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Bilayer graphene exhibits a rich phase diagram in the quantum Hall regime, arising from a mul-
titude of internal degrees of freedom, including spin, valley, and orbital indices. The variety of
fractional quantum Hall states between filling factors 1 < ν ≤ 2 suggests, among other things, a
quantum phase transition between valley-unpolarized and polarized states at a perpendicular elec-
tric field D∗. We find the behavior of D∗ with ν changes markedly as B is reduced. At ν = 2,
D∗ may even vanish when B is sufficiently small. We present a theoretical model for lattice-scale
interactions which explains these observations; surprisingly, both repulsive and attractive compo-
nents in the interactions are required. Within this model we analyze the nature of the ν = 2 state
as a function of the magnetic and electric fields, and predict that valley-coherence may emerge for
D ∼ D∗ in the high B regime. This suggests the system supports Kekule bond-ordering, which
could in principle be verified via STM measurements.

Introduction. The quantum Hall (QH) regime of two-
dimensional electronic systems with several internal de-
grees of freedom presents an intriguing many-body prob-
lem, where the interplay of interactions and degenerate
Landau levels (LLs) often leads to a multitude of pos-
sible ground states [1–5]. Graphene and its few-layer
variants offer compelling material platforms to explore
this interplay due to their rich Landau spectrum, in-
volving approximate SU(4) symmetry in spin and val-
ley sectors, as well as relatively high mobilities and wide
gate tunability [6–12].

Graphene systems, uniquely, support QH phases
around charge neutrality, whose nature has been inves-
tigated extensively. Previous theoretical studies [13–
18] have clarified that the order underlying the ground
state depends crucially on lattice-scale corrections to
the (long-range) Coulomb interaction, which reduce the
valley SU(2) symmetry to U(1)×Z2. The precise form
of these corrections is unclear and may depend on the
device configuration. In light of this, the standard ap-
proach, introduced by Kharitonov [14–16], is to include
phenomenological terms consistent with the symmetry.
Conventionally, these terms are assumed to be indepen-
dent of the magnetic field (B) and have a range of order
the lattice constant, which is much smaller than the
magnetic length [ℓ =

√
ℏ/eB]. In what follows we will

refer to this as the orthodox model (OM) of the lattice
scale interactions.

Generally, the OM has been in accordance with exper-
imental observations. In particular, for the ν = 0 phase
of monolayer and bilayer graphene (MLG and BLG re-
spectively), this model supports the interpretation of
transport [19–23] and magnon transmission [24–26] ex-
periments in terms of a magnetically ordered ground
state. However, recent scanning tunneling measure-
ments [27–29] in MLG find charge-ordered ground states

at ν = 0, with a Kekule bond-order (BO) or a charge
density wave (CDW) order. Given the difficulty in rec-
onciling these conflicting observations (within the OM),
recently one of us [30, 31] reevaluated the ν = 0 phase
diagram allowing the lattice-scale interactions to assume
a more generic form. These studies find that coexistence
phases with both spin and charge order may appear if
interactions have a structure at the scale of ℓ.

As a matter of principle, and irrespective of specific
filling factor and device details, the phenomenological
terms in the low energy model may have a complicated
form due to quantum fluctuations involving other (pos-
itive and negative energy) LLs [32–36]. This LL mixing
is largely controlled by the parameter κ = Ec/ℏωc, the
ratio of the Coulomb energy scale (Ec) to the cyclotron
gap (ℏωc) [34]. In general, LL mixing introduces a non-
trivial component with a range of ℓ to the effective inter-
actions, which may be attractive or repulsive. Moreover,
the B-dependence of these terms may be different from
that of the bare terms. Refs. 30 and 31 demonstrate
that such considerations not only affect the energetics,
but also add to the set of possible ground states [37].

