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Band gap is known as an effective parameter for tuning the Landé g-factor in semiconductors
and can be manipulated in a wide range through the bowing effect in ternary alloys. In this work,
using the recently developed virtual substrate technique, high-quality InAsSb alloys throughout the
whole Sb composition range are fabricated and a large g-factor of g ≈ −90 at the minimum band
gap of ∼ 0.1 eV, which is almost twice that in bulk InSb is found. Further analysis to the zero gap
limit reveals a possible gigantic g-factor of g ≈ −200 with a peculiar relativistic Zeeman effect that
disperses as the square root of magnetic field. Such a g-factor enhancement toward the narrow gap
limit cannot be quantitatively described by the conventional Roth formula, as the orbital interaction
effect between the nearly triply degenerated bands becomes the dominant source for the Zeeman
splitting. These results may provide new insights into realizing large g-factors and spin polarized
states in semiconductors and topological materials.

Landé g-factor is a major material parameter describ-
ing the response of electron spins to an external magnetic
field (B). In solid state physics, the long-standing inter-
est in finding large g-factor materials originates from the
peculiar spin-dependent transport and optical phenom-
ena, which hold great promises for potential applications
in spintronics [1, 2], nonreciprocal spin photonics [3], and
quantum information processing [4, 5].

In III-V semiconductors, the electron g-factor is known
to observe the renowned Roth formula [6, 7]

g = ge −
2

3
(
1

Eg
− 1

∆ + Eg
)EP ,

where ge ≈ 2, Eg, ∆, and EP are the free electron g-
factor, the band gap, the spin-orbit coupling, and the
Kane energy, respectively. The Roth formula is, in prin-
ciple, a single-band theory, which explains the g-factor
as a result of remote band perturbations [8]. A recent
study further reveals the connection between the g-factor
and the Berry curvature of the bands due to the mixing
of wavefunctions [9]. Therefore, it is natural to expect
a large g-factor in narrow band gap materials. Indeed,
among all the binary III-V semiconductors, InSb has the
smallest band gap and thus the largest g-factor, g ≈ −52
[10, 11].

To further reduce the band gap, one can resort to
ternary semiconductor InAsSb alloys, as the bowing ef-
fects can suppress the band gaps below those of their
binary constituents [12]. Recent experiments have firmly
established a strong negative bowing of the band gap
with a bowing coefficient of ∼ 0.8 eV [13, 14], leading to
a minimum band gap of 0.1 eV when the Sb composition

is close to 63%. As a result, the theoretical estimation of
the electron g-factor based on the Roth formula reaches
as high as g = −117, which is more than twice that in
InSb [15, 16]. Such a large tunable range of band gaps
and g-factors has rendered InAsSb alloy a promising plat-
form for spintronics [15–17], topological phase engineer-
ing [18–20], and infrared (IR) optoelectronics [21–23].

However, there remain concerns about the high expec-
tation value of g-factors in InAsSb alloys towards the
zero gap limit. On the one hand, the Roth formula is a
single-band theory and fails to predict the correct result
as the band gap reduces, and multiband theories such
as the k · p model are necessary. Also, the experimen-
tal studies of g-factors in the narrow or zero band gap
region, particularly for Dirac materials, do not exhibit
extraordinarily large g-factors as expected [24–26]. On
the other hand, there are technical difficulties in obtain-
ing high-quality InAsSb alloys with the Sb composition
close to 50%. Although in earlier works, InAsSb alloys
with different alloy compositions were fabricated, they
suffered from a large lattice mismatch between the alloy
and substrate, which led to the relaxation of the bulk
alloy and formation of numerous threading dislocations
deteriorating the electronic properties [27, 28]. The in-
creased disorder, particularly in the intermediate compo-
sition range, can contribute to the extrinsic composition
dependence of the key material parameters that deter-
mine the g-factor in a bulk material, such as Eg, ∆, and
EP [29] and makes the experimental characterization of
their intrinsic electronic property difficult.

