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Classification and understanding of quantum phase transitions and critical phenomena in itinerant
electron systems are outstanding questions in quantum materials research. Recent experiments
on heavy fermion systems with higher-rank multipolar local moments provide a new platform to
study such questions. In particular, experiments on Ce3Pd20(Si,Ge)6 show novel quantum critical
behaviors via two consecutive magnetic field-driven quantum phase transitions. At each transition,
the derivative of the Hall resistivity jumps discontinuously, which was attributed to sequential Fermi
surface reconstructions. Motivated by this discovery, we consider an effective quantum impurity
model of itinerant electrons coupled to local dipolar, quadrupolar, and octupolar moments arising
from Ce3+ ions. Using renormalization group analyses, we demonstrate that two-stage multipolar
ordering and Fermi surface reconstruction arise depending on which multipolar moments participate
in the Fermi surface and which other moments are decoupled via Kondo destruction.

Introduction. Experimental work on rare-earth
metallic systems has shown a wide variety of quantum
phases of matter and novel quantum phase transitions
(QPTs). In some systems, f -electrons give rise to
multipolar moments, and these moments couple to
itinerant conduction electrons; this situation is described
by a multipolar Kondo lattice model. Since we have a
large number of degrees of freedom and constraining
crystal field symmetries, Kondo couplings become highly
anisotropic in contrast to the conventional dipolar Kondo
lattice model. Hence we can expect to find more diverse
novel quantum phenomena such as the emergence of the
new types of Kondo phases, RKKY mediated multipolar
ordered phases [1, 2], and novel quantum criticality from
the competition between them [3–14]. Many of these
phenomena are not yet well understood, and researchers
face ongoing challenges to theoretically describe and
experimentally detect these multipolar quantum phases
[15–32].

One class of metallic systems which contains multi-
polar moments is Ce3Pd20(Si, Ge)6. Here, the magneti-
cally active Ce3+ ions (4f1 configuration) are surrounded
by a tetrahedral crystal field which constrains the Ce3+

ground state to be a fourfold degenerate quartet [33–
35]. The four states consist of two degenerate Kramers
doublets, and support a large number of the multipolar
moments (see Table I) [36].

Experimental studies on Ce3Pd20Si6 in particular show
novel quantum critical behaviors corresponding to two
consecutive field-induced QPTs [34, 37–41]. At zero mag-
netic field, the system exhibits coexisting antiferromag-
netic and antiferroquadrupolar order, and by increasing
the external magnetic field along [0 0 1], the antiferromag-
netic order disappears but the antiferroquadrupolar order
remains. Upon increasing the field further, the system
arrives at another phase that has not been clearly identi-
fied yet. Interestingly, the experiment observed that the
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FIG. 1. A schematic diagram for QPT with two-stage Kondo
destruction. F , P , and B stand for the fermionic Kondo,
partially Kondo destroyed, and magnetically ordered phases,
respectively. The second row stands for which degrees of free-
dom participate in the formation of the Fermi surface. c, D,
Q, and O mean conduction electrons, dipolar, quadrupolar
and octupolar moments, respectively. The circles in the third
row show the schematic size difference of the Fermi surface
between each phase depending on how many degrees of free-
dom participated in the formation of the Fermi surface. The
last row means the multipolar ordering at each phase.

derivative of the Hall resistivity with respect to magnetic
field, when extrapolated to zero temperature, jumps at
both phase transitions. These jumps indicate sequential
Fermi surface reconstruction [42–49].

In this work, we study a theoretical model for the exis-
tence of such a two-stage QPT and extract the types
of magnetic order in the context of experiments on
Ce3Pd20Si6, as well as suggest experimental signatures of
the quantum critical points. For simplicity, we construct
a multipolar Bose-Fermi Kondo model of 15 multipolar
moments of the Ce3+ quartet coupled to both p-wave
conduction electrons and a dynamical bosonic bath rep-
resenting RKKY interactions [50–55]. Despite now being
a local approximation of the Kondo lattice in the form
of an impurity model in the spirit of dynamical mean
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field theory, the fact that the impurity is coupled to a
bosonic bath via Bose-Kondo couplings means that mag-
netic fluctuations due to other sites are included in addi-
tion to the usual Fermi-Kondo effect with the fermionic
(conduction electrons) bath. This model therefore fa-
cilitates a study of the competition between the Kondo
effect and magnetic ordering. We use the renormaliza-
tion group approach to determine the permissible types of
magnetic order and Kondo destruction pathways purely
on the basis of local symmetry. Specifically, we exam-
ine which local moments participate in the Fermi surface
and which local moments are ordered and decouple from
the conduction electrons in each part of the zero tem-
perature phase diagram. We then discuss experimental
consequences of our findings.

