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The study of the non-linear anomalous Hall effect (NLAHE) in PT -symmetric systems has fo-
cussed on intrinsic mechanisms. Here we show that disorder contributes substantially to NLAHE
and often overwhelms intrinsic terms. We identify terms to zeroth order in the disorder strength
involving the Berry curvature dipole, skew scattering and side-jump, all exhibiting a strong peak as
a function of the Fermi energy, a signature of interband coherence. Our results suggest NLAHE at
experimentally relevant transport densities in PT -symmetric systems is likely to be extrinsic.

Introduction. The past decade has witnessed the pre-
diction and observation of the nonlinear anomalous Hall
effect (NLAHE), an anomalous Hall response second or-
der in the applied electric field. Initially motivated by the
identification of a Hall response in the absence of time-
reversal symmetry breaking [1], the bulk of research to
date has focused on non-magnetic materials [2–28]. How-
ever, in recent years there has been growing interest in
the NLAHE in time-reversal breaking systems such as
antiferromagnetic metals [29–34]. In particular, in sys-
tems with broken time-reversal (T ) and inversion (P)
symmetry, but with the combined PT symmetry, the
linear anomalous Hall effect vanishes and the NLAHE
provides the leading contribution to the Hall response.
Thus, while eliciting strong interest for applications in
antiferromagnetic spintronics, the NLAHE also provides
a tool for the investigation and classification of states
with broken symmetries [29, 33, 35–39].

In a PT -symmetric system, the leading order contri-
bution to the NLAHE is of order τ0, where τ is an indica-
tive momentum relaxation time used as a measure of the
disorder strength. The PT -symmetric case is in sharp
contrast to the T -symmetric systems, where the leading
order contribution begins at order τ . So far the intrinsic
contribution has been considered as the only mechanism
active at order τ0 [32, 33, 38]. On the other hand, it is
well known from the study of the linear anomalous Hall
effect that extrinsic contributions such as skew scattering
and side jump also manifest at order τ0, which can com-
pensate or even cancel the intrinsic contribution. Some of
these have been addressed in PT -broken systems [40–49].
Yet, to our knowledge, the role of disorder in the NLAHE
in PT -symmetric systems has thus far been neglected.
This omission is difficult to justify: when seeking to ex-
tract intrinsic topological quantities from experimental
data the effect of disorder must be incorporated.

In this paper we determine the full expression for the
NLAHE in the presence of disorder in systems with com-
bined PT symmetry, taking 2D tilted Dirac fermions as
a prototype system. Defining the non-linear current den-
sity ji = χijkEjEk, with χijk the non-linear suscepti-
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Figure 1: Susceptibility χ
(0)
yxy ∝ τ0 with gap ∆ = 40meV, tilt

t = 0.4 and vF = 1.6 × 106m/s. We approximate the Fermi
velocity to be the same for all components, v0x = v0y.

bility, joint PT -symmetry restricts the powers of τ that
may appear in χ. In a PT -symmetric system the allowed
response scales with even powers of τ , and the susceptibil-

ity may be written as [χijk] = [χ
(−2)
ijk ] + [χ

(0)
ijk], where the

superscripts indicate the second order and zeroth order
in τ respectively. Because current NLAHE experiments
use moderately conducting channels the τ0 contribution
is the most important, and our effort focuses primar-

ily on χ
(0)
ijk, where disorder competes directly with the

intrinsic band structure contributions [33, 38, 50]. To
second order in the electric field disorder contributions
involve a complex interplay between band structure and
disorder mechanisms. Our central result may be summa-
rized in Fig. (1) as the quantitative comparison between
intrinsic and disorder contributions. Our main findings
are as follows. (i) For realistic parameters [32, 38] the
disorder contributions generally overwhelm the intrinsic
terms. This is evident from Fig. 1, where the total sus-
ceptibility essentially tracks the extrinsic contribution.
(ii) The NLAHE exhibits a strong peak as a function
of the Fermi energy εF , whose location is determined
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Figure 2: Susceptibility [χ
(0)
yxy] with gap parameter ∆ =

40meV and tilt t = 0.4. vF = 1.6 × 106m/s. We show

[χ
(0)
yxy]BCD, [χ

(0)
yxy]sj and [χ

(0)
yxy]sk.

