in Sect. A of Ref. [23], the kinetic equation can
be brought to a set of coupled non-linear PDEs reading

{ 8t¢ + ijVm : ¢1: ¢(¢2 - 1)/Tsc
Orp1 + vp Vo= (]51(7(152 —1)/Tsc — @1/ 71

This represents an effective kinetic theory of scrambling
in terms of the two fields ¢(¢, ) and ¢4 (¢, ). The dimen-
sionless parameter v tunes the distance to the supercon-
ducting transition: v = 1 corresponds to criticality and
0 < v < 1 to off-critical regimes in the normal phase.
Tel X 1/g is the elastic timescale due to scattering on the
disordered potential and 74 is the timescale set by the
inelastic scattering on the superconducting fluctuations
(Cooperons). These parameters of the model (4) depend
in a non-trivial fashion on those of the original micro-
scopic model (1) and have to be understood as renormal-
ized quantities resulting from a complex cross-feed. For
example, disorder is known to enhance the inelastic scat-
tering rate 1/7s. at low temperatures [24]. The PDEs (4)
have a “correlated-world” solution, ¢ = 1 and ¢; = 0,
corresponding to both replicated worlds evolving coher-
ently and is expected to be unstable for chaotic systems.



¢ = ¢1 = 0 is the “uncorrelated-world” solution, corre-
sponding to a total loss of coherence between worlds.

At 170 — o0, we recover the clean model studied in
Ref. [17]. In the non-interacting limit, 75c — oo, and in
the diffusive regime (at late times) where d;¢p; can be
neglected relative to ¢4 /71, the above coupled PDEs re-
duce to a simple diffusion equation: 9;¢ — DeV2¢ = 0
with the elastic diffusion coefficient D¢y := v&7e1/d. In
this Drude limit, the correlated-world solution ¢ = 1
is stable against local perturbations, expressing the ab-
sence of quantum information scrambling when only dis-
order is present. In the generic case with both elastic
and inelastic scattering, we study how the scrambling
dynamics evolve as the dimensionless disorder coupling
constant k = Ty /7e1 > 0 is increased from the clean
to the diffusive metal [25]. The analysis is simplified by
rescaling time and space, 7 := t /75 and X := x/ls. with
lye := UFTSC/\/E, together with ¢ — v/d ¢1. The above
PDEs become

{ 0-¢+ Vx - p1=p(¢? — 1)
O-p1 + Vx o= ¢1(7¢* — 1) — k1.

The initial conditions are taken as local and spherically
symmetric perturbations to the correlated-world solu-

tion:
{ o(r
o1 (T

with the radial coordinate X := || X|| and a perturba-
tion 0 < d¢o(X) < 1 which is non-vanishing on small
support of radius Ry and d¢o(X > Ry) = 0. This guar-
antees that subsequent dynamics reduce to an effective
one-dimensional problem for ¢(7, X) and ¢ (7, X) along
the radial direction. The late-time dynamics marginally
depend on the choice of d¢g(X).

The instability of the correlated-world solution against
local perturbations is expected to generate a transient
state where both solutions (¢ ~ 1 and ¢ ~ 0) are sepa-
rated by a domain wall, a front, located on a sphere of
growing radius. The profile and the motion of this front
determine the dynamics of the scrambling of quantum
information. At late times, the front is located far from
the origin and it is governed by the d = 1 version of the
PDEs (5) where X is now the radial coordinate and ¢, is
the radial component of ¢; [17]. In Sect. B of Ref. [23],
we provide rigorous proof that this growth is bounded by
a maximal velocity set by the Fermi velocity, v = 1 in
units of vg/ V/d. This ensures that the dynamics strictly
take place within a causal light cone where v, acts as
the effective speed of light. This motivates us to look for
traveling fronts propagating at a constant velocity v < vy
and located at m, ~ v7T by assuming

(5)
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FIG. 2. Radial profiles f(z) of the late-time Fermi shock wave
traveling at the maximal velocity vic, computed exactly from
the coupled PDEs (5) for k = 0, k*/2 and k* (y = 1 i.e.
k* = 2.) The offset Ry is the radius of the initial condition.

The front thickness is of the order of ls := vrTsc/ vd in the
original units.

Fermi shock-wave dynamics. In the spirit of Ref. [17],
we first look for traveling-wave solutions propagating at
the maximum velocity v = v = 1 and that are discontin-
uous at the boundary of the light cone. We leave the full
computation of the front profile to Sect. B of Ref. [23].
Here, we simply focus on extracting the discontinuity by
parametrizing the near-front geometry as

{ fz<0,]zl < 1) ~L+z/E, f(z>0)
filz<0,)z] < 1) ~—M —z/&, fi(z>0)

1
0,
where L, M, &, and & are positive parameters to be

determined, and m, = 7+ Ry. We find a critical disorder
strength

K =147 ()

separating two distinct solutions. For k < k*, we find a
solution of Egs. (5) with a traveling discontinuity from
F(07) =L to f(0F) =1, with

Lix < r) = VI+aer (1 +r) -1 ©

2K*

and M = 1 — L. We find finite values of &, indicating
that the thickness of the front is controlled by fs.. This
generalizes the Fermi shock-wave dynamics identified in
Ref. [17] to the weakly-disordered case. We illustrate
this shock-wave profile in Fig. 2. When £ — x* from
below, the discontinuity closes continuously, L — 1, but
the slope remains discontinuous. For x > x*, L = 1 is
the only solution and the finite slope left of the front
brutally vanishes, f’(0) = 0, signaling the sudden death
of the Fermi shock wave.