Recent advances in the virtual substrate technique al-
low for the molecular beam epitaxy (MBE) growth of
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TABLE I. Composition and thickness of the core layers in the MBE-grown InAsSb samples of different Sb concentrations. The
core layer structure is shown in Fig. 1(a).

Sb (%) Grading (nm) Bottom barrier (nm) Absorber (nm) Top barrier (nm) Cap layer (nm)
9 Not N/A Al80Ga20As6.2Sb93.8 500 InAs91Sb9 1000 Al80Ga20As6.2Sb93.8 200 InAs91Sb9 100
22 Al85In15Sb 1600 Al95In4.5Sb 500 InAs78Sb22 1000 Al95In4.5Sb 200 InAs78Sb22 100
44 Al60In40Sb 3000 Al68In32Sb 500 InAs56Sb44 1000 Al68In32Sb 200 InAs56Sb44 100
50 Al39In61Sb 2630 Al63In37Sb 250 InAs50Sb50 1500 Al63In37Sb 200 InAs50Sb50 100
60 Al40In60Sb 4000 Al48In52Sb 500 InAs40Sb60 1000 Al48In52Sb 200 Al40In60Sb 100

FIG. 1. (a) Structure layout of the InAs0.37Sb0.63 sample.
The InAsSb alloy (absorber) is sandwiched between the two
Al0.48In0.52Sb barriers. (b) Schematic band alignment of the
InAs0.37Sb0.63 sample as an example. The zero energy corre-
sponds to the top of the GaSb valence band.

high-quality unstrained, unrelaxed InAsSb alloys in the
whole composition range [14, 30], providing a perfect op-
portunity for experimental studies of the material param-
eters and g-factors in the narrow band gap region. In this
work, we present a systematic investigation of the band
structure evolution with the composition in InAsSb alloys
via a combination of magneto-absorption measurements
and k · p calculations. We find that the Kane energy
shows very little bowing effect across the entire composi-
tion range, but the g-factor increases significantly as the
band gap reaches the minimum. When Eg → 0, the Lan-
dau levels (LLs) of the triply degenerated bands become
fully relativistic (i.e., LL energy ∝

√
B) due to the dom-

inant orbital interaction, and their relative wavefunction
mixing determines the spin states and energy spacing of
the LLs. For typical III-V (more generally, zinc-blende
type) semiconductor, we find that these relativistic LLs
are highly spin polarized along with maximized energy
spacings, which could lead to a g-factor of g ≈ −200 at 1
T (vs. g → −∞ based on the Roth formula), overwhelm-
ingly larger than most of the two-band Dirac materials.
Our findings may provide a new perspective for g-factor
engineering in future devices based on semiconductors
and topological materials.

Five InAs1−xSbx alloy samples are studied in this
work, with x = 0.09, 0.22, 0.44, 0.50, and 0.63. These
samples are grown by solid-source MBE on undoped
GaSb(100) substrates. The x = 0.50 sample was grown
using VEECO Gen II MBE system in Army Research
Laboratory, and the other samples were grown using

VEECO GEN930 MBE system in Stony Brook Univer-
sity. The growth process has been described previously
in Ref. [14]. The core structure and band alignment
of our InAs0.37Sb0.63 sample are schematically shown in
Fig. 1 as an example. Information on the core structures
of these samples is summarized in Table I. In addition,
samples with x = 0.09, 0.22, and 0.44 are n-doped (Te-
doped, 2×1016 cm−3), and samples with x = 0.50 and
0.63 are grown without intentional doping. To avoid the
formation of two-dimensional electron “pockets” due to
band bending at the boundaries of the InAsSb layer (ab-
sorber), the barriers and cap are p-doped to 1016 cm−3.
The three-dimensional character of the carrier motion in
InAsSb is confirmed by magneto-transport measurements
in tilted magnetic fields [14].