In this Letter, we explore the QH phases of BLG
and provide further evidence for the crucial role of such
modified interactions. We consider a dual-gated device,
which allows the application of a transverse electric field
(D) as an experimental knob to tune between different
ground states at fixed filling factor ν. Close to charge
neutrality, the chemical potential lies within a set of
eight (nearly) degenerate LLs labelled by spin, valley
and an orbital index, supporting a variety of broken-
symmetry states in the range |ν| < 4. Indeed, trans-
port [23, 40–42] and capacitance [43] measurements pro-
vide evidence for a complex sequence of phase transi-
tions driven by D for both integer and fractional fillings.
The number of transitions and the values of D at which
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they occur are functions of ν and B. As shown below,
the complete phase diagram in the {D, B, ν} space en-
codes vital information on the underlying many-body
effects.

Notably, the OM is consistent with many earlier mea-
surements, restricted to certain regions of the parameter
space such as a fixed value of B [43] or integer ν [41].
Our present study is based on transport measurements
over a wide range of parameters, including moderate
and high B, where experimental data in higher-quality
samples are now available. Specifically, we focus on fill-
ing factors 1 < ν ≤ 2, and track the variation of the
critical electric field (D∗) at which a phase transition
occurs with B and ν [Fig. 1]. We find that D∗(ν) is
an increasing (decreasing) function of ν at high (low)
B-fields, and that D∗ may even vanish at sufficiently
low fields. It is worth emphasizing that because the
chemical potential is pinned to the same LL for this fill-
ing factor range, the behavior of D∗(ν,B) is controlled
by the lattice-scale interactions, and imposes significant
constraints on their form. The elucidation of these in-
teractions is the main purpose of this work.

The main finding of this Letter is that the OM of
lattice-scale interactions cannot account for the ob-
served behavior of D∗(ν,B). Our Hartree-Fock (HF)
analysis demonstrates that the symmetry-breaking in-
teractions must have both repulsive and attractive com-
ponents with different B-dependence in order to explain
the measurements [Fig. 2]. These results suggest that
corrections arising from the LL-mixing play a significant
role in BLG, particularly at lower B. We further em-
ploy this model to construct the phase diagram of the
ν = 2 QH state in the B–D plane [Fig. 3]. Interestingly,
we find the emergence of an inter-orbital valley-coherent
phase around D ∼ D∗ for sufficiently large B. The exis-
tence of such a valley-orbital entangled (VOE) phase at
high B implies that the transport gap at ν = 2 does not
close around D = D∗. Additionally, valley-coherence
points to the presence of a Kekule BO phase which
may be observed in tunnelling measurements, similar
to those reported in Refs. 27–29.

Transport Measurements. We employ a high quality
dual-gated BLG device, device 002, described previously
in Ref. 42, to examine the behavior of D∗ as a function
of B at different filling factors. Figure 1(a) shows a color
map of Rxx(D) in the range 1 < ν < 2 at B = 18 T and
T = 20 mK (See the full dataset covering a wider range
of ν in Ref. 42). Regions with darker colors correspond
to vanishingly small Rxx indicating QH phases. The
black dashed curve marks the true inversion symmetric
line, i.e. where D = 0 is. Device asymmetry causes a
slight asymmetry between D∗

+ and D∗
¬ (the red dashed

lines), where two (non-interacting) LLs with different
valley and orbital indices cross [41], as depicted in the
inset of Fig. 1(c). Figure 1(b) depicts traces of Rxx(D)
at B = 28 T and T = 0.33 K for different ν. D∗

¬ mani-
fests as resistance peaks marked by ∗. Figure 1(d) plots
Rxx(D) for ν = 2 at different B taken at T = 3 K,
where D∗

± (marked by ∗) become more readily observ-

FIG. 1. (a) False color map of Rxx(ν,D) between ν = 1
and 2 at B = 18 T (obtained in Ref. [42]). The red dashed
lines mark the positive and negative critical electric fields
(D∗

±), at which a first-order phase transition, as illustrated
in the inset of (c), occurs. The black dashed line marks the
true D = 0. (b) Line scans of Rxx vs D obtained at fixed
ν = 4/3 (blue), 3/2 (green) and 5/3 (violet) at B = 28
T. The resistance peaks (marked by ∗) correspond to D∗

−.
Note that |D∗| increases/decreases with ν at B = 28/18 T.
(c) B-field dependence of D∗ for different ν. Dashed lines
are guide to the eye. (d) Line scans of Rxx vs D for ν = 2
at different B. The transitions D∗