FKKP dynamics. Inspired by the FKPP equation
proposed in Ref. [13], we look for smooth traveling-wave




solutions that belong to the FKPP class, with exponen-
tial tails ahead of the front of the form

fz>1) 21— Azexp(—puz)
{ fi(z>1) ~ —Bzexp(—puz), (10)

where A, B, and the spatial decay rate p are positive
parameters. To reveal the hidden FKPP nature of the
PDEs (5), we reformulate them in terms of d¢ :==1— ¢
and ¢ which are expected to be small and slowly varying
ahead of the front, as per Eq. (10). Standard algebra
detailed in Sect. D of Ref. [23] yields, for any x > 0,

[02 + (k—K")0r — Vg ]6p=2(2+K—£") ¢ — NL, (11)

where we collected the non-linear terms under the symbol
NL. The term in 9,0¢ is odd under time reversal and its
prefactor changes sign at x = k*. When x > k¥, it
can be loosely interpreted as a dissipative term, bringing
Eq. (11) to a standard FKPP fashion, whereas it acts as a
drive when r < £*. The term 92§¢ can be interpreted as
inertia which, to the best of our knowledge, has not been
discussed in the broader context of FKPP. Following a
standard FKPP analysis detailed in Sect. D2 of Ref. [23],
we find that there are no traveling-wave solutions of the
form (10) when xk < k*. However, for k > x*, we now find
a front propagating at the velocity, in units of vp/ V4,

/2 L *
:Qﬂu <

v(k > k") T = Ve (12)

In the limit x — Kk*, we recover v — vy, consistently
with the Fermi shock wave. v decreases monotonously
with increasing disorder strength, and v « 1/y/k — 0
when k — oco. In Fig. 1, we compare the front veloci-
ties extracted from the numerical solutions of the PDEs
(5) to the FKPP prediction in Eq. (12). The agrement
is excellent. In Sect. D4 of Ref. [23], using results of
Refs. [26-35], we provide a meticulous numerical anal-
ysis that further demonstrates, beyond any reasonable
doubt, the FKPP nature of the front dynamics as soon
as kK > k*.

Interestingly, the early-time dynamics governed by the
linearized version of Eq. (11) are characterized by an ex-
ponential growth of the spatially-integrated perturbation
M(7) := [dXd¢(r, X)) = M(0)exp(27) where the Lya-
punov exponent A = 2 does not depend on whether the
shock-wave or the FKPP regime is governing the scram-
bling dynamics. In the FKPP regime, the growth of d¢
ahead of the front is also exponential, as per Eq. (10),
and the scrambling dynamics can be characterized by a
rate Apxpp = v = 4 + 8/(k — k*) where p is computed
in Sect. D2 of Ref. [23]

Diffusive regime. We now delve into the overdamped
regime £ >> 1 where the inertial term of Eq. (11) may
be neglected. Keeping only the leading-order terms the
RHS (see the details in Sect. D3 of Ref. [23]), the scram-
bling dynamics are now governed by, back in terms of ¢

1 T .
K> K"
“~ 0.5
0
—10 0 10
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FIG. 3. Radial profile of the late-time FKPP front at x > 1,
solution of Eq. (13) traveling at the butterfly velocity v given
in Eq. (14). m¢ ~ vt is the location of the front. The dashed
line is the numerical result obtained by solving Egs. (5) with
K = 60 and v = 1 up to time 7 = 30. The front thickness is

of the order of Lait := vr+\/TscTe1/2d <K lyc.

and in the original units,

01¢ — DV = (¢ —1)/Tsc, (13)

where 1/7 is the inelastic scattering rate and Dg :=
’U%Te] /d is the elastic diffusion coefficient. The depen-
dence on both ¢ and v has dropped. This FKPP equa-
tion is the non-integrable Newell-Whitehead equation
which was first studied in the context of non-linear fluid
mechanics [36]. Similar equations with diffusive terms
were recently put forward to describe the dynamics of
scrambling of quantum information [10, 13, 37-39]. The
traveling-wave solutions of Eq. (13) propagate at a but-
terfly velocity, in the original units,

2
v=24/-= E’UF <L VF. (14)
d \/ Tsc

Incidentally, this yields the relation

v*/Arkpp = 2Del (15)

which concretely connects scrambling dynamics on the
one side to a measurable transport quantity on the
other side [9, 40-42]. The front profile is conveniently
computed by now measuring space in units of lgig =
VP TscTel/2d < L. The rescaled front profile f(y) =
f(ylaig) is the solution to 2f” + 4f" = f(1 — f2) with
f(—00) =0, f(co) = 1, and we can require f(0) = 1/2.
It is a smooth monotonous function that we represent in
Fig. 3. The agreement with the numerical solutions of
the PDEs (5) computed in the diffusive regime (x = 60)
is excellent.

Discussion. In the Fermi shock-wave regime, k < k™,
it is still to be clarified whether the scrambling front dis-
continuity could be smoothened by corrections to the gra-
dient approximation. In the FKPP regime, x > r*, we



found that disorder can considerably reduce the butter-
fly velocity, corroborating the results of Refs. [14, 15]:
a realistic ratio at room temperatures x ~ 10* yields
v ~ 107 2vp ~ 10* m/s, on par with the typical phonon-
mediated sound velocity in metals. Contrary to the
shock-wave velocity, it cannot strictly be seen a (slower)
effective speed of light since the small tail ahead of the
front, while providing a quantum-chaotic exponential
regime controlled by the inelastic scattering rate, sur-
reptitiously undermines the causality of the light-cone
structure. In both the Fermi shock-wave and the FKPP
regimes, we found a sharp butterfly front. This is similar
to what has been reported for models with a large local
Hibert space such as the O(N) or the SYK models [9, 10],
but different from the diffusively broadening fronts ob-
tained for random quantum circuits [3, 4]. The precise
conditions under which strong quantum fluctuations and
strong disorder could generate relevant perturbations to
the FKPP dynamics are still to be elucidated.
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