by the size of the gap. This peak is present in both

[χ
(0)
ijk] and [χ

(−2)
ijk ], and appears in all contributions to the

NLAHE, whether intrinsic or induced by disorder. It
is a signature of interband coherence [51], a factor that
unifies all NLAHE mechanisms. (iii) We identify three
main disorder contributions: skew scattering, side jump,
and a contribution we term the extrinsic Berry curvature
dipole, which has not been found previously. It consists
of the Berry curvature dipole multiplied by a disorder
term that is formally of zeroth order in τ . All the dis-
order terms are a consequence of an electric field correc-
tion to the collision integral. For our prototype model of
2D tilted Dirac fermions all non-linear mechanisms are
traced to the Fermi surface. Our quantum mechanical
formalism also reveals the existence of additional intrin-
sic terms that a naive application of the semi-classical
method misses, in analogy with Ref. [52].

Our findings suggest that the NLAHE signal at experi-
mentally relevant transport densities is dominated by dis-
order, making an understanding of disorder indispensable
in interpreting experimental data. They also provide a
strong contrast with PT -breaking systems studied so far.
In that case, with T preserved, PT is necessarily broken
in the second-order electrical response, and χ ∝ τ . The
NLAHE driven by the Berry curvature dipole (BCD) be-
longs to this category [1, 37, 53], and it was shown that
disorder makes a contribution similar in magnitude to
the intrinsic terms, without overwhelming them [53].

Quantum kinetic equation. The system is described
by the density matrix ρ(t), which obeys the quantum
Liouville equation ∂ρ/∂t + (i/ℏ) [H, ρ] = 0. The Hamil-
tonian has the form H = H0 + eE · r + U(r), with H0

the band Hamiltonian, E a constant, uniform electric
field, and U(r) the disorder scattering potential. We
work in the crystal momentum representation spanned
by Bloch states |m,k⟩ = eik·r|um

k ⟩. The disorder model
is defined through its correlations functions ⟨U(r)⟩ = 0
and ⟨U(r)U(r′)⟩ = u2

0δ(r − r′), where u2
0 quantifies the
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Figure 3: Leading order susceptibility χ
(−2)
yxy ∝ τ2 with t =

0.4, vF = 1.6× 106m/s and τ = 1ps. We have approximated
the Fermi velocity to be the same for all components.

strength of disorder. Alternatively, the disorder strength
can be measured by the momentum relaxation time
1/τm = πρ(ϵmk )u2

0/ℏ, with ρ(ϵmk ) the density of states.
In our calculation, we will assume that the Fermi energy
is located in the conduction band, indexed here by a pos-
itive sign, but we will drop such a notation in our final
results.
Following the methodology of Refs. [51, 54, 55], the

density matrix is decomposed into a disorder-averaged
part fk and be the focus of our attention, and a fluctuat-
ing part, which is integrated out to yield the scattering
term in the Born approximation, assuming its time evo-
lution to be Markovian. We do not consider here the non-
linear counterpart of the important issue about possible
reduction of the anomalous Hall response due to crossing
diagrams in linear response [56–58]. Although it is ex-
pected to have a similar effect in non-linear regime and
it is possible to inlclude such diagrams within the den-
sity matrix formalism [51, 59], this is beyond the scope
of the present paper. In this way we obtain the quantum
kinetic equation

∂f

∂t
+

i

ℏ
[H0, f ]+J0(f) =

eE

ℏ
·Df

Dk
−JE(f)−JE2(f). (1)

The covariant derivative appearing above reads Dfk
Dk =

∂fk
∂k − i[Rk, fk], with the Berry connection Rmm′

k =

i⟨um
k |∇ku

m′

k ⟩. The covariant derivative accounts for the
momentum dependence of the basis functions. The den-
sity matrix fk has both diagonal and off-diagonal ele-
ments in band index m. We represent the band-diagonal
part by nk and the off-diagonal part by Sk, such that
fk = nk + Sk. The equilibrium density matrix is band-
diagonal with matrix elements given by the Fermi-Dirac
distribution nFD(ϵmk ) for each band.
The bare collision integral is defined as J0(f) =

(i/ℏ)⟨[U, g0]⟩ with the function

g0 =
1

2πi

∫ ∞

−∞
dϵGR

0 (ϵ)[U, f ]G
A
0 (ϵ) (2)
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and the the electric field correction JE(f) defined as