Models. As mentioned in the introduction, our effec-
tive model for this system consists of a single local multi-
polar moment coupled to conduction electrons and a dy-
namical bosonic bath representing RKKY magnetic fluc-
tuations. To construct the model, we consider the local
symmetry at the Ce3+ ion site in Ce3Pd20(Si, Ge)6. For
this family of materials, there are two crystallographi-
cally distinct sites for Ce ions: the 4a and 8c sites [40, 56].
The magnetically active Ce ions occupy the 8c sites and
are surrounded by a Pd16 cage, which has tetrahedral Td
symmetry. We construct the Bose-Fermi Kondo model
for the system to include all symmetry-allowed interac-
tions. To find such symmetry-allowed interactions, we
list the transformations of constituent elements in the
model under the tetrahedral group Td and time-reversal
in Supplementary Materials [57].

The degenerate ground states of an ion in a vacuum can
be described by an effective higher-spin system through
Hund’s rules. For the case of a Ce3+ ion, it has a 4f1

configuration and resulting J = 5/2 moment. In the pres-
ence of the Td CEF, the 6 degenerate states split and a Γ8

quartet ground state is formed. The states of this quartet
are listed in Supplementary Materials [57]. Since there
are 4 degenerate ground states, numerous multipolar mo-
ments can be formed; in particular we have 3 dipolar, 5
quadrupolar, and 7 octupolar moments [36], which are
tabulated in Table I. In the table they are classified by
time-reversal and by irreps of Td. The details of how the
multipolar operators are constructed from the quartet
states, as well as how to represent the multipolar opera-
tors by Abrikosov pseudofermions (which is required for
the renormalization group analysis), are in the Supple-
mental Material [57].

We now turn to the Fermi-Kondo model, where we
couple the local moments to conduction electrons. The
conduction electron wave functions are considered to be
molecular orbitals centred on the Ce ion and constructed
from electrons hopping on the Pd16 cage. The resulting
wave functions are classifiable according to irreducible
representations of Td. We construct a model of 3 degen-
erate bands of conduction electrons, made up of Wannier
functions which lie in the T2 irrep. of Td. We may use p-
wave {x, y, z} orbitals, or d-wave T2 {yz, zx, xy} orbitals;

Irrep. Stevens In terms of Jx, Jy, Jz Moment
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TABLE I. Multipolar Moments, Jx, Jy, Jz are J = 5/2 oper-
ators. The overline notation means full symmetrization. For
example AB = AB + BA, A2B = A2B + ABA + BA2, and
ABC = ABC+ACB+BAC+BCA+CAB+CBA. The ir-
rep. column denotes irreducible representations of Td, and the
Stevens column contains Stevens operators. The + subscripts
on the T2 moments denote the time reversal even/odd nature
of the moments for quadrupole/octupoles. We do not include
a + label if there is no ambiguity. In the moment column,
we indicate if the moment is dipolar (D), quadrupolar (Q), or
octupolar (O).

the results are identical with either choice and we use p-
wave in this work. We assume a constant density of states
for the conduction electrons, and couple them to the lo-
cal moment in the maximal way allowed by symmetry;
this leads to 15 coupling constants [57] (this is unrelated
to the fact that there are 15 multipolar moments).
Lastly, we construct the Bose-Kondo part of the model,

where the local moments are coupled to the fluctuating
bosonic bath. In the case of a lattice of multipolar mo-
ments, the spin bilinear RKKY interaction is induced by
the conduction electrons. As mentioned before, we cap-
ture such an interaction in the Bose-Fermi Kondo model
by replacing it with a bosonic bath, which can be thought
of as a dynamical Weiss mean field. The Bose-Kondo
couplings are determined by the number of independent
irreps., so we have 6 bosonic couplings because 2 of the 4
irreps are counted twice, namely T1 and T2 (see Table I).
The details of deriving the symmetry-allowed bosonic
couplings for the model are given in Supplementary Ma-
terials [57]. The Hamiltonian for the kinetic part of the

bosonic bath is shown as HB
0 =

∑
i,k Ωkϕ

i†
k ϕ

i
k, where we
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assume that all flavors are degenerate for simplicity. The
index i = 1, . . . , 15 runs over all bosonic baths, and Ωk

is the dispersion of the bosonic fields. In order to per-
form the RG analysis, we set up an ϵ expansion, where ϵ
controls the sub-linearity of the spectral function of the
bosonic bath:∑

k

[δ(ω − Ωk)− δ(ω +Ωk)] =
N2

1

2
|ω|1−ϵsgn(ω). (1)

Because we assumed that all flavors of the bosonic bath
were degenerate, they also all have the same ϵ controlling
their densities of states.