InAsSb alloy samples are then studied with magneto-
IR spectroscopy, which is known for its accuracy in de-
termining electronic band structures. The samples are
placed inside a superconducting magnet at liquid helium
temperature (the effective temperature at the sample is
measured to be T = 5 K). The samples are illuminated
with IR radiation in the Faraday configuration using a
Bruker 80v Fourier-transform IR spectrometer. A com-
posite Si bolometer is mounted behind the sample to de-
tect the transmitted light signal at different magnetic
fields.

Figure 2(a) shows the false color plot of the normalized
transmission T (B)/T (0T) of the InAs0.50Sb0.50 sample as
a typical example. A series of absorption modes, which
blue-shift in energy with increasing magnetic fields, can
be identified and attributed to LL transitions. The low-
lying transitions are labeled with T0–T5. These modes
originate from the same non-zero energy intercept as the
magnetic field approaches zero, indicative of the nature
of interband LL transitions. The energy intercept allows
for direct readout of the band gap Eg = 108 meV.

To quantitatively describe these LL transitions and
extract other material parameters, we employ the well-
established eight-band k ·p model to fit the experimental
results [24, 27, 31, 32]. The model consists of several
parameters, including Eg, ∆, EP , the electron effective
mass m∗, and the modified Luttinger parameters γ1, γ2,
and γ3. To simplify the Hamiltonian, we first assume
γ1,2,3 = 0. Meanwhile, we set Ac = ℏ2/2m∗ −EP (3Eg +
2∆)/6m0Eg(Eg +∆) = 0, where ℏ is the reduced Planck
constant and m0 is the free electron mass, to avoid spuri-
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FIG. 2. (a) False color plot of the normalized transmission
T (B)/T (0T) of the InAs0.50Sb0.50 alloy sample. The dashed
lines indicate the fitting results from the k · p model using
parameters given in Table II. The first few absorption modes
are labeled with Ti, i = 0, 1, ..., 5. (b) Calculated LL fan dia-
gram of InAs0.50Sb0.50 at Γ point. The blue, black, and red
colors denote the LLs from the EB, HH, and LH bands, re-
spectively. The arrows show the low-lying LL transitions, in
correspondence to those in panel (a).

ous solutions [33]. Finally, we focus on the Γ point LLs,
which carry the dominant contributions to the observed
optical transitions. With these assumptions, the k · p
Hamiltonian is greatly simplified while, as we will show
below, ensuring a good agreement between the experi-
ment and model. The simplified Hamiltonian now reads

Hk·p =

[
H+ 0
0 H−

]
, (1)

where

H+ =


Eg i

√
3V † iV

√
2V

−i
√
3V 0 0 0

−iV † 0 0 0√
2V † 0 0 −∆

 ,

H− =


Eg −

√
3V −V † i

√
2V †

−
√
3V † 0 0 0

−V 0 0 0

−i
√
2V 0 0 −∆

 .

Here, V = 1√
6
P0k−, k = (kx, ky, kz) is the wave vector,

k± = kx ± ky, and P0 is related to the Kane energy by
EP = 2m0P

2
0 /ℏ2. The bases for the Hamiltonian are in

the order of the electron band (EB) spin up, heavy hole
(HH) spin up, light hole (LH) spin down, split-off (SO)
spin down, EB spin down, HH spin down, LH spin up,
and SO spin up bands.

To calculate the LL energies, we apply the lad-
der operator formalism and the following ansatz

FIG. 3. (a-d) False color plot of the normalized transmission
T (B)/T (0T) for InAsSb samples of (a) 9%, (b) 22%, (c) 44%,
and (d) 63% Sb compositions. The dashed lines indicate the
fitting results from the k · p model using parameters given in
Table II. The gray areas are opaque region to IR light and
shows no intensity. The color scales in all panels are kept the
same.

to the two subblocks of the Hamiltonian [31,
32]. For H+ subblock, the ansatz is |n+⟩ =
[|n− 1⟩ , |n− 2⟩ , |n⟩ , |n⟩]T . For H− subblock, the ansatz
is |n−⟩ = [|n− 1⟩ , |n⟩ , |n− 2⟩ , |n− 2⟩]T . Here, [...]T de-
notes the transpose operation, n is a positive integer, and
|n⟩ is the nth harmonic oscillator eigenfunction. Further
details of the calculation can be found in Refs. [31, 32].

