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Quasi-one-dimensional systems, having tendencies toward density-wave order in competition with super-
conductive pairing in their ground states, may give rise to unconventional superconductivity, a central theme
in condensed matter physics. Partial density-wave gapping of electronic bands at the Fermi surface in such
systems can yield superconductivity at very low carrier density that challenges Bardeen-Cooper-Schrieffer
(BCS) theory since the pairing energy scale may approach or exceed the Fermi energy and render screening
of the Coulomb interaction ineffective. Here we present low-T magnetotransport measurements on the
quasi-one-dimensional conductor Li0.9Mo6O17 showing the metallic state from which superconductivity
emerges (Tc ≃ 2 K) to possess among the lowest known carrier densities, ∼ 1017 cm−3, and a ratio of Tc to
Fermi temperature within the BCS-Bose Einstein condensatation (BEC) crossover regime. A semimetallic
state caused by a density-wave-induced Fermi surface reconstruction with highly anisotropic electron and
hole pockets is implied. The degree of interpocket nesting appears to determine whether the extreme
low-density ground state is superconducting or undergoes additional Fermi surface gapping.

Electron pairing in the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity, arising from weak attractive
interactions in a degenerate fermionic system, results in
a superconducting transition temperature that is typically
orders of magnitude smaller than the Fermi temperature,
Tc/TF ∼ 10−4. In the opposite limit of a Bose-Einstein
condensate (BEC), strongly-coupled fermions (composite
bosons) condense into a coherent quantum state and typi-
cally Tc/TF ≳ 0.1 [1]. A small number of materials having
Tc/TF ∼ 0.04− 0.1 within the BCS-BEC crossover regime
include high-Tc cuprates, heavy-fermion and Fe-based com-
pounds, superconductors believed to involve spin-mediated
pairing [2–4].

Quasi-one-dimensional (q1D) electron systems may har-
bor unconventional superconductivity within the BCS-BEC
crossover regime when partial density-wave gapping of elec-
tronic bands at the Fermi surface, induced by competing
density wave order, yields a metallic state with very small
Fermi energy. Li0.9Mo6O17 (lithium purple bronze, LiPB)
is a transition metal oxide with q1D electronic properties.
Its resistivity is metallic at high T , exhibits a minimum at
15 K ≲ Tmin ≲ 30 K and rises below Tmin to the supercon-
ducting transition at Tc ≃ 2 K [5–7]. The metallic phase at
T ≥ Tmin exhibits features [8, 9] of a Tomonaga-Luttinger
liquid (TLL) [10] with spin-charge separation [11–13]. The
mechanisms for the upturn in the resistivity at T < Tmin and
superconductivity remain a mystery in spite of substantial
experimental efforts over decades. The superconducting
state is three dimensional with highly anisotropic upper-
critical fields (Hc2) consistent with its normal-state electrical
anisotropy [7]. For field applied along the q1D chains, Hc2
substantially exceeds the Pauli paramagnetic limit, motivat-
ing the proposal [7] that LiPB is a triplet superconductor
[14–18].

The LiPB band structure, studied extensively via photoe-
mission [19] and computation [11, 19–22], consistently re-
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veals two q1D, nearly degenerate electron bands crossing
the Fermi energy, derived from dx y orbital overlap along
the zig-zag Mo-O chains (crystallographic b axis). Super-
conductivity requires a dimensionality increase for which
the resistivity minimum is presumed to be the signature.
Potential explanations include charge- or spin-density wave
(CDW or SDW) formation, a structural change [23, 24], and
a recent proposal involving the ordering of long-lived exci-
tons [25, 26]. Experiments rule out CDW [23, 27, 28] and
SDW [29] order (though the latter less convincingly), and
good agreement between the local-density approximation
band structure and photoemission [19] for the bands near
EF is compelling evidence against the occurrence of a TLL
fluctuation-induced suppression of dimensional crossover
[30].