As a result, by adding the Fermi-Kondo and Bose-
Kondo interactions, we construct the full Bose-Fermi
Kondo model, which yields a model with a grand total
of 15 + 6 = 21 coupling constants, and we compute the
full beta functions [57, 58].

Fixed points of the Bose-Fermi Kondo model and Two-
Stage Kondo Destruction QPT. From the beta func-
tions we calculate, we can find a number of stable fixed
points, but not all are physically important. In the fol-
lowing, we will discuss three stable fixed points, F , B,
P , and two critical points, CFP and CPB , between them,
and how they are connected by the two-stage Kondo de-
struction QPT.

The first type of stable fixed point is a Fermi-Kondo
fixed point, whose representative is F . This type of phase
has local moments hybridized into the Fermi surface and
hence has the largest Fermi surface. It is paramagnetic,
may be Fermi or non-Fermi liquid [59–63], and can be
found within the Fermi-Kondo models. These points
have nonzero Fermi-Kondo couplings, while their Bose-
Kondo couplings are all zero. For the fixed point F in
particular, its fixed point Hamiltonian HF corresponds
to a 6 generator truncated SU(4) fixed point [64], and
thus HF can be written as follows:

HF =
1

2

4∑
ρ,τ=1

ψ̃†
ρ[(σ

0 ⊗ σ⃗)ρτ · (Qx, Oy, Qz)]ψ̃τ

+

2∑
ρ,τ=1

ψ†
ρ[σ⃗ρτ · (Dx, Dy, Dz)]ψτ , (2)

where σ⃗ = (σx, σy, σz), ψ̃ and ψ are 4 and 2 compo-
nent spinors, respectively (see Supplementary Materials
for the relationship between these new electrons and the
original p-wave electrons [57]), which are related to the
original p-wave conduction electrons via a change of basis
[21, 22, 57]. Here, {Qx, Oy, Qz} ∼ {O22, Txyz,O20}, and
Dx,y,z ∼ {Jx,y,z}. Each set of three multipolar moments
satisfies an SU(2) algebra, and the two SU(2) algebras
are mutually commuting. Although the two components
commute and thus appear decoupled, the leading irrel-
evant operator does not commute with either the two-
channel or one-channel component, which means that

they are coupled at any nonzero distance from the fixed
point. This fixed point Hamiltonian has two-fold degen-
erate ground states in the strong coupling limit [65, 66],
so the IR fixed point is valid and likely shows non-Fermi
liquid behavior [59–61, 63, 65, 66].

Secondly, there are the Bose-Kondo fixed points, whose
representative is B. These phases have all local moments
decoupled from the Fermi surface, and hence have the
smallest Fermi surface. These points have nonzero Bose-
Kondo couplings, while their Fermi-Kondo couplings are
all zero. It means that they are magnetically ordered
phases, and can be found within the Bose-Kondo model.
In particular, the fixed point B is a multipolar ordered
fixed point that has quadrupolar ordering and dipolar
ordering with E and T1 irreps respectively.

Thirdly, we find a (stable) partially Kondo-destroyed
fixed point P . For a general partially Kondo-destroyed
point, the multipolar moments are coupled to bosonic
baths as well as conduction electrons, so some local mo-
ments are absorbed into the Fermi surface (and behave
paramagnetically), while others decouple from the Fermi
surface and magnetically order. This is only possible due
to the large number of local states. In the case of P ,
the dipolar local moments are absorbed into the Fermi
surface whereas the quadrupolar moments undergo mag-
netic ordering, so this point has a partially shrunk Fermi
surface. Note that more details of the fixed points are
given in Supplementary Materials [57].

Furthermore, we find critical points CFP between F
and P , and CBP between B and P . These critical points
and stable fixed points are connected by the path of
QPTs, F ← CFP → P ← CBP → B, represented picto-
rially in Fig. 1. The physical interpretation is as follows.