± are marked by ∗. The
average of D∗

± at ν = 2 is plotted as squares in (c). D∗
− for

ν = 4/3 (5/3) are obtained using similar measurements and
shown as triangles (circles). All data are from device 002.

able for ν = 2. The closing of the transport gap signals
a first order phase transition, similar to previous obser-
vations in GaAs [44], the position of which evolves with
B. Figure 1(c) depicts the evolution of D∗ with B for
ν = 2, 5/3 and 4/3 obtained through a similar analysis.
A salient feature of the color map [Fig. 1(a)] is that

at B = 18 T, D∗ (defined as the average of |D∗
±|) is

monotonically decreasing with increasing ν. This is not
always the case: Figure 1(b) shows that D∗ increases
with increasing ν at B = 28 T. This change of behav-
ior is illustrated in Fig. 1(c), which shows the variation
of D∗ with B for different values of ν. Strikingly, the
various curves appear to cross around B = Bs ∼ 26 T,
implying that D∗(ν) is an increasing (decreasing) func-
tion of ν for B > Bs (B < Bs). Furthermore, D∗(ν) de-
creases monotonically upon lowering B and appears to
vanish for sufficiently small B. For example, D∗(ν = 2)
vanishes at B = B∗ ∼ 11 T. This can be seen clearly
in Fig. 1(d), where the two resistance peaks observed
for at higher B (which mark D∗

±) merge into one at
B = B∗ ∼ 11 T, implying D∗

+ = D∗
− = 0.

The theoretical challenge here is to account for the
two most prominent features observed in the data: (a)
the change in the slope of D∗ vs ν from positive for
B > Bs to negative for B < Bs, and (b) the vanishing
of D∗(ν = 2) at B = B∗. A subsidiary puzzle is the
nature of the ν = 2 ground state as D is tuned close
to D∗. Additionally, the theoretical model has to be
consistent with previous observations at ν = 0, such as
the canted antiferromagnet and layer polarized phases.

Theoretical Model. The LL spectrum of BLG close to
charge neutrality (chemical potential |µ| ≪ ℏωc) con-
sists of eight nearly degenerate LLs, corresponding to
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FIG. 2. Constraints on the interactions vi(q) [i = z, xy] dictated by transport measurements. The parameters g
(i)
0 , g

(i)
LL, ξ

are defined in Eq. 3. (a) g
(z)
LL as a function of g

(z)
0 for different Bs (the field at which the slope of D∗ vs ν changes sign).

Consistency with experiments rules out negative values of g
(z)
0 . (b) g

(xy)
LL versus g

(xy)
0 for different values of g

(z)
0 . The cross

marks the smallest value of g
(xy)
0 at which the theoretical model remains consistent with experiments. Notably, vz and vxy

may comprise both repulsive and attractive components. (c) Contour plot of g
(xy)
LL in the g

(z)
0 –g

(xy)
0 plane. The dark gray

region (below the dashed curve) is forbidden by experimental constraints. Here, we used ξ = 0.3 and ϵ = 6. In (b) and (c)
we used Bs = 26 T and B∗ = 11 T.

the spin, valley and orbital degrees of freedom. Experi-
mental evidence, e.g. the absence of any dependence on
the in-plane field in the activation energy gaps measured
at ν = 2, 3 [19] and the relatively large effective Zeeman
coupling [41], indicate that in the filling factor range
of interest to us (ν ∼ 2) the electronic states are spin-
polarized. We therefore restrict the Hilbert space in the
model to four LLs, labelled by the orbital (N = 0, 1) and
valley (α = ±) indices. The two orbitals are not degen-
erate as there is no symmetry relating them. On the
other hand, the two valleys are degenerate unless inver-
sion symmetry is broken by a perpendicular electric field
D (or sublattice potentials, which are ignored here).
The one-body part of the Hamiltonian is hence given

by H0 =
∑

Nαk ϵαNc†NαkcNαk, where k is the guiding
center index in the Landau gauge, and

ϵαN = N∆10 + α
∆D

2
|PNα|. (1)