Here we report comprehensive magnetotransport mea-
surements within the most conducting bc-plane (field along
a) at T ≳ 0.4 K for both superconducting (SC) and non-
superconducting (non-SC) LiPB crystals, revealing extremely
low carrier densities (n∼ 1017 cm−3) throughout the range
T ≤ 100 K and a rich multi-carrier physics. The mobile
carrier densities are among the lowest known for any super-
conductor [31, 32], placing superconductivity of LiPB in a
regime at the border between BCS and BEC. A density-wave-
induced semimetallic reconstruction of the Fermi surface
comprised of highly anisotropic electron and hole pockets
is implicated at T ≫ Tmin for both sets of samples. Com-
petition for the ground state appears to be controlled by
the degree of interpocket nesting, leading to further den-
sity wave gapping (non-SC samples) or superconductivity.
This nesting is manifested in the strong scattering and lo-
calization of in-chain hole and interchain electron states on
the reconstructed FS at T ≳ Tmin. A sharp suppression of
this scattering in SC samples at T ≲ Tmin signals delocaliza-
tion of these states and emergence of quasi-two-dimensional
transport within each of the pockets as a precursor to super-
conductive pairing.

Figure 1 (a)-(d) show the field-dependent Hall and longi-
tudinal resistivities for two orientations of the electric current
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Fig. 1. (a)-(d) Hall and longitudinal resistivities for two orientations of the current flow (J) in superconducting crystals. Dashed lines in
(a) and (c) are the initial slopes, RH0 ≡ dρx y/dB|B→0, at low T . (e) RH0 vs. T for all crystals (SC–filled symbols, non-SC–open symbols).
The inset compares data from the main panel to that at higher T for crystals from Refs. 35 and 36 with current ∥b (filled squares and
inverted triangles) and ∥c (open squares). (f) longitudinal magnetoresistance at B = 5 T vs. T for all crystals. The inset shows ρb(T)
(squares, left ordinate) and ρc(T ) (circles, right ordinate) at B = 0, 5 T. Solid and dashed curves are guides.

flow (J∥b and J∥c) in SC crystals at various T . Similar data
for the non-SC crystals are presented in the Supplementary
Material [33] (Fig. S1). Superconducting transitions are
evident at low fields for temperatures T < Tc [see also inset,
Fig. 1 (e)]; the inferred upper critical fields and range of val-
ues for Tmin [∼ 18 K (30 K) for the SC (non-SC) specimens]
agree with those of prior studies [5–7] (Fig. S2 [33]).

Substantial nonlinearities of the Hall resistivities with
field (especially at the lowest T) suggest the presence of
charge carriers with opposing signs. The initial slopes,
RH0 ≡ dρx y/dB|B→0 [Fig. 1 (e)] yield T → 0 values
RH0 ≃ 10−6 (10−5) Ω m/T for SC (non-SC) samples, corre-
sponding to approximate carrier densities, n= 1/(RH0e)≃
6 × 1018 (6 × 1017) cm−3. But the data are more aptly
described by an anisotropic, two-carrier model, for which
RH0 = (nhµ

2
h − neµ

2
e )e/[σb(0)σc(0)] [σb(0) and σc(0) are

the zero-field conductivities] as discussed further below.
The thermoelectric coefficients tell a similar story of ex-

tremely low carrier density. The field dependencies of the
Nernst signal, Ny x = Ey/|∇Tx | and thermopower, Sx =
Ex/∇Tx (x , y = b, c) for the SC crystals are shown in
Fig. 2 (a)-(d). Note the different vertical scales (mV versus
µV) for Ncb (heat current Jq∥b) and Nbc (Jq∥c): extreme
anisotropy, Ncb ≃ 300Nbc , is observed. Sharp maxima in
the low-field Nernst signals for T < Tc (especially for Ncb)
near the midpoints of the SC transitions are attributed to
a flux-flow Nernst effect [34]. Very similar results for Ncb
were found for a second SC crystal (Fig. S3 [33]). Possible
contaminating signals associated with the Righi-Leduc (ther-
mal Hall) effect are negligible for both orientations (Fig. S4

[33]). In comparison to the Nernst signal, the thermopower
is more isotropic, with a stronger field dependence evident
for Sc . Though the in-chain thermopower (Sb) is positive,
it is decidedly electron-like at T ≳ 30 K – linear-in-T with
negative slope, resulting in negative values at T ≳ 300 K
[35–37].

