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The parton approach for quantum spin liquids gives a transparent description of low-energy elementary ex-
citations, e.g., spinons and emergent gauge-field fluctuations. The latter ones are directly coupled to the hop-
ping/pairing of spinons. By using the fermionic representation of the U(1) Dirac state on the kagome lattice
and variational Monte Carlo techniques to include the Gutzwiller projection, we analyse the effect of modifying
the gauge fields in the spinon kinematics. In particular, we construct low-energy monopole excitations, which
are shown to be gapless in the thermodynamic limit. States with a finite number of monopoles or with a finite
density of them are also considered, with different patterns of the gauge fluxes. We show that these chiral states
are not stabilized in the Heisenberg model with nearest-neighbor super-exchange couplings, and the Dirac state
corresponds to the lowest-energy Ansatz within this family of variational wave functions. Our results support
the idea that spinons with a gapless conical spectrum coexist with gapless monopole excitations, even for the

spin-1/2 case.

Introduction. Quantum spin models on frustrated low-
dimensional lattices represent a playground to investigate a
variety of different phases of matter and the transitions among
them [1]. Even though a full characterization of their phase
diagrams would require a finite-temperature analysis, in most
cases the knowledge of the ground state and a few low-energy
excitations is enough to obtain important information on the
relevant (low-temperature) behavior. Still, achieving an ac-
curate description of the exact ground state of frustrated spin
models poses itself as a difficult task. Indeed, a faithful char-
acterization can be obtained whenever (a sizable) magnetic or-
der is present, since here the ground state is well approximated
by a product state, with spins having well-defined expectation
values on each site. By contrast, whenever magnetic order
is significantly suppressed, or even absent, the ground-state
wave function is much more elusive. The most complicated
case is given by the so-called quantum spin liquids, where the
elementary degrees of freedom are no longer the original spin
variables, but emergent particles (spinons) and gauge fields
(visons or magnetic monopoles) [2]. The standard approach to
describe spin liquids is through the parton construction, where
spin operators are represented by using fermionic or bosonic
particles; here, the original Hilbert space is enlarged and ad-
ditional gauge fields are introduced [3-5]. Thus, the result-
ing model describes fermions or bosons that interact through
gauge fields on a lattice. A spin liquid corresponds to the
deconfined phase of the resulting model, in which particles
(spinons) are free at low energies. In this case, the elementary
excitations of the spin model are fractionalized, i.e., they are
not integer multiples of those of the original constituents. By
contrast, whenever the gauge fields lead to confinement, the
spin liquid is unstable towards some symmetry-breaking phe-
nomenon, most notably the establishment of valence-bond or
magnetic order [6]. The analysis of these lattice gauge the-
ories is not easy and requires non-perturbative methods [7—
9], which also include a detailed examination of the symme-

tries of low-energy excitations. Still, some insight can be ob-
tained from mean-field approaches [10], where gauge fields
are frozen and fermions/bosons are free. From there, it is
also possible to extract some information on the nature of the
most relevant gauge fluctuations: whenever they are gapped
(corresponding to a Zo symmetry) the low-energy spectrum
of the spinons is not qualitatively modified, leading to stable
Zso spin liquids [10] (the most remarkable example being the
Kitaev model on the honeycomb lattice [11]). The situation
is more delicate when the low-energy gauge fields are gap-
less (with U(1) symmetry), since in this case they can spoil
the mean-field properties of the spinon spectrum. In partic-
ular, monopoles proliferate and may give rise to a confined
phase [12]. Still, the presence of a sufficiently large number
of massless fermions may screen the monopoles and prevent
confinement [7, 13, 14].

Among various possibilities, the nearest-neighbor S = 1/2
Heisenberg antiferromagnetic model on the kagome lattice
represents one of the most intriguing and important examples
in which magnetic frustration may give rise to a non-magnetic
ground state. The interest in this spin model was raised af-
ter the discovery of a number of compounds, where local-
ized S = 1/2 moments interact through a super-exchange
mechanism in almost decoupled kagome layers. The most
notable example is given by the so-called Herbertsmithite
Cu3Zn(OH)sCly [15-17]. Here, there is no evidence of mag-
netic order down to extremely small temperatures, thus sug-
gesting the possibility that the ground state is indeed a quan-
tum spin liquid [18]. Triggered by these outcomes, a huge
effort has been spent in the last years to clarify the actual
nature of the ground state of the Heisenberg model on the
kagome lattice. Early large-scale density-matrix renormal-
ization group (DMRG) calculations suggested the existence
of a gapped spin liquid [19, 20], while variational Monte
Carlo techniques, more recent DMRG and tensor network
approaches, and pseudo-fermion functional renormalization
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(a) The plane (¢, 6) that defines the flux distribution in the unit cell considered in this work, shown in the inset. The hexagonal