At F , as mentioned before, the system is paramagnetic
with a large Fermi surface due to Kondo hybridization
by one- and two-channel Kondo interactions and absence
of Bose-Kondo coupling. When we pass through CFP

from F to P , the two-channel Kondo interaction van-
ishes, so the quadrupolar and octupolar moments are
decoupled from the conduction electrons. During this,
the quadrupolar Kondo coupling induces non-zero Bose-
Kondo coupling for the quadrupolar moments, so we can
reach P . At P , since the conduction electrons decou-
ple from the quadrupolar and octupolar moments, the
Kondo effect is partially destroyed, but we still have
nonzero Kondo couplings with dipolar moments. This
corresponds to the Fermi surface shrinking one time, so
it has a medium size of the Fermi surface. Furthermore,
the decoupled quadrupolar moments order, so it has the
quadrupolar order parameters ∼ {J2

x − J2
y , 3J

2
z − J2}.

Next, when we pass through CBP between P and B, the
remaining (dipolar) Kondo hybridization vanishes and
thereby induces a non-zero Bose-Kondo coupling for the
dipolar moments. This corresponds to a second shrink-
ing of the Fermi surface, as well as magnetic ordering of
the dipolar moments. At B, since all the Kondo cou-
plings are zero, the Kondo effect is completely destroyed,
and it has a small Fermi surface; the full picture of go-
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ing from F to B is therefore two-stage Kondo destruc-
tion (Fig. 1). Moreover, at B, we have coexistence be-
tween quadrupolar ordering and dipolar ordering. The
two-stage Kondo destruction QPT is consistent with ex-
periment in the sense that the type of ordering we find
matches the observed order parameters. Furthermore,
the jump in the derivative of the Hall resistivity is con-
sistent with the Kondo destruction phase transitions we
have found. We note that, strictly speaking, the sym-
metry breaking character of the external magnetic field
would modify the analysis, but we have neglected it for
simplicity. Note that the RG flow diagrams between the
stable fixed points and critical points are presented in the
Supplementary Materials [57].

Ultrasound Measurement of Multipolar Susceptibility.
In addition to the qualitative signature of Fermi sur-
face reconstruction, the multipolar susceptibility expo-
nent can be used to quantitatively identify the fixed
points. The multipolar susceptibility is defined by
χi(τ) = ⟨TτSi(τ)Si(0)⟩ ∼ (τ0/|τ |)γi , where Si is the mul-
tipolar moment, γi is the multipolar susceptibility expo-
nent, i is an index for the irrep., τ is imaginary time, and
τ ≫ τ0 with the cutoff τ0 = 1/Λ ∼ 1/µ. We label the
spin operators by irrep. because any representative from
the irrep. yields the same result. From the beta func-
tions, we can compute the multipolar susceptibility ex-
ponent [57]. The resulting susceptibility exponents γi are
presented in Supplementary Materials [57]. By assuming
that the multipolar moments are primary fields with con-
formal dimension γi/2, the finite temperature scaling of
the multipolar susceptibility is given by [54, 67]

χ′
i(ω, T ) ∼

{
T γi−1

(
1 + CRe1

(
ω
T

)2)
, |ω/T | ≪ 1,

ωγi−1, |ω/T | ≫ 1,
(3)

χ′′
i (ω, T ) ∼

{
T γi−1

(
ω
T

)
, |ω/T | ≪ 1,

ωγi−1, |ω/T | ≫ 1,
, (4)

where χi(ω, T ) = χ′
i(ω, T ) + iχ′′

i (ω, T ) and CRe1 is a real
constant. Although the dipolar susceptibilities can be
detected by conventional techniques, the purely multi-
polar susceptibilities require elastic measurements. One
way to achieve this is through ultrasound experiments.
The symmetry-allowed free energy produces a linear cou-
pling between strain and quadrupolar moments, which
facilitates a relationship between elastic constants and
quadrupolar susceptibilities. Furthermore, in the pres-
ence of an external magnetic field, a product of magnetic
field and strain couples linearly to octupolar moments,
adding octupolar susceptibility corrections to the elastic
constants (see the Supplementary Materials for details
on how this coupling arises through symmetry consid-
erations [57]). Then, the resulting renormalized elas-
tic constants in the presence of a small magnetic field
h = (0, 0, hz) are then given by second-order perturba-
tion theory as [15, 67, 68]:

C11 − C12 = C0
11 − C0

12 − s2Eχ′
QE
− 2s2−h

2
zχ

′
O2
, (5)

C44 = C0
44 − s2+χ′

Q2
− s2Ah2zχ′

OA
, (6)

where C0
mn and Cmn are the bare and renormal-

ized elastic constants, and sE,A,± are the coupling
strengths between multipolar moments and the elastic
tensors/external magnetic field. χ′

QE
, χ′

Q2
, χ′

O2
, χ′

OA
are

the multipolar susceptibilities for quadrupolar moments
in E and T2+ irreps., and octupolar moments in T2− and
A irreps., respectively. We see that the multipolar sus-
ceptibilities χ′

QE
and χ′

Q2
can both be measured without

an external magnetic field. Once these are determined,
the susceptibilities χ′

OA
and χ′

O−
can then be found. In

the case of the dipolar susceptibilities, they couple to
the magnetic field linearly, and can be measured by con-
ventional magnetic susceptibility probes such as neutron
scattering.