Like the Hall resistivity, significant nonlinearity of the
Nernst signals (particularly at low T) suggest competing
electron and hole contributions. For comparison to the es-
timates from RH0, we compute carrier densities from the
B = 5 T, T → 0 limiting values for ν/T (ν = N/B) and
S/T indicated by the dashed lines in Fig. 2 (e) and (f). For
a broad spectrum of correlated and low-dimensional met-
als it has been shown [38] that these quantities scale well
with carrier mobility (µ) and Fermi temperature (TF ) as
prescribed by the free-electron, Boltzmann theory expres-
sions for carrier diffusion, ν/T = (π2/3)(kB/e)(µ/TF ) and
S/T = (π2/3)(kB/e)(1/TF ). Using µ = 0.2 T−1 (determined
from analysis below) and averaging values for the two exper-
imental orientations, ν/T ≃ 15 µV/TK2 (S/T ≃ 12 µV/K2),
we find TF ≃ 19 K (23 K). The free-electron relation, EF =
kB TF = (ħh

2/2m)(3π2n)2/3 thus implies n≈ 3.5×1017 cm−3.
To refine understanding of the magnetotransport, con-

sider a two-carrier model for the bc-plane, with holes and
electrons (densities nh and ne, respectively) for each direc-
tion having different mobilities, µi b, µic , (i = h, e) [39].
The model has four carrier densities (holes and electrons
for each direction), but is simplified because for each pair
of crystals (two orientations each, SC and non-SC), we
observe ρcb ≃ ρbc [Fig. 1 (a), (c), (e) and Fig. S1 [33]].
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Fig. 2. (a)-(d) Nernst signal and thermopower for two orientations of the heat current (Jq) in superconducting crystals. Solid curves are
guides. (e) T dependence of ν/T and (f) S/T . The vertical arrow in (e) marks a “kink” in ν/T near T ≃ 3 K (see text and Supplementary
Information). Squares in (f) are from a second superconducting b-axis specimen.

This isotropy of the transverse magnetoresistivities contrasts
with the anisotropy of the longitudinal magnetoresistivities,
∆ρ(B)/ρ(0) [Fig. 1 (f)]. In such a case, the model dictates
isotropy of hole and electron densities [39]. Switching to the
equivalent and simpler conductivity expressions, the field
dependencies of the coefficients are then given by,

σb = σhbb +σebb =
nheµhb
�

1+µ2
hB2
� +

neeµeb
�

1+µ2
e B2
�

σc = σhcc +σecc =
nheµhc
�

1+µ2
hB2
� +

neeµec
�

1+µ2
e B2
�

σbc = σcb = σhbc +σebc =
nheµ2

hB
�

1+µ2
hB2
� −

neeµ
2
e B
�

1+µ2
e B2
� ,

where µh =
p
µhbµhc and µe =

p
µebµec are effective mo-

bilities governing the field dependencies. Examples of the
simultaneous fitting to these equations at various tempera-
tures and the computed partial conductivities are presented
in Figs. S5-S7 [33]. The fitted values of the carrier densities
and mobilities as functions of T are shown in Fig. 3. The anal-
ysis was extended to higher T for SC crystals using data from
prior work [35, 36] in the range 25K ≤ T ≤ 100 K [open
and filled squares in Fig. 1 (e), inset, and Fig. 1 (f)], where
the magnetoresistance and Hall resistivity are quadratic and
linear, respectively, in applied fields B ≤ 5 T, consistent with
prior studies [6, 7, 40, 41]. The same model parameters
were employed to fit the field-dependent thermoelectric co-
efficients (Eqs. S1-S3, Figs. S8, S9 [33]) to extract partial
coefficients for holes and electrons. The “kink” in the ν/T
curve [arrow in Fig. 2 (e)] is found to arise from competi-

tion between Nernst terms (carrier diffusion and the product
of Hall conductivity and thermopower) with opposite sign
(Eq. S2 and Fig. S9 [33]).

A central outcome of the analysis is that, consistent with
the measured RH0(T) for multiple specimens and orienta-
tions [inset, Fig. 1 (e)], the carrier densities for both SC and
non-SC crystals [Fig. 3 (a)] are comparable at T ≳ 10 K,
with ne ∼ 3.5nh ≃ 1017 cm−3 in the former. Thus LiPB is
partially compensated, with extremely low carrier densi-
ties throughout the entire T range. This result is not in
conflict with established TLL physics at higher T for LiPB
since TLL characteristics are independent of carrier density
[42]. The single-band expression n = 1/RH0e at 100 K yields
n∼ 3× 1021cm−3, a substantial overestimate of the actual
value, and coincidentally comparable to, though opposite
in sign, that expected from the band structure and chem-
ical valence, 1.9 e/unit cell [13, 35]. The rise in RH0 by
more than two orders of magnitude from T ∼ 100 K to 10 K
[35, 40, 41, 43] is almost entirely attributable to an increase
in the effective carrier mobilities [dashed curves, Fig. 3 (b)]
[44].