Here ∆10 is the energy gap between the two orbitals (for
D = 0), PNα is the layer polarization, and ∆D ∝ D is
the interlayer potential difference generated by D.
To evaluate the energies and wave functions of the

(non-interacting) states, we employed an effective four-
band model (corresponding to the four sites of the unit-
cell) [45], which includes all tight-binding parameters
found to be finite in ab-initio studies [46]. In particu-
lar, our model incorporates both trigonal warping and
the hopping between Bernal-stacked sites exactly (see
Ref. 47 for details). Ignoring the Bernal-sites leads to
perfect valley-layer locking, such that PNα = α. By
contrast, in the full 4-component spinor the weight on
these sites increases with B and PNα depends on N [43].
This orbital dependence has significant impact on the
variation of D∗. Trigonal warping modifies the density
profile of the wave functions at each site, which affects

the interaction matrix elements and plays an important
role in stabilizing novel ground states (see e.g. Ref. 18).

The interacting part of the Hamiltonian comprises
two components, Hc and Hv. Hc is an SU(4) sym-
metric (screened Coulomb) density-density interaction.
The (Fourier transformed) pair potential for this is

vc(q) = Ec

ϵ veff(q), where Ec = e2

4πϵ0
1
ℓ is the Coulomb

energy scale, ϵ is the relative permittivity of hBN, and
veff(q) = f(q)/qℓ where f(q) is a form factor that ac-
counts for screening from the top and bottom gates as
well as higher energy LLs (at the RPA level) [47]. Hv

represents the lattice-scale corrections, which reduce the
valley symmetry to U(1) × Z2. We assume that these
corrections do not depend on the orbitals, and only
include the terms present in the Kharitonov model of
BLG [15, 16] which may be expressed as

2πℓ2 × 1

2A

∑
i=x,y,z

∑
q⃗

vi(q) : ρi(q⃗ )ρi(−q⃗ ) :, (2)

where A is the area of the sample, and ρi(q) the (Fourier
transform of) ith component of local isospin density [47].
Valley U(1) symmetry leads to vx(q) = vy(q) ≡ vxy(q).
While vi(q) (i = z, xy) is replaced by a constant in the
OM, here we assume the more general form,

vi(q) = g
(i)
0 ×

(
Ec

a

ℓ

) [
1− g

(i)
LL × κ× e−

ξ
2 (qℓ)

2]
(3)

where a is the lattice constant. In the limit κ → 0, vi(q)
reduces to the standard short-range form with strength

g
(i)
0

(
Ec

a
ℓ

)
∝ B. For finite κ the second term of (3),

which phenomenologically models corrections due to LL
mixing, becomes progressively more important, with the
characteristic scale κ ×

(
Ec

a
ℓ

)
∝

√
B. We emphasize

that the two components of vi(q) differ not just in their
range, but crucially also in their dependence on B, and
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FIG. 3. Phase diagram at ν = 2. The solid lines mark a first
order transition between the valley-polarized and orbital-
polarized phases (corresponding to D∗); the blue (green)

curves correspond to g
(xy)
0 = −2.0 (g

(xy)
0 = −2.5). The

plus signs (at B = Bc ∼ 20T and 30T ) mark a critical
point where the first order phase boundary terminates. The
dashed lines at higher B mark the region where an inter-
vening valley-orbital entangled phase (denoted by VOE-1)
emerges around D∗, which allows for a continuous transition
between the two polarized phases. The color map shows the
variation of the order parameter ⟨ηx⟩ in the VOE-1 phase

(see text) for g
(xy)
0 = −2.0. The VOE-1 phase is character-

ized by a density matrix with the form in (5) with θA ∈ (0, π)
and θB = 0. The inset shows the variation of Bc (the field at

which the first order transition ends) with g
(xy)
0 for different

g
(z)
0 . Here, we used ϵ = 6, ξ = 0.3 and g

(z)
0 = 6.0. g

(i)
LL were

chosen such that Bs = 26 T and B∗ = 11 T.

may have different signs. The dimensionless numbers

g
(i)
0 , g

(i)
LL and ξ, assumed to be independent of B, are

the tuning parameters of the model.