With the calculated LLs, we can fit the experimen-
tal data and extract the corresponding band parameters.
The dashed lines in Fig. 2(a) show the best fits to the
data, and Fig. 2(b) shows the calculated LL structure
using the fitting parameters in Table II. In Fig. 2(b), we
also label out the corresponding low-lying LL transitions
for T0–T5, where we assume the dominant contributions
to the observed transitions in Fig. 2(a) are the HH to
EB LL transitions [27].

TABLE II. Fitting parameters extracted from experiments
using the k · p model.

Sb Eg(eV) ∆(eV) EP (eV) gexp gtheory
0% 0.415 0.390 19 15.0 12.8
9% 0.315 0.323 22 20.0 21.6
22% 0.220 0.276 20 29.4 31.7
44% 0.132 0.280 19 63.2 63.2
50% 0.108 0.300 19 76.0 87.4
63% 0.100 0.375 21 91.5 108.5
100% 0.235 0.800 23.3 51.3 49.1
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Following the above analysis, we can analyze the ex-
perimental results of other InAsSb alloys with different
Sb compositions. Figure 3 shows their false color plot
of the normalized transmission data for Sb compositions
of 9%, 22%, 44%, and 63%, respectively. Similar to Fig.
2(a), the dashed lines are best fits to the data using the
k · p model, which exhibits excellent agreement with the
experiment. Table II summarizes the band parameters
extracted from the fitting for different Sb concentrations.
We note that, the actual fitting parameters are Eg and
EP , whereas ∆ does not critically affect the fitting results
as the SO band is distant from the other bands. Here,
we assume that ∆ follows the bowing relation of ternary
InAsSb alloys reported in Ref. [12].

Based on the results in Table II, we can study the bow-
ing effects of the band parameters. First, the band gap
Eg bows positively with the Sb concentration. By com-
paring the interband LL transition energies of different
compositions, we find that the energy decreases as the
Sb composition increases and Eg reaches its minimum
∼ 100 meV at 63% Sb concentration. The extracted Eg

versus Sb composition gives a bowing coefficient of 0.83,
consistent with our previous result [14].

Second, the Kane energy EP shows a weak bowing ef-
fect throughout the entire Sb composition range. This
is in contrast to an earlier work [27], where EP bows
significantly with the Sb concentration. It is likely that
the samples in Ref. [27] were grown with relaxed strain
due to a strong mismatch of the lattice parameters be-
tween the substrate and the epilayers, which degraded
the quality of the alloys, particularly near the middle of
the composition range. According to Ref. [29], this may
lead to additional coupling between the conduction and
valence bands and hence bowing of EP .

Lastly, we discuss the bowing effect in g-factors. The
g-factor for nth LL is defined as gn = minm |En,↑(↓)(B)−
Em,↓(↑)(B)|/B, where min{...} finds the nearest LL of
opposite spin. Based on this definition, the experimen-
tal g-factors (gexp) are extracted from the splitting of
the two lowest EB LLs at 1 T, calculated using the k · p
model with experimental band parameters. For compar-
ison, we also calculate the theoretical g-factors (gtheory)
from the Roth formula. In both cases, we observe a neg-
ative bowing. That is, the g-factor gradually increases
with increasing Sb composition and reaches a maximum
when the band gap reaches a minimum at 63% Sb. Then,
the g-factor decreases with increasing band gap and Sb
composition. Such behavior is expected as the mixing be-
tween the EB, HH, and LH bands enhances the g-factor,
and the mixing is strongly correlated with the size of the
band gap. Therefore, the g-factors and band gaps exhibit
opposite bowing effects. However, the bowing in gexp is
found smaller than that in gtheory. As discussed before,
this is because the Roth formula is a single-band theory
and fails to handle the orbital mixing effect as band gap
reduces [8].

Further enhancement of the g-factor is possible when
the band gap approaches zero. In this case, the EB, HH,
and LH bands are degenerated (forming a triple point),
and their interactions become the dominant effect. For
simplicity, as the SO band is still far from these bands,
we can omit the SO band presence in the following dis-
cussion. We thus arrive at the following Hamiltonian H±

H+ =

 0 itU† iU
−itU 0 0
−iU† 0 0

 , H− =

 0 −tU −U†

−tU† 0 0
−U 0 0

 .

Here, U = P0k−, and for a more general discussion, we
use t to denote the ratio of the coupling strength between
the EB and HH to that between the EB and LH. The
corresponding LL energy reads

E0
n,± = 0, n = 0, 2, 3, 4...

Eα
n,+ = αP0kB

√
n(1 + t2)− t2, n = 1, 2, 3, 4...

Eα
n,− = αP0kB

√
n(1 + t2)− 1, n = 1, 2, 3, 4....

where kB =
√
eB/ℏ, and e is the elementary charge.

Each LL has three indices. The superscript α is the band
index and takes the value of 0,+1,−1, denoting the HH,
EB, and LH bands, respectively. The first subscript n
denotes the LL index in each band, and the second sub-
script ± denotes the subblockH± to which the eigenstate
relates. Figure 4(a) shows the magnetic field dependence
of the calculated LL energies with t =

√
3 , which is

the case for III-V semiconductors. Due to the electron-
hole symmetry (i.e., E−1

n,± = −E+1
n,±), we will focus on the

α = +1 LLs in the discussion below. We will also exclude
the discussion of the spin states in the α = 0 LLs as their
Zeeman effect is negligible due to large degeneracy. In
this case, we can omit the band index for simplicity.
As the basis state for each subblock H± is not a pure

spin state, the spin up component of a LL is found to be

S↑
n,+ = 1− n/2

n(1 + t2)− t2
, S↑

n,− =
(n− 1)/2

n(1 + t2)− 1
.

Figure 4(b) shows the calculated spin up component of
the low-lying LLs as a function of t. We find that inde-
pendent of t, LL1,+ is equally spin mixed while LL1,− is
fully spin down polarized. For other LLs, they become
more spin polarized with increasing t. Hence, for t that
gives decent spin polarization, the Zeeman splitting is
now directly connected to the orbital energy levels (i.e.,
the LLs) and exhibits a peculiar relativistic

√
B mag-

netic field dependence (Fig. 4(a)), in stark contrast to
the conventional linear in B Zeeman splitting.
On the other hand, the magnitude of the Zeeman split-

ting also depends on the choice of t. Figure 4(c) shows the
t dependence of the low-lying LL energies. For t = 0, 1,
and t → +∞, the LLs of opposite dominant spin compo-
nents are degenerated, and thus zero Zeeman effect. On
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FIG. 4. (a) Landau fan diagram of a triply degenerated band
structure (i.e., zero band gap) with t =

√
3 for the case of

zinc-blende semiconductors. The energy is in units of P0k0,
where k0 =

√
e/ℏ. (b) The spin up component in low-lying

LLs as a function of t. (c) The t dependence of the low-lying
LL energies. In all panels, the red and blue colors denote the
spin up and spin down component dominant LLs, respectively.
The dark yellow color denotes the LLs with equally mixed
opposite spins. The black line denotes the highly degenerated
HH LLs.

the contrary, when a LL is equally separated from two
neighboring LLs of opposite spins, the optimized Zee-
man effect is achieved. For example, a simple calculation
using the relation E2,− − E2,+ = E2,+ − E1,− gives an
optimized t ≈ 1.7 for large Zeeman splitting in LL2,+,
which is close to t =

√
3 in III-V semiconductors. The

optimized t for other LLs is also close to this value.

It is interesting to compare the Zeeman effect in such
triple point semimetals to those of Dirac semimetals such
as graphene [26] and ZrTe5 [34]. In the two-band model
(as in Dirac semimetals), the interaction between the
two bands leads to degenerated LLs with no dominant
spin components. This is equivalent to taking t → 0
or +∞ in our model, where no Zeeman effect exists if
only considering the orbital interaction. The Zeeman
effect comes into play through the interaction with re-
mote bands [8, 24, 35], which leads to a relatively small
g-factor. However, in triple point semimetals, the addi-
tional interaction with the third band can lift the degen-
eracy of the LLs (except for the lowest two LLs). There-
fore, the Zeeman effect can reveal itself through the split-
ting of the orbital energy levels and no longer take effect
through perturbations. In this case, the g-factor can be
more easily and effectively manipulated through the in-
teractions between the three bands (EB, HH, and LH)
rather than with the remote bands. These observations

could be useful in designing high g-factor in future topo-
logical materials.

Before closing, we comment on how to enhance the Zee-
man effect in practicable materials. We find that t =

√
3

is an ideal ratio which gives rise to a decent 80% spin
polarization in n > 1 LLs as well as the ideal energy
spacing between spin polarized LLs. In fact, this ratio
is protected by the crystal symmetry and hence it can
be also applied to the zinc-blende type semiconductor
[36]. Using a typical value of EP = 20 eV, the Zee-
man splitting for LL2,+ is about 11 meV at 1 T (i.e.,
min{E2,− − E2,+, E2,+ − E1,−} ≈ 11 meV), which cor-
responds to an effective g-factor of g ≈ −200. Our find-
ing is consistent with that reported on triple point (zinc-
blende) HgCdTe [37]. Therefore, zinc-blende type semi-
conductors with zero energy gap are ideal candidates for
realizing large Zeeman effects.
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momentum quenching in semiconductor quantum dots,
Phys. Rev. Lett. 96, 026804 (2006).

[8] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group
theory: application to the physics of condensed matter
(Springer Science & Business Media, 2007).

[9] M.-C. Chang and Q. Niu, Berry curvature, orbital mo-
ment, and effective quantum theory of electrons in elec-
tromagnetic fields, Journal of Physics: Condensed Matter
20, 193202 (2008).

[10] J.-M. Jancu, R. Scholz, E. A. de Andrada e Silva, and
G. C. La Rocca, Atomistic spin-orbit coupling and k.p
parameters in iii-v semiconductors, Phys. Rev. B 72,
193201 (2005).

[11] R. Isaacson, Electron spin resonance in n-type insb, Phys-
ical Review 169, 312 (1968).

[12] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan,
Band parameters for iii–v compound semiconductors and
their alloys, Journal of Applied Physics 89, 5815 (2001).

[13] S. P. Svensson, W. L. Sarney, H. Hier, Y. Lin, D. Wang,
D. Donetsky, L. Shterengas, G. Kipshidze, and G. Be-
lenky, Band gap of inas1−xsbx with native lattice con-
stant, Phys. Rev. B 86, 245205 (2012).

[14] S. Suchalkin, J. Ludwig, G. Belenky, B. Laikhtman,
G. Kipshidze, Y. Lin, L. Shterengas, D. Smirnov,
S. Luryi, W. L. Sarney, and S. P. Svensson, Electronic
properties of unstrained unrelaxed narrow gap inasxsb1−x

alloys, Journal of Physics D: Applied Physics 49, 105101
(2016).

[15] W. Mayer, W. F. Schiela, J. Yuan, M. Hatefipour, W. L.
Sarney, S. P. Svensson, A. C. Leff, T. Campos, K. S.
Wickramasinghe, M. C. Dartiailh, I. Žutić, and J. Sha-
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