The small density (or TF ) is incompatible with the large
Fermi wavenumber kF ≃ π/(2b) determined by photoemis-
sion and density functional theory, but is entirely consistent,
as is compensation, with LiPB’s giant Nernst coefficient over
a broad range of T (∼ 45µV/K2T at 100 K) [36]. A recon-
struction of the FS (at T > 100 K) into small electron and
hole pockets with highly anisotropic q1D character is implied.
The prospect of spin-density wave gapping of the FS for com-
mensurate nesting vector qSDW = 2kF along kb was consid-
ered in Ref. 19. The nesting is imperfect due to small warp-
ing of the two dx y FS sheets, associated with interchain (kc)

– 3 –



T (K)

0 25 50 75 100

1
0

3
 ×

 µ
e
c
 (

T
-1

)

0.0

0.2

0.4

0.6

0.8

1.0

1
0
 ×

 µ
h
b  (T

-1)

0.0

0.1

0.2

0.3

0.4

0.5

µ
e
b
 (

T
-1

)

6

8

10

12

14

16

T
min

µ
h
c  (T

-1)

0.6

0.8

1.0

1.2

1.4

1.6

k
b
b/2π

0.22 0.24 0.26 0.28

k
c
c
/2

π

0.00

0.25

0.50

0.75

1.00

T (K)
1 10 100

n
 (

c
m

-3
)

1014

1015

1016

1017

Non-SC

SC

n
h

n
e

n
h

n
e

T
min

1/T (K
-1

)
0.0 0.5 1.0 1.5 2.0 2.5

n
 (

c
m

-3
)

1014

1015

1016

1017

n=n
0
exp(-ε/k

B
T)

ε/k
B ≈ 8.3 K

n
0
≈10

17
cm

-3

Non-SC

(a)

-20

-10

0

10

20

30

0.22
0.24

0.26
0.28

0.30

0.00
0.25

0.50
0.75

1.00

E
-E

F
 (

m
e
V

)

kb
b/2πk

cc/2π

(d) (e) (f)

T (K)
1 10 100

µ
 (

T
-1

)

10-5

10-4

10-3

10-2

10-1

100

101

102

µ
hc

µ
ec

µ
eb

µ
hb

µ
h

µ
e

T
min

T (K)
1 10

µ
 (

T
-1

)

10-5

10-4

10-3

10-2

10-1

100

101

102

µ
hc

µ
ec

µ
eb

µ
hb

Non-SC

µ
h

µ
e

(b) (c)

SC

SC
∆��

�

Fig. 3. Carrier densities (a) and mobilities for (b) SC and (c) non-SC specimens determined by simultaneous fitting to the anisotropic
two-band model (see text and Supplementary Information). Different symbols represent the two crystals for which J∥b and J∥c. Solid and
dashed curves are guides. (d) Energy band scheme and Fermi plane (adapted from Ref. 19) assuming a SDW gap-induced reconstruction
to a semimetal with EF = 1.5 meV for both hole and electron bands (see text). Shown in the E = EF plane of (d) and in (e) is the
incomplete nesting of the unreconstructed FS (solid curves: upper sheet – red, lower sheet – blue) and their translations by the nesting
vector qSDW = 2kF ≃ π/b along kb (dashed curves), defining hole (red) and electron (blue) pockets between their respective boundaries.
Note the greatly expanded scale for the kb axis in both (d) and (e). The inset in (e) shows a magnified view of potential nesting for the
electron and hole pockets (hatched regions in main panel) – the best nesting is shown by the dashed hole pockets translated along kc by
q = ±(π/2c ±δ), with δ ∼ 0.1(π/2c). The shaded region for the lower translation represents the approximate phase space at T ≈ Tmin
for its nesting instability, the width of which normal to the FS is ∼ kB T and at T = 0 is confined to the hot spots (small open circles). (f)
mobilities for SC samples with linear scaling (curves are guides).