JE(f) =
1

2πℏ

∫ ∞

−∞
dϵ⟨[U,GR

0 (ϵ)[eE · r, g0]GA
0 (ϵ)]⟩. (3)

The retarded Green’s function is defined as GR
0 (ϵ) =

− i
ℏ
∫∞
0

dte−iH0t/ℏeiϵt/ℏe−ηt, where the factor e−ηt en-
sures convergence and the advanced Green’s function
GA

0 (ϵ) follows by Hermitian conjugation. The collision
integral JE2(f) → JE2(nFD) is by itself second order in
electric field and must be evaluated as a functional of the
equilibrium Fermi-Dirac distribution. Its main role is to
eliminate Fermi sea effects in the same way as in linear
response – this is explained in the Supplement [65].

We solve Eq.(1) perturbatively in the electric field and
disorder strength quantified by τ . The leading order cor-
rection in linear response comes from the first driving
term on the RHS by taking f → nFD. It will give the

Boltzmann-like contribution n
(−1)
Ek , which in our notation

refers to a band-diagonal term ∝ τ . The kinetic equation
is solved iteratively in E up to second order, which is de-
noted by the subscript E2. As an example, the leading
second order response follows from the same driving term
by using the linear Boltzmann equation. It will produce

a contribution n
(−2)
E2k , i.e. band-diagonal, second order in

E and quadratic in τ . We will use a similar notation
to represent the off-diagonal channel. Once the distri-
bution is determined, the current follows from the trace

j = −e
∑

k,mm′

[vmm′

k fm′m
E2k ], namely, the velocity operator

weighted by the density matrix.
Model Hamiltonian. We investigate a system that

breaks both time reversal T and parity P symmetry but
preserves the joint PT symmetry. A generic paradigm is
provided by a tilted Dirac cone. The band Hamiltonian
for a single valley has the form

H0 = ℏvtkxσ0 + ℏv0xkxσx ± ℏv0ykyσy +∆σz, (4)

where the first term is the tilt, σi are Pauli matrices,
v0i are Fermi velocities and the term ∆ is the energy
gap. We replace ki → v0iki with the following rule
for integrals

∑
k(· · · ) → 1

(2π)2
1

v0xv0y

∫
dkxdky(· · · ) and

derivatives ∂
∂ki

→ v0i
∂

∂ki
. Since we assume the two

PT -symmetric states can be decoupled, we focus on the
Hamiltonian with the positive sign. The eigenvalues read

ϵ±k = ℏtkx ± ϵ0k with ϵ0k =
√
ℏ2k2x + ℏ2k2y +∆2 and the

dimensionless parameter t = vt/v0x. This dimensionless
parameter controls the breaking of inversion symmetry
necessary for the nonlinear response, hence the non-linear
susceptibility will be at least of first order in t.

Results. The components of the non-linear suscepti-

bility are related by [χ
(0)
xxx] = [χ

(0)
xyy] + [χ

(0)
yxy], apart from

a proper velocity prefactor, meaning [χ
(0)
xxx] ∝ v30x, while

the right hand side is ∝ v0xv
2
0y. The first index in χ

is the direction of the current while the last two indices
represent the two factors of the electric field. Below we

show results for [χ
(0)
yxy] = [χ

(0)
xxx]− [χ

(0)
xyy].

Solving the kinetic equation to zeroth order in τ we
identify a purely intrinsic contribution as well as three
disorder corrections to the non-linear anomalous Hall re-
sponse of PT -symmetric systems: a side jump effect, a
skew scattering effect and a Berry curvature dipole effect.
The Berry curvature dipole and side jump contributions
emerge in the off-diagonal channel of the density matrix
and follow from the equation

∂S
(0)mm′

E2k

∂t
+

i

ℏ
[H0k, S

(0)
E2k]

mm′
=

eE

ℏ
·
DS

(0)mm′

Ek,int

Dk

− i
eE

ℏ
· [Rk, n

(0)
Ek,sj ]

mm′
− [J0(n

(−1)
E2,sj)]

mm′

k . (5)

The general solution reads S
(0)mm′

E2k = −iℏ(ϵmk −
ϵm

′

k )−1d
(0)mm′

E2k , where d
(0)mm′

E2k refers generically to the
driving term on the right hand side of the equation.
The first term in Eq.(5) produces the second order in-

trinsic distribution. It is related to the covariant deriva-
tive of the intrinsic linear response that follows from the

equation S
(0)mm′

Ek,int = −(ϵmk − ϵm
′

k )−1eE · [Rk, nFD]mm′
.