plaquette has a Fy = m — 26 + 3¢/4 and two triangular ones have flux Fr = ¢/8 4 6. The [r, 0] Dirac state lies at the origin, the uniform
state [0, 0] is obtained with 6 = —¢/8 for ¢ = =+, and the [, 7] state with 6 = 3¢/8 and ¢ = 27. The quantized values of ¢, obtained for
a few monopoles are marked on the z-axis. (b) The complex argument «; ;, in units of 27r/L? = 27 /16, of the hopping parameters el
(for i — j) and e =143 (for j — ) of the fermionic Hamiltonian (3) that defines a single-monopole configuration (with 6 = 0) onthe L = 4
cluster. Notice that the translational symmetry is broken by the hoppings on the rightmost column along a..

group calculations supported a gapless spin liquid [21-25].
The variational approach has a very simple and elegant de-
scription within the fermionic parton representation; here, the
free fermions have only kinetic terms (no pairing), defining
peculiar magnetic fluxes piercing the unit cell (i.e., m-flux
through hexagonal plaquettes and 0-flux through triangular
ones), thus leading to two Dirac points in the spinon spec-
trum [21, 26]. As a consequence, this Ansatz is dubbed as
[, 0] Dirac spin liquid. Finally, an accurate variational wave
function is obtained by including the Gutzwiller projection,
which imposes a single-fermion occupation on each lattice
site [21, 22].

Still, alternative scenarios have been proposed, the most in-
triguing one suggesting the possibility that the ground state
is a chiral spin liquid [28, 29], which break time-reversal
and point-group symmetries [30]. Originally, chiral spin lig-
uids have been constructed in analogy to the fractional quan-
tum Hall effect [31]. However, the main difference with re-
spect to the latter case is that time-reversal is spontaneously
broken, leading to even more exotic phenomena [32]. Re-
cently, different calculations suggested that chiral spin liquids
may exist in extended Heisenberg models on the kagome lat-
tice, e.g., adding super-exchange couplings at second or third
neighbors, multi-spin interactions, or Dzyaloshinskii-Moriya
terms [33-42]. In addition, chiral spin liquids have been
also analysed within mean-field approaches, in terms of both
bosonic [43, 44] and fermionic partons [32, 45].

In this paper, we study the stability of the Dirac spin liquid
wave function, which has been proposed to capture the cor-
rect ground-state properties of the nearest-neighbor Heisen-
berg model on the kagome lattice [21, 22], against chiral per-
turbations. We analyse the energetics of Gutzwiller-projected
fermionic states that are obtained by adding non-trivial mag-
netic fluxes to the ones that define the Dirac wave func-

tion. In particular, we can independently (i) consider an addi-
tional flux (parametrized by ¢ and spread uniformly on the
lattice) and/or (ii) redistribute the flux inside the unit cell
(parametrized by 6); hence, we assume that every unit cell
has the same distribution of fluxes in the hexagonal and trian-
gular plaquettes, see Fig. 1. The flux through the triangular
plaquettes is given by Fr = ¢/8 + 6, while the flux through
the hexagonal ones is Fiy = m — 20+ 3¢/4, such that the total
flux piercing the unit cell is Fo = 7 + ¢, the Dirac state being
recovered with ¢ = @ = 0. All calculations are performed
on tori with 3 X L x L sites by using variational Monte Carlo
techniques to assess the properties of the Gutzwiller-projected
states [46]. On finite clusters, ¢ is quantized, while § may as-
sume any value. A “commensurate” flux ¢ = 27/q requires
a large super-cell that includes ¢ unit cells (assuming ¢ di-
vides L) and implies a total flux multiple of 27 L on the whole
torus. In addition to these standard cases, we also consider
monopole configurations. A single monopole brings a 27 flux
on the torus, thus leading to ¢ = 27/ L2 on each unit cell;
states with Vy,;, monopoles are then constructed by consid-
ering a flux density ¢ = 27 Ny,p/L?. On the one hand, this
allows us to study the energetics of a single monopole on fi-
nite clusters and its scaling in the thermodynamic limit; on the
other hand, with monopole configurations, the stability of the
Dirac state may be assessed for very small additional fluxes
(i.e., much smaller than the minimal one accessible within
the commensurate fluxes). The main outcome of this study
is that the Dirac state is stable against chiral perturbations.
Still, monopole excitations are gapless in the thermodynamic
limit. We would like to emphasize that, since we work on
tori, the analysis of the monopole energy cannot be directly
connected to the scaling dimensions, as usually done within
conformal-field theories, which consider a spherical geome-
try [13, 14, 47, 48].