Discussions. In this work, we provided a detailed per-
turbative renormalization group analysis of the Bose-
Fermi Kondo model describing a quartet of local states
from Ce3Pd20(Si, Ge)6 [36] coupled to 3 bands of p-wave
conduction electrons. The primary result we find is a
two-stage Kondo destruction pair of QPT wherein the
Fermi surface shrinks twice as local moments decouple
from the Fermi surface and undergo magnetic ordering.
The phase with smallest Fermi surface is particularly rel-
evant to recent experiments, and exhibits the coexistence
of quadrupolar {J2

x − J2
y , 3J

2
z − J2} and dipolar {Jx,y,z}

order. This is similar to the low temperature and zero
magnetic field phase of Ce3Pd20Si6, which has coexis-
tence of antiferromagnetic {Jz} and antiferroquadrupo-
lar {3J2

z − J2} orders [39, 41, 46].
Connected to this magnetically ordered phase is a par-

tially Kondo destroyed phase wherein the dipolar mo-
ments hybridize with and enlarge the Fermi surface,
whereas the quadrupolar moments remain ordered and
decoupled from the conduction electrons. This par-
tially Kondo destroyed phase is potentially related to the
quadrupolar ordered phase observed in the experiment
at low temperatures for magnetic fields between 1T and
2T [40]. Our results show a further phase transition to
a paramagnetic phase, where the quadrupolar moments
also get hybridized with the Fermi surface and enlarge
it a second time. Interestingly, all three of these phases
are also observed experimentally at zero magnetic field
as a function of temperature; indeed the paramagnetic F
phase we calculate could be the experimentally observed
paramagnetic phase at zero magnetic field and temper-
atures above TQ. Experimentally, (at zero temperature)
additional reconstruction of the Fermi surface is observed
above 2T. However, this unidentified phase above 2T is
not connected to the phases observed at zero magnetic
field and its explanation may require explicit inclusion of
the magnetic field, which is beyond the scope of the cur-
rent work. Our results expand on the previous toy model
study demonstrating the possibility of two consecutive
Kondo destruction phase transitions [49]. Notice, how-
ever, that the previous toy model study did not identify
the types of multipolar order, and also did not suggest
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the coexistence of quadrupolar with dipolar order in the
fully Kondo destroyed phase. We also discuss ultrasound
measurements as an experimental probe of the multipolar
susceptibilities at the different quantum critical points.

Here, we have solved a local version of the multipolar
Kondo lattice model, but in future work it would be in-
teresting to understand the full lattice problem with all
the allowed multipolar moments, and determine whether
quantum fluctuations beyond the local approximation are
important or not. A further extension for our work is mo-
tivated by the fact that the phase transitions observed in
experiments on Ce3Pd20Si6 are tuned by the magnetic
field [40, 41]. Our model does not include the magnetic
field explicitly, when in fact its effect on the Fermi sur-
face, splitting of local moment states, and tetrahedral
symmetry breaking nature may be important for con-
nections with experiment. Another possible direction of
theoretical inquiry is provided by the fact that, when the
Kondo effect is destroyed, not every moment that was ini-
tially hybridizing with the conduction electron becomes
ordered. The remaining moments may enter a (poten-
tially multipolar) spin liquid phase [69, 70], with interac-
tions mediated by the RKKY coupling providing a mech-
anism for frustration.

Although the construction of our model in the
tetrahedral Td environment was inspired by work on
Ce3Pd20(Si, Ge)6, the results apply equally as well to
other materials with a Γ8 quartet in a cubic environ-
ment. This quartet can also arise in the presence of an
octahedral Oh crystal field, as is the case for the ground

state of Ce3+ in CeB6 [36]. In fact, it is likely that
such a rich phase diagram with possibility of both sin-
gle and two-stage Kondo destruction is the case in any
rare earth metallic system with a quartet of local mo-
ment ground states; this even applies to compounds with
accidental fourfold degeneracy like YbRu2Ge2 [71, 72].
This work therefore demonstrates the striking details one
can uncover about exotic Kondo physics, the symmetries
of multipolar ordering, and Fermi surface reconstruction
based purely on local symmetry, and opens a new route
to study novel quantum criticality in multipolar heavy
fermion systems.
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