dispersions, and caused by hybridization with the gapped xz
and yz valence and conduction bands via long-range indi-
rect hopping. Gapping throughout the Brillouin zone occurs
for ∆SDW ≈ 65 meV, though the interaction strength was
estimated to be 2-3 times too small for such an instability
[19]. Assuming a slightly smaller value for ∆SDW , Fig. 3 (d)
depicts a semimetallic reconstruction of the bands [45] and
FS using the gapped (unreconstructed) kb (kc) dispersions
from Ref. 19 (Fig. S10 [33]). Consistent with estimates
above from the thermoelectric coefficients, a small over-
lap was assumed with electron and hole Fermi energies the
same, EF,e = EF,h = 1.5 meV. The occupied FS areas for elec-
trons and holes within this picture are each ∼ 3× 10−4ABZ
(ABZ = (2π)2/bc is the unreconstructed Brillouin zone area),
consistent with the observed carrier densities [Fig. 3 (e)].
Note the greatly expanded scale for the kb axes in Fig. 3 (d)
and (e) – the reconstructed pockets are highly anisotropic
with a width along kb of only ∼ 0.01(π/b). Within mean-

field theory, the SDW transition temperature would be esti-
mated as TSDW ≃ 2∆SDW/(3.5kB) ≈ 420 K, though incom-
plete nesting [46] can suppress TSDW . Alternatively, it is
possible that rather than gapping large portions of the FS,
strong scattering associated with density-wave fluctuations
localizes states in extended, nearly-nested regions of the FS
sheets so that the photoemission and transport observations
could be reconciled.

The overlapping electron and hole bands of the semimetal-
lic FS reconstruction have very similar parabolic b-axis dis-
persions (Fig. S10 [33]) and thus comparable values for µeb
and µhb are anticipated. Indeed, for SC crystals at the lowest
T (∼ 0.4 K) this condition holds true [Fig. 3 (b)]. Given that
the unreconstructed band structure does not provide for in-
chain hole conduction, this observation, along with the low
density, provide compelling support for a semimetallic recon-
struction like that depicted in Fig. 3 (d) and (e). However,
this low-T electronic structure evolves gradually with the
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turning on of strong T dependent mobilities at T ≲ Tmin, as
more clearly seen on the linear scaling of Fig. 3 (f): µhb and
µec (in-chain holes and interchain electrons, lower panel)
increase sharply below Tmin, while µeb and µhc (in-chain elec-
trons and interchain holes, upper panel) decrease sharply.
This opposing scattering behavior for the two groups of
carriers is also reflected in opposing signs for their partial
Seebeck coefficients (Fig. S8 [33]), as dictated by the scatter-
ing term in the Mott expression for diffusion thermopower,
S ∼ d lnσ(E)/dE|EF

∼ d lnµ(E)/dE|EF
.

The values for µhb and µec at T ≳ 10 − 20 K imply in-
coherence, with mean-free paths comparable to or smaller
than the interatomic spacing (Fig. S11 [33]) and two or-
ders of magnitude smaller than those for in-chain electrons
and interchain holes. Such highly anisotropic scattering on
the FS pockets is likely associated with density-wave fluc-
tuations and interpocket nesting for wave vectors along kc
[inset, Fig. 3 (e)]. The substantial increase in the SC mobile
carrier densities from Tmin to T ≲ 1 K (where they become
constant), suggests that portions of the FS harbor large den-
sities of localized states for in-chain holes and interchain
electrons, the delocalization of which occurs gradually with
decreasing T . This behavior may arise because the phase
space for nesting [shaded region for the dashed hole FS,
inset Fig. 3 (e)] declines with the thermal energy and at
T = 0 is confined to hot spots at the intersections of the
pockets (small open circles).

Supporting this picture, the in-chain hole and interchain
electron states with greatest velocities lie within the shaded
(nested) portions of their FSs [inset, Fig. 3 (e)], while the
most dispersive in-chain electron and interchain hole states
remain unaffected or only partially so. Thus the decrease
of the latter mobilities at T < Tmin is a consequence of FS
averaging and an increased weighting, with decreasing T ,
of delocalized portions of the FS having lower-mobilities.
Then kB Tmin should correspond to the maximum energy
mismatch of pseudo-nesting, expressed approximately as
(∂ E/∂ kb)∆kb = ħhvF,b∆kb, where vF,b is the in-chain Fermi
velocity and ∆kb is depicted in the inset of Fig. 3 (e). We
find ħhvF,b∆kb ≃ 0.9 meV [vF,b = 1.8 × 105 m/s (Table S1
[33]), EF,e = EF,h = 1.5 meV as in Fig. 3 (e)] and ≃ 1.8 meV
(vF,b = 2.3× 105 m/s, EF,e = 2.0 meV, EF,h = 2.5 meV), in
reasonable accord with kB Tmin (1.5 meV).

A competition between further density-wave gapping of
the FS and the occurrence of superconductivity will undoubt-
edly be sensitive to the Fermi energies of the electron and
hole pockets which presumably differ in SC and non-SC
crystals. Indeed further density-wave gapping for most of
the FS is implicated in non-SC specimens by the exponen-
tial decline in carrier densities at T ≲ 10 K [Fig. 3 (a) and
inset], with n = n0 exp(−ϵ/kB T) at T ≳ 2 K and averaged
values ϵ/kB ≃ 8.3 K (0.7 meV), n0 ≃ 1017 cm−3. In spite
of this carrier freeze-out, a residual density of carriers sur-
vives (≃ 1− 3× 1014 cm−3) and the in-chain conductivity

extrapolates to a finite value as T → 0 (Fig. S12 [33]) –
metallicity is maintained by a concomitant increase in the
electron mobility µeb [Fig. 3 (c)]. The high values for µeb are
a consequence of a small band effective mass for the recon-
structed kb dispersions (∼ 0.016me, Table S1 [33]) and the
fact that defects in LiPB (e.g., Li vacancies or O interstitials
[35]) are far from the q1D chains confining electrons and
expected to interact with weak Coulomb character [22]. Fur-
ther confirming this extreme low-density metallic state is the
thermopower, with limT→0 Sb/T ≃ 150µV/K [top dashed
line, Fig. 2 (f)]. This value is among the largest reported
for any metal [47], exceeding those for strongly-correlated
compounds known to have substantial fractions of their FSs
gapped by novel ordering [48, 49]. The non-SC interchain
conductivity extrapolates to zero at finite T (Supplementary
Fig. S12) – this absence of metallicity is consistent with ex-
pectations that superconductivity is not possible in lower
than two dimensions.

Comparing the non-SC mobilities with those of SC samples
at the lowest T , it is notable that the values of both µeb and
µhc for the former exceed those of the latter by more than
an order of magnitude while the opposite is true for µhb and
µec . This is consistent with better interpocket nesting for the
non-SC samples and a full gapping of these portions of the
FS. The absence of this gapping in SC specimens evidently
sets the stage for superconductive pairing. Tmin effectively
behaves as a dimensional crossover scale, below which the
q1D electron and hole transport along mutually perpendicu-
lar directions gradually evolves to the quasi-two-dimensional
character of the low-T semimetal characterized by mobile
states extending in both crystallographic directions on each
FS pocket.

LiPB’s low carrier density is comparable to those of SrTiO3
(Tc ≃ 0.86 K at n = 5.5 × 1017cm−3) [31] and pure Bi
(Tc = 0.53 mK at n = 3 × 1017cm−3) [32], and thus its
much higher Tc is remarkable. The interelectron distance
at Tc , dee ≃ 1/n1/3 ≈ 22 nm, is comparable to the relevant
superconducting coherence lengths [7], ξb = 30 nm and
ξc = 10 nm, i.e. Cooper pairs do not substantially overlap.
This and the ratio of critical temperature to effective Fermi
temperature, Tc/TF ≳ 0.1, place LiPB’s parameters near the
border between BCS superconductivity and BEC [50, 51].
The characteristics of LiPB revealed in the present work have
similarities to those of Fe-based superconductors [4], and
elevate the prospect that unconventional physics is at play,
e.g. spin-fluctuation-induced interpocket pairing or pairing
without phase coherence at T > Tc [52]. Regarding the
latter, the coexistence of pairs with single-particle excita-
tions is evidenced in LiPB [53] for specimens with partial
superconducting transitions intermediate between the SC
and non-SC crystals reported here.
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ments from J. W. Allen and O. K. Andersen.
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