Model and methods. We study the Heisenberg model on the
kagome lattice with nearest-neighbor super-exchange interac-
tion J > 0

H=1J> Si-S;, (1)
(i)

where S; = (S7,57,57) is the spin-1/2 operator on a site i;
periodic-boundary conditions are assumed on a cluster with
3 x L x L sites. In the following, we fix J = 1.

The variational wave functions are defined by
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where |®g) is the ground state of the auxiliary (non-
interacting) Hamiltonian:

Ho = Z xi’jcjyc,cj,(7 +h.c., 3)
(i.3),0

where c:aa (¢; ,) creates (destroys) a fermion on site ¢ with
spin o =1, 5 x;. ;= X?yjei’l’%-f defines the hopping amplitude
for nearest-neighbor sites (4, j). The “bare” term ng ; ==+l
defines the [, 0] flux pattern of the Dirac spin liquid, while the
presence of «; ; 7 0 allows us to consider 6 # 0 and/or ¢ # 0
(including single- or multi-monopole states), see Fig. 1. In
addition, periodic- or anti-periodic-boundary conditions can
be taken in Ho. In practice, the auxiliary Hamiltonian is di-
agonalized and |®g) is constructed as the Slater determinant
of the lowest N single-particle orbitals (where N = 3L?),
which is well defined whenever there is a closed shell con-
figuration, i.e., a finite-size gap between the N-th and the
(N+1)-th levels. For commensurate fluxes, we adopt the Lan-
dau gauge, which implies a ¢ x 1 super-cell. By contrast, the
single-monopole configuration requires a super-cell as large
as the entire cluster (which remains the case also for multi-
monopole configurations). A similar monopole construction
has been discussed in Ref. [49] for the square lattice. We re-
mark that, whenever a single monopole is considered on top
of the Dirac state, there is an exact degeneracy at the Fermi
level (which is robust to changing the boundary conditions
[50]), with two levels per spin, i.e. four levels occupied by
two fermions giving rise to 6 monopoles (3 singlets and 1
triplet) [8, 51]. We verified that any occupation of these levels
gives the same variational energy. In this case, the unpro-
jected state |®g) does not correspond to a closed shell config-
uration and we use the single-particle orbitals obtained by the
real-space diagonalization, without imposing any lattice sym-
metry. Then, monopole configurations do not correspond to
specific k-points of the Brillouin zone.

Finally, P¢ is the Gutzwiller projection onto the configura-
tion space with one particle per site:

Pa = H(ni,'r —niy)?, “4)

where n; , = ¢l ¢, . Asaresult, |U) of Eq. (2) defines a

1,0 1,0°
faithful variational wave function for the spin Hamiltonian (1).
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FIG. 2. Energy (per site) difference between chiral and Dirac states
as a function of ¢ for three cuts in the plane of Fig. 1. Variational
Monte Carlo calculations are performed on a cluster with L = 8.

The values of ¢ correspond to Ny, = 1,...,4 monopoles in the
torus.
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FIG. 3. Energy (per site) difference between chiral and Dirac states
as a function of ¢ for 6 = 0, i.e., the x-axis of the plane shown in
Fig. 1. The variational Monte Carlo calculations are done for both
commensurate and monopole fluxes. Inset: zoom of the results for
small values of ¢, where only monopole configurations are present.

Standard Monte Carlo sampling based upon Markov chains is
used to evaluate the variational energy [46]. For the Hamilto-
nian (1), the Dirac state has an energy per site e ~ —0.429,
which is higher than the best DMRG and tensor network es-
timates for the ground state, e.g, e = —0.438 [20, 24]. Still,
this simple variational state may well capture the correct prop-
erties of the actual ground-state wave function, as suggested
by recent DMRG calculations [23].