This is the only intrinsic contribution to the non-linear
response in the sense that it depends solely on the band
structure. After tracing the off-diagonal velocity vmm′

k,i =

iℏ−1(ϵmk − ϵm
′

k′ )Rmm′

k,i with the intrinsic distribution we
obtain the susceptibility

[χ(0)
yxy]int = − t

8
ℏ2e3v20yv0x

ρ(ϵF )

ϵ3F
ξ2F (1− ξ2F ), (6)

where ρ(ϵF ) is the density of states and we defined the
parameter ξF = ∆/ϵF . This contribution is an inter-
band coherence effect where virtual transitions between
valence and conduction band are mediated by the prod-
uct of off-diagonal terms in the Berry connection. It is
also a Fermi surface response, vanishing at ξF = 1. This
is in contrast to the intrinsic linear anomalous Hall effect,
which is a Fermi sea response [66].
We turn our attention to the disorder correc-

tions to the susceptibility. The band-diagonal

term to zeroth order in τ reads n
(0)++
Eyk,sj =

−eEyv0yA0(k) + · · · , where the coefficient is A0(k) =

t
τspℏ
2τϵ0k

ξk

[
(1 + ξ2k) + (1− ξ2k)ϵ0k

∂
∂ϵ+0k

]
δ(ϵ+0k − ϵF ). We

have ignored higher harmonics irrelevant for trans-
port. We have defined the transport time and the
single particle relaxation time as 1/τtr = (1 + 3ξ2k)/2τ
and 1/τsp = (1 + ξ2k)/τ respectively. Tracing the
off-diagonal velocity with this channel of the off-
diagonal density matrix will produce a Berry curvature
dipole (BCD) like contribution given by the current

ji = −(e2/ℏ)
∑

k,m (E ×Ωmm
k )i n

(0)mm
Ek where Ωmm

k is
the Berry curvature. Explicit evaluation yields

[χ(0)
yxy]BCD =

te3ℏ2v0xv20y
2

ρ(ϵF )ξ
2
F

ϵ3F

(1− ξ2F )(2 + ξ2F )

(1 + ξ2F )
2

.

(7)
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This contribution is shown in Fig. (2) and given in full in

the Supplement [65]. The BCD susceptibility [χ
(0)
yxy]BCD

is the analogue of the BCD widely studied in PT -broken
systems. However, the BCD appears here as an inter
band coherence effect involving disorder, and we refer to
this contribution as the extrinsic Berry curvature dipole.
It is a consequence of the driving term arising from the
electric field corrected collision integral. This response is
also a Fermi surface effect. Previous studies on 2D [1, 44]
and 3D systems [37] focused on a Berry curvature dipole
term, whose contribution to the NLAHE scales linearly
with the momentum relaxation time. Such a contribution
is, in principle, also extrinsic since it depends on disorder

but is prohibited in PT -symmetric materials. The im-
portant point for comparison is that the Berry curvature
dipole in both cases is related to the anomalous velocity
[60], which is due to an electric field correction to the
ground states (it is intrinsic in this sense). It manifests
as a non-linear response when weighted by a linear re-
sponse distribution, which will be manifestly due to a
shift in the Fermi surface and then related to relaxation
process (in this sense extrinsic).

Let us consider the last driving term in the kinetic
equation. The first order in τ distribution in the collision
integral in eq. (6) reads

n
(−1)++
xyk,sj = −e2

ℏ
v0yEyv0xExτtr cos(θk)

∂A0(k)

∂k
+ ... (8)

Tracing the off-diagonal velocity with S
(0)mm′

E2k = iℏ(ϵmk − ϵm
′

k )−1[J0(n
(−1)
E2,sj)]

mm′

k yields

[χ(0)
yxy]

(od)
sj =

1

2
te3v20yv0xℏ2

ρ(ϵF )

ϵ3F
ξ2F (1− ξ2F )ΛsΛt

{
(1− ξ2F )

2Λs − 8ξ2F (1− ξ2F )ΛsΛt

+3(1− ξ2F )− 24ξ2FΛt − 24ξ2F (1− ξ2F )Λ
2
t

}
. (9)

The dimensionless parameters Λs = (τsp/τ) and Λt =
(τtr/2τ). This coefficient represent the side jump in anal-
ogy to linear response [55]. It is a Fermi surface response,
as well as an inter-band coherence effect due to virtual
transitions mediated by the Berry connection. Previous
works on non-linear Hall effect [42, 44–46] reported the
counterpart of this side jump like contribution for PT -
broken systems. To our knowledge it is reported for PT -
symmetric systems for the first time here.