We treat the interactions in the self-consistent HF
approximation. The HF ground state, assumed to be
translationally invariant, is characterized by the single-

particle averages ⟨c†N1α1k1
cN2α2k2

⟩ = δk1k2∆
N1α1

N2α2
, which

minimize the variational energy. All details (including
the B dependence) of the interaction potentials and the
single-particle wave functions are folded into the set of
Hartree and Fock couplings [47].

Variation of D∗. The ν = 2 ground state corresponds
to complete filling of two of the four LLs included in the
model. Equation (1) suggests that the (non-interacting)

ground state is |0−, 0+⟩ ≡ Πkc
†
0−kc

†
0+k|0⟩ forD ∼ 0 and

a valley polarized phase |0−, 1−⟩ at large (and positive)
D. The transition occurs at D = D∗(ν = 2) for which
the energy of the two states is equal. Comparing the
HF variational energy of these two states leads to an
analytic equation for D∗(ν = 2) [47].

Upon reducing the filling factor to ν = 2 − δν, the
highest energy occupied LL is partially depleted. For
δν ≪ 1 this yields a linear equation D∗(2 − δν) =
D∗(2)−mD∗δν, where, up to an unimportant prefactor,
the slope of D∗ vs ν (mD∗) is

mD∗ =
(
F (c)

0000 −F (c)
1111

)
+

(
F (z)

0000 −F (z)
1111

)
. (4)

Here F (i)
NNNN is the Fock integral for Coulomb (i = c)

and vz (i = z) interactions which couples electrons
within one of the |N,α⟩ LL’s [47]. For repulsive inter-
actions F0000 ≥ F1111 since the N = 0 states are more
localized than those withN = 1. Hence, mD∗ > 0 for all
B if only Coulomb interactions are present. In order to

account for the experimental observations, F (z)
0000−F (z)

1111

must be sufficiently negative at B < Bs and positive at
higher B. We find that this cannot be achieved with-

out a finite g
(z)
LL [Fig. 2(a)]. Our measurements constrain

both g
(z)
0 and g

(z)
LL to be positive, suggesting that vz must

have both short-ranged repulsive and longer-ranged at-
tractive components.

Next, we turn to the vanishing of D∗(ν = 2) at
B = B∗ ∼ 11 T. This can be achieved for generic values

of g
(z)
0 and g

(xy)
0 , if g

(xy)
LL is also finite [Figs. 2(b,c)]. In-

terestingly, the experimental results also constrain the
possible values of the bare lattice interaction parame-

ters (g
(z)
0 and g

(xy)
0 ). Specifically, g

(z)
0 may only assume

positive values, while g
(xy)
0 must be larger than a certain

cutoff [Fig. 2(c)].
Intervalley Coherence. The analysis thus far consid-

ered ground states for which α and N are good quan-
tum numbers. Since two LLs with different valley and
orbital indices are nearly degenerate in the D ∼ D∗

regime, the system may be able to lower the variational
energy by hybridizing these LLs and forming a more
complex ground state. We performed unrestricted HF
calculations over a wide range of parameters to explore
the nature of the ν = 2 phase. This analysis uncov-
ered a rich variety of possible ground states involving
hybridization between different pairs of LLs [47]. Here,

we restrict the range of parameters to g
(z)
0 > 0 and

g
(xy)
0 < 0, which is consistent with previous studies at
ν = 0 in this system [21, 23, 26]. In this regime, the
state is well-described for all B, D by an ansatz for
∆N1α1

N2α2
of the form

1

2

 1 + cos(θA) 0 sin(θA)
0 1 + cos(θB) sin(θB) 0
0 sin(θB) 1− cos(θB) 0

sin(θA) 0 0 1− cos(θA)


(5)

in the (Nα) = (0+, 0−, 1+, 1−) basis. The angles
θA,B ∈ [0, π] parameterize the state [55]. The orbital-
(valley-)polarized state is described by θA = θB = 0
(θA = π, θB = 0). θA,B ̸= 0, π correspond to inter-
orbital valley-coherent phases which smoothly interpo-
late between the two polarized states. These VOE
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phases break the U(1)-valley symmetry and are char-
acterized by the order parameter ⟨ηx⟩ = 1