Results. The main outcome of this work is that the Dirac
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FIG. 4. Size scaling of the single-monopole gap (with respect to
the Dirac state), both singlet and triplet cases are shown. The un-
projected case (no Gutzwiller projection) is reported for comparison.
Particle-hole (P-H) spinon excitations of the Dirac wave function are
also shown, either within the same Dirac cone or across the Dirac
cones.

state is stable when considering fluxes ¢ # 0 and/or 6 # 0.
Indeed, the best variational energy (per site) when varying 6
and ¢ is obtained for § = ¢ = 0, corresponding to the [, 0]
case. As an example, in Fig. 2, the variational energies for
different cuts in the (¢, 6) plane are reported for L = 8: along
0 = 3¢/8 (i.e., Fiy = 7, which connects the Dirac state to the
[, 7] one), along § = —¢/8 (i.e., Fr = 0, which connects
the Dirac state to the [0,0] one), and # = 0. In all cases,
the energy increases with ¢, even for the smallest possible
values obtained with a few monopoles. Similar results have
been obtained for larger cluster sizes and different cuts. In
particular, the case with § = 0 is reported in Fig. 3, where
several sizes of the cluster are reported from L = 4 to L = 16,
including both commensurate fluxes (the smallest one being
¢ = 2m/L) and monopole configurations (which allow us to
reach much smaller values of the fluxes). Our results clearly
show that the minimal variational energy is always obtained
with ¢ = 0, i.e., for the Dirac state.

Next, we perform the explicit size-scaling analysis of the
single-monopole gap, see Fig. 4. At the unprojected level,
i.e., when the Gutzwiller projection of Eq. (4) is not imposed,
the monopole configugration corresponds to an excited state
that becomes gapless in the thermodynamic limit. Obviously,
this result does not depend on the filling of the degenerate
levels at the Fermi level, including the case where a triplet
state is taken. We emphasize that the vanishing extrapola-
tion becomes evident only when large clusters are considered
(e.g., L =2 30), since a fitting procedure that only includes
L < 12 would predict a finite gap for L. — oo. Most impor-
tantly, the presence of the Gutzwiller projection has no effect
on the overall behavior. In fact, while the slope of the fit is
increased, the extrapolated value in the thermodynamic limit
is always consistent (within a few errorbars) with a vanish-
ing gap. In addition, there is no appreciable difference (for

large clusters) between states with .S = 0 (two fermions oc-
cupying orbitals at the Fermi level with up and down spins)
or S = 1 (two fermions occupying the orbitals with the same
spin). Note that, more generally, monopole excitations in the
SU(Ny) Heisenberg model [52] with Ny even and Ny /2 > 1
fermions per site were also found to be gapless [50].

In order to prove (and improve) the statement that spinons
are gapless, we construct particle-hole excitations of the
Hamiltonian (3), by changing the fermion occupation in the
unprojected state (i.e., by emptying one of the highest-energy
single-particle orbital and filling one of the lowest-energy
ones). Given the shape of the cluster, there are several ways
to do this, since both these shells are four-fold degenerate (for
each spin value). In particular, we can perform excitations
within the same Dirac cone or across the two cones. Triv-
ially, these states are gapless in the unprojected wave func-
tion, when L — oo. Most interestingly, they remain gapless
even when the Gutzwiller projection is included. As a conse-
quence, the [, 0] Ansatz, obtained from the auxiliary Hamil-
tonian (3) with real hoppings x; ; = %1, has the remarkable
property to describe the (approximated) ground-state wave
function that sustain gapless excitation for both spinons [53]
and monopoles.

Discussion. In this work, we constructed monopole exci-
tations on top of the Dirac spin liquid Ansatz and showed
them to be gapless in the thermodynamic limit. By study-
ing the energetics of states with a finite monopole density, we
found no sign of an instability towards a chiral state. Our
results provide further evidence that the ground state of the
kagome Heisenberg antiferromagnet is well described by the
Dirac spin liquid, despite having gapless monopole excita-
tions [8]. Such a remarkable robustness was recently linked to
free-fermion band topology dictating symmetry properties of
monopoles [9]. Recently, a similar analysis of monopole and
bilinear excitations was performed on the Dirac spin liquid on
the triangular lattice [51]. The existence of gapless monopoles
may provide new experimental ways to identify U(1) Dirac
spin liquids and, in particular, to resolve between gapless Zo
and U(1) states. Recently, a few possibilities have been sug-
gested, e.g., via recently proposed “monopole Josephson ef-
fect” [54], which would lead to a measurable spin current,
or via the coupling between monopoles and phonons [55],
which would lead to a broadening/softening of certain phonon
modes.
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