In the band-diagonal part of the density matrix to ze-
roth order τ we identify a skew scattering contribution

and a second side jump contribution. They follow from

[J(n
(0)
E2)]

mm
k = −[J0(S

(0)
E2)]

mm
k −[JE(n

(0)
E,sj)]

mm
k , where the

driving terms are to the right. Skew scattering follows
from the first driving term while the second gives the side-
jump contribution. This is identical to Eq. (9), hence the
electric field corrected collision integral doubles the side
jump, in analogy with linear response [55, 61]. We plot
this side jump term in Fig. (2).

Finally, the skew scattering contribution is found as

[χ(0)
yxy]sk = e3v20yv0x

3

2
tℏ2

ρ(ϵF )

ϵ3F
ξ2F (1− ξ2F )Λ

2
t

{
3(1− ξ2F )− 16ξ2FΛt + 15(1− ξ2F )

2Λt − 112ξ2F (1− ξ2F )Λ
2
t

−12ξ2F (1− ξ2F )ΛsΛt + 64ξ4F (1 + ξ2F )ΛsΛ
2
t − 48ξ4F (1− ξ2F )

2Λ3
t + 128ξ6FΛ

3
t

}
. (10)

Although this quantity exhibits a similarly complex de-
pendence on the Fermi energy, one can straightforwardly
identify it as a Fermi surface effect. It represents inter-
band coherence mediated by disorder through an extrin-
sic off-diagonal term in the density matrix. It is shown
in Fig. (2). Again, we note that there was reported
the counterpart of skew scattering for PT -broken sys-
tems in previous works [42, 44–46] and for the first time

reported here to zeroth order in relaxation processes in
the first Born approximation. In a recent paper [62] a
skew scattering-like contribution was calculated in PT -
symmetric systems, with a different scaling with respect
to disorder, but it requires going beyond the first Born
approximation.

All contributions exhibit similar behaviour, namely,
∝ 1/ϵ4F that dominates for increasing Fermi energy and
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∝ (1−∆2/ϵ2F ) that makes all the expressions zero when
the Fermi energy approaches the gap (a signature of
Fermi surface effect in the prefactor of all the contribu-
tions we have calculated). This non-monotonic behaviour
of the susceptibility makes the function to bent in be-
tween these two limiting cases and to develop a peak.
The sign of the peak is dictated by the dominant term
in the terms inside the curly braces in each expression.
For instances, for the side jump susceptibility, the second
and last terms scale similar to the pre-factor and make
the function to develop a negative peak. It is similar for
the skew scattering contribution. The peak develops in
the vicinity of the gap, as the bands approach each other,
revealing the effect of interband coherence. In fact, since
this behavior is shared by all intrinsic and extrinsic con-
tributions, we regard interband coherence as the unifying
physical mechanism behind the NLAHE.

To fully account the transversal susceptibility of PT -
symmetric Dirac fermions, we also solved the Boltzmann

like equation [J0(n
(−2)
E2 )]mm

k = eE
ℏ · ∇kn

(−1)mm
Ek for the

leading order susceptibility. Its behaviour is shown in

Fig. (3). It is also Fermi surface effect that vanishes when
we approach the gap and also vanishes in time reversal
symmetric systems. The peak shifts as a function of the

gap, with a similar behavior noted in [χ
(0)
ijk].

Conclusions. We have calculated the electrical sus-
ceptibility to second order in the electric field in PT -
symmetric 2D tilted Dirac fermions. We have demon-
strated the existence of intra- and inter-band disorder
effects that are counterparts of the side jump and skew
scattering terms in linear response, as well as a new Berry
curvature dipole correction, which is disorder-dependent
yet appears at zeroth order in the disorder strength. We
showed that disorder corrections generally overwhelm the
intrinsic contribution and are expected to play a vital role
in realistic samples, where disorder is unavoidable.
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