2

[
sin(θA) +

sin(θB)
]
. Our analysis finds that for generic parame-

ters (consistent with experiments), the polarized phases
are separated by a first order transition for low values
of B. The first order boundary terminates at a certain
magnetic field, and a VOE phase appears in a finite pa-
rameter range around D = D∗ for higher values of B
(Fig. 3 shows a typical phase diagram). We refer to
this phase as VOE-1 because (generically) valley coher-
ence emerges only in one of the sectors, i.e., θB = 0
and θA ∈ (0, π) for D > 0. Such a valley coherent
phase may exhibit Kekule BO. At the lattice scale these
phases break translational symmetry, but upon coarse-
graining to the scale ℓ, they do not, in accordance with
our original assumptions regarding ∆.
Discussion. The results presented above rely on the

HF approximation, which ignores the effect of quantum
fluctuations and correlations (beyond exchange). How-
ever, we believe that the qualitative features of our re-
sults would remain unaltered even when these effects
are included. The cornerstone of our analysis is the dis-
tinct behavior of D∗(ν) at low and high B-fields. Our
measurements show that D∗(ν) is a relatively smooth
function for 1 < ν ≤ 2. By contrast, correlation effects,
which are crucial in stabilizing fractional QH phases,
strongly depend on the precise value of ν and may be
wildly different even for nearby fractions. This indi-
cates that such effects do not play an important role
in determining the qualitative behavior of D∗(ν) over
a broad range of filling factors, which is apparently
well-captured by the HF approximation. We emphasize
that correlations beyond HF do affect D∗(ν,B) quanti-
tatively, even at higher B [43].
Our model further accounts for the vanishing of

D∗(ν = 2) at B = B∗. Its experimental value (B∗ ∼
11T) allows us to constrain two of the four tuning pa-
rameters in the model, the couplings of the components
arising from LL mixing (gLL). The fact that even the
qualitative behavior of the measured D∗ cannot be ex-
plained without finite gLL strongly implies that LL-
mixing plays a crucial role in determining the ground
state, by introducing a effective attractive interactions
that scale differently with B. These interactions become
particularly pronounced at low B.
We note that the U(1) valley symmetry is an artifact

of the continuum approximation, and the restriction to
just two-body interactions. LL mixing would not only
modify the two-body potential, but also introduce three

and higher-body terms. Since 3(K⃗ − K⃗ ′) (where K⃗ and

K⃗ ′ are the locations of the valley centers in the Brillouin
zone) is a reciprocal lattice vector, the lattice translation
symmetry allows for three-body Umklapp terms trans-
ferring 3 fermions from one valley to the other. These
terms reduce the U(1) symmetry, associated with the
conservation of the difference of charge between the val-
leys, to Z3. Hence, the valley-coherent phase breaks a
discrete symmetry, and may exist at finite temperatures.
In fact, it corresponds to a Kekule bond-ordered phase,
similar to those observed in STM experiments on MLG
recently [27–29].

Conclusions. Using high-quality BLG devices, we ex-
plored the behavior of the critical electric field D∗(ν,B)
in the range 1 < ν ≤ 2, and observed a qualitative differ-
ence between the high and low B regimes. Remarkably,
we found that the standard theoretical models of BLG
are not consistent with these measurements. Instead, it
is crucial to consider the corrections to the lattice-scale
interactions arising from LL-mixing, which we argued
lead to an effective attraction at short but finite length
scales. We presented a phenomenological model of these
which accounts for the experiments. It moreover pre-
dicts an inter-orbital valley-coherent phase for D ∼ D∗

at high B, which may be observed as a bond-ordered
state in STM experiments. Our work motivates a de-
tailed theoretical analysis of the LL-mixing corrections
to lattice-scale interactions in MLG and BLG. Their ef-
fect on other integer and fractional QH states is another
interesting direction for future